
On the difficulty of learning chaotic dynamics with
RNNs

Jonas M. Mikhaeil1,2,*, Zahra Monfared1,4*, and Daniel Durstewitz1,2,3

j.mikhaeil@columbia.edu, {zahra.monfared, daniel.durstewitz}@zi-mannheim.de
1Department of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim,

Heidelberg University, Mannheim, Germany
2Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany

3Interdisciplinary Center for Scientific Computing, Heidelberg University
4Department of Mathematics & Informatics and Cluster of Excellence STRUCTURES, Heidelberg University,

Heidelberg, Germany
*These authors contributed equally

Abstract

Recurrent neural networks (RNNs) are wide-spread machine learning tools for
modeling sequential and time series data. They are notoriously hard to train be-
cause their loss gradients backpropagated in time tend to saturate or diverge during
training. This is known as the exploding and vanishing gradient problem. Previous
solutions to this issue either built on rather complicated, purpose-engineered archi-
tectures with gated memory buffers, or - more recently - imposed constraints that
ensure convergence to a fixed point or restrict (the eigenspectrum of) the recurrence
matrix. Such constraints, however, convey severe limitations on the expressivity of
the RNN. Essential intrinsic dynamics such as multistability or chaos are disabled.
This is inherently at disaccord with the chaotic nature of many, if not most, time
series encountered in nature and society. It is particularly problematic in scientific
applications where one aims to reconstruct the underlying dynamical system. Here
we offer a comprehensive theoretical treatment of this problem by relating the
loss gradients during RNN training to the Lyapunov spectrum of RNN-generated
orbits. We mathematically prove that RNNs producing stable equilibrium or cyclic
behavior have bounded gradients, whereas the gradients of RNNs with chaotic
dynamics always diverge. Based on these analyses and insights we suggest ways
of how to optimize the training process on chaotic data according to the system’s
Lyapunov spectrum, regardless of the employed RNN architecture.

1 Introduction

Recurrent neural networks (RNNs) are widely used across various fields in engineering and science
for learning sequential tasks or modeling and predicting time series [55]. Yet, they struggle when
long-term temporal dependencies, very slow, or hugely varying time scales are involved [6, 34, 53,
73, 80]. Time series or sequential data with such properties are, however, very common in fields
like climate physics [84], neuroscience [22, 75], ecology [87], or language processing [11]. Training
RNNs on such data is hard because the loss gradients backpropagated in time easily saturate or
diverge in this process. This is commonly referred to as the exploding and vanishing gradient problem
(EVGP) [6, 34, 67].

One solution to the EVGP is based on specifically designed RNN architectures with gating mecha-
nisms, such as long short-term memory (LSTM) [35] or gated recurrent units (GRU) [10]. These
architectures allow states at earlier time steps to more easily influence activity much later through a

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

kind of protected memory buffer, thus alleviating the EVGP by structural design. In practice, such
models need to be backed up by further techniques like gradient clipping to keep the gradients in
check [67]. The relatively complex architectural design of these networks impedes their mathe-
matical analysis and requires reverse engineering after training [57, 63, 64, 80]. Partly to forego
these complications, a variety of other solutions has been proposed recently, imposing restrictions
on the recurrence matrix to bound the gradients [4, 9], or enforcing global stability by design or
regularization [19, 49]. Often these procedures dramatically curtail the expressivity of the RNN [45,
66, 80]; in particular, they rule out chaotic dynamics (for reasons discussed further below).

This is at odds with the plethora of chaotic phenomena in nature, engineering, and society. Chaotic
dynamics are commonplace, almost default in any complex physical or biological system. This
includes scientific areas as diverse as neuroscience [17, 93], physiology [46], geophysics [81], climate
systems [88], astrophysics [52], ecology [14], chemical reactions [21], cell [65] or population [59]
biology. Chaotic phenomena are also crucial for the understanding of societal and epidemiological
processes, such as the spread of diseases [58] or in economics [20]. They are further relevant in
purely technical contexts such as electrical engineering [41, 83] or laser optics [43]. They have even
been suggested to play an up to now largely neglected, but potentially very significant role in speech
recognition [77] and natural language processing [36]. Hence, in almost any practical setting, chaotic
phenomena abound. They cannot, in general, be ignored when devising RNN training algorithms.

Here we offer a comprehensive theoretical treatment of the relation between RNN dynamics and
the behavior of the loss gradients during training. We find a close connection between an RNN’s
loss gradients and the largest Lyapunov exponent of its freely generated orbits. We mathematically
prove that RNNs producing stable fixed point or cyclic behavior have bounded gradients. Crucially,
however, the loss gradients of RNNs producing chaotic dynamics always diverge. Hence, the chaotic
nature of many time series data induces a principle problem, and, despite significant efforts in the past
to solve the EVGP, training RNNs on such data remains an open issue. We illustrate the implications
of our theory for RNN training on several simulated and empirical chaotic time series, and adapt the
idea of sparsely forced Back-Propagation Through Time (BPTT) as a simple yet effective remedy
that enables to learn the underlying dynamics despite exploding gradients.

2 Related works

Exploding and vanishing gradients. While ‘classical’ remedies of the EVGP [6, 34, 67] rest on
purpose-tailored architectures with gating mechanisms, which safeguard information flow across
longer temporal distances [10, 35], the focus has recently shifted to simpler RNNs that address the
EVGP by restricting the recurrence matrix to be orthogonal [31, 32, 37], unitary [4], or antisymmetric
[9], or by ensuring globally stable fixed point solutions [38, 40], for example through co-trained
Lyapunov functions [49]. However, all these approaches impose strong limitations on the dynamical
repertoire of the RNN, enforcing global convergence to fixed points or simple cycles.1 In doing
so, they drastically reduce the expressiveness of these models [45, 66]. To address this problem,
Erichson et al. [19] somewhat relaxed the constraints on the recurrence matrix by introducing a skew-
symmetric decomposition combined with a Lipschitz condition on the activation function. Another
recent approach discretizes oscillator ordinary differential equations (ODEs) to arrive at a stable
system of coupled [73] or independent [74] oscillators which increase the RNN’s expressiveness
while bounding its gradients. By design (and as acknowledged by the authors), neither of these
architectures is capable of producing chaotic dynamics, however, as the underlying ODEs do not
allow for exponential divergence of close-by trajectories (a prerequisite for chaos). Given these often
principle limitations of parametrically or dynamically strongly constrained models, a fruitful direction
may be to modify the training process itself, e.g. through modified or auxiliary loss functions [80,
85], or special procedures for parameter updating [39] or loss truncation [61, 95]. Our empirical
evaluation will follow up on such ideas, but also highlight that simple loss truncation, windowing, or
architectural solutions like LSTMs are not sufficient.

Learning dynamical systems. Surprisingly disconnected from the work on the EVGP and learning
long-term dependencies, a huge and long-standing literature deals with training RNNs on nonlinear
dynamical systems (DS) [70, 86, 89], including chaotic systems like the famous Lorenz equations
[56] or chaotic turbulence in fluid dynamics [54, 69]. Of those, methods based on reservoir computing
[69] are special in that they start with a large complex dynamics-enabling repertoire to begin with

1We make this point more formal in Appx. A.1.6.

2

for which a linear mapping onto the observations in a feedback loop with the reservoir is learned
(see [8] for issues associated with this strategy in the context of DS reconstruction). Teacher forcing
(TF; [13, 70, 95], see also [28]) is one of the earliest techniques introduced to keep RNN trajectories
on track while training. The idea behind TF is to simply replace RNN states by observations when
available, thereby also effectively cutting off the gradients. TF essentially derives from ideas in
dynamical control theory, and adaptive schemes that increasingly hand over control to the RNN
throughout training have been devised [1, 2, 5]. A related technique with applications in control
theory is “multiple shooting” [92]: Here the whole observed time series is chopped into chunks, and
for each chunk of trajectory a new initial condition is estimated. Explicit constraints ensure continuity
between the separate trajectory bits during optimization. State space models and the Expectation-
Maximization algorithm became popular particularly in the 90es for uncovering the latent dynamics
underlying a set of time series observations [23], and remain an important tool until today [16, 50].
Most recently, approaches based on variational inference and the reparameterization trick [48], like
sequential variational autoencoders (SVAE), gained in popularity for DS approximation [33, 51].
“Deterministic” RNNs (i.e., with latent states not treated as random variables), like conventional
LSTMs [90], remain top choices for DS reconstruction, however.

Although connections between DS ideas and loss gradients have been drawn early on [6], so far
only particular scenarios (like fixed point attractors) have been considered. Closest to our work
is recent work by Schmidt et al. [80], where non-divergence of loss gradients is established when
RNNs converge to fixed points or cycles. However, this was done only for the particular class
of piecewise-linear RNNs (PLRNNs), more restrictive conditions for cycles were imposed than
assumed here, and - most importantly - the chaotic case on which we focus here was not considered.
Recent studies [18, 91] also point out the general connections between Lyapunov exponents and loss
gradients that we develop in sect. 3.1, but do not provide any in-depth theoretical treatment, proofs,
or empirical evaluation of methods to alleviate exploding gradients in training, as we do here. Thus, a
systematic theoretical framework that relates RNN dynamics more generally, and across a range of
different RNN architectures, to the behavior of its training gradients, is still lacking so far.

3 Theoretical analysis: Relation between RNN dynamics and loss gradients

In our analysis, we will cover all major types of asymptotic dynamics (fixed points, cycles, chaos,
and quasi-periodicity), and mathematically investigate their implications for the loss gradients. We
will do this for all major classes of RNNs, including standard RNNs with largely arbitrary activation
function, LSTMs, GRUs, and PLRNNs. The next section will first develop and illustrate the basic
intuition behind the relations between RNN dynamics and loss gradients.

3.1 Preliminaries: RNN dynamics and loss gradients

Formally, all popular RNN architectures, including LSTMs, GRUs, or PLRNNs, are discrete time DS,
defined by a (first-order-Markovian) recursive prescription for the temporal evolution of the latent
states zt 2 RM of the general form

zt = F✓(zt�1, st), (1)
where st 2 RN is the input at time t and ✓ are RNN parameters. Map F✓ may be instantiated by
any of the common RNN architectures: For instance, for standard RNNs we have F✓(zt�1, st) =
f
�
Wzt�1 + Bst + h

�
, where f is an element-wise activation function like tanh or a rectified

linear unit (ReLU), W a connection matrix, matrix B weighs the inputs, and h is the usual bias term
(see sect. A.1.3–A.1.6 for the definition of other RNN models explored here).

Assuming we start at some initial value z1 2 RM , and given a sequence of external inputs S = {st},
we can recursively rewrite eq. (1) as

zT = F✓(F✓(F✓(...F✓(z1, s2)...))) =: F
T�1
✓ (z1, {st}). (2)

In DS theory, we characterize the long-term behavior of such sequences by its spectrum of Lyapunov
exponents. The Lyapunov exponents estimate the exponential growth rates in different local directions
of the system’s state space, and the largest Lyapunov exponent gives the dominant exponential
behavior. Let us denote the system’s Jacobian at time t by

Jt :=
@F✓(zt�1, st)

@zt�1
=

@zt

@zt�1
. (3)

3

Then, the maximum Lyapunov exponent along an RNN trajectory {z1, z2, · · · , zT , · · · } is defined as

�max := lim
T!1

1

T
log

�����

T�2Y

r=0

JT�r

����� , (4)

where k · k denotes the spectral norm (or any subordinate norm) of a matrix. If �max < 0 nearby
trajectories will ultimately converge to a fixed point or cycle, while for �max > 0 (a necessary
condition for chaos) initially nearby trajectories will exponentially separate, i.e. we will have
divergence along one (or more) directions in state space. This accounts for the sensitive dependence
on initial conditions in chaotic systems.

Now let L(✓) be some loss function employed for RNN training that decomposes in time as L =P
T

t=1 Lt. Suppose we fancy BPTT as our training algorithm (similar derivations could be performed
for Real Time Recurrent Learning [RTRL]), we recursively develop the loss gradients w.r.t. some
RNN parameter ✓ in time (i.e., across layers of the RNN unrolled in time) as

@L

@✓
=

TX

t=1

@Lt

@✓
with

@Lt

@✓
=

tX

r=1

@Lt

@zt

@zt

@zr

@
+
zr

@✓
, (5)

and
@zt

@zr
=

@zt

@zt�1

@zt�1

@zt�2
· · ·

@zr+1

@zr

=
t�r�1Y

k=0

@zt�k

@zt�k�1
=

t�r�1Y

k=0

Jt�k, (6)

where @
+ denotes the immediate derivative. Now observe that the behavior of the loss gradients

crucially depends on the product series of Jacobians in eqn. (6): If the maximum absolute eigenvalues

of the Jacobians Jt will, in the geometric mean, be larger than 1 (i.e.,
���
Q

T�2
r=0 JT�r

���
1/T

> 1),

gradients will explode as T ! 1, while they will saturate if
���
Q

T�2
r=0 JT�r

���
1/T

< 1. Thus, the key
point to note is that the same terms that occur in the definition of the Lyapunov spectrum, eqn. (4),
resurface in the loss gradients, eqn. (5) & (6). This accounts for the tight links between system
dynamics and gradients.

3.2 Fixed points and cyclic dynamics

Let us start by considering the simplest types of limit dynamics that can occur in RNNs (or any
discrete-time DS): fixed points and cycles. In fact, by far most of the literature on global stability
in RNNs and on loss gradients focused on just fixed points [9, 19, 49], with only few authors who
recently started to also connect cyclic behavior to loss gradients [73, 80]. Recall that a fixed point of
a recursive map zt = F (zt�1) is defined as a point z⇤ for which we have z

⇤ = F (z⇤).2 Likewise,
a k-cycle (k > 1) is a set of temporally consecutive periodic points Pk := {zt1 , zt2 , . . . , ztk} =
{zt1 , F (zt1), . . . , F

k�1(zt1)} that we obtain from recursive application of the map such that each of
the cyclic points ztr 2 Pk is a fixed point of the k times iterated map F

k (with k being the smallest
positive integer for which this holds). To simplify the subsequent treatment, we will collectively refer
to fixed points and cycles as k-cycles (k � 1). Further recall that a fixed point or k-cycle is called
stable if the maximum absolute eigenvalue of the Jacobian evaluated at that point is smaller than 1,
neutrally stable if exactly 1, and unstable otherwise. Although the results we develop in this and the
following sections will hold more widely, we will restrict our attention to recursive maps F✓ from the
class of RNNs R = {standardRNN, LSTM, GRU, PLRNN} (see Appx. A.1 for details).

Based on the observations made in the previous sections we can state the following theorem that links
RNN dynamics and loss gradients:
Theorem 1. Consider an RNN F✓ 2 R parameterized by ✓, and assume that it converges to a stable

fixed point or k-cycle �k (k � 1) with B�k as its basin of attraction. Then for every z1 2 B�k (i)

the Jacobian
@zT
@z1

exponentially vanishes as T ! 1; (ii) for �k the tangent vectors
@zT
@✓

and thus

2From here on we will suppress the explicit dependence on external inputs st notation-wise, see Remark 2.

4

the gradient of the loss function,
@LT
@✓ , will be bounded from above, i.e. will not diverge for T ! 1;

and (iii) for the PLRNN (27) both

��@zT
@✓

�� and

��@LT
@✓

�� will remain bounded for every z1 2 B�k as

T ! 1.

Proof. (i) Assume that �k is a stable k-cycle (k � 1) denoted by
�k = {z1, z2, · · · , zT , · · · } = {zt⇤k , zt⇤k�1, · · · ,

zt⇤k�(k�1), zt⇤k , zt⇤k�1, · · · , zt⇤k�(k�1), · · · }. (7)
Then, the largest Lyapunov exponent of �k is given by

��k = lim
t!1

1

t
ln

��J
⇤

t
J
⇤

t�1 · · · J
⇤

2

��

= lim
j!1

1

jk
ln

�����

✓ k�1Y

s=0

Jt⇤k�s

◆j
����� . (8)

By assumption of stability of �k we have ��k < 0 and also ⇢
�Q

k�1
s=0 Jt⇤k�s

�
< 1 (the spectral

radius), which implies

lim
t!1

J
⇤

t
J
⇤

t�1 · · · J
⇤

2 = lim
j!1

✓ k�1Y

s=0

Jt⇤k�s

◆j

= 0. (9)

Now suppose that Oz1 is an orbit of the map eqn. (1) converging to �k, i.e. z1 2 B�k . Since Oz1

and �k have the same largest Lyapunov exponent, we have

�Oz1
= lim

T!1

1

T
ln kJT JT�1 · · · J2k = ��k < 0, (10)

and hence for z1 2 B�k

lim
T!1

����
@zT

@z1

���� = lim
T!1

kJT JT�1 · · · J2k = 0. (11)

(ii)& (iii) See Appx. A.2.1.

Remark 1. The result of Theorem 1 part (i) will be generally true for any first-order-Markovian

recursive map (1), but the conclusions in part (ii) may hinge on its specific definition.

Remark 2. None of the results above and throughout sect. 3 require the dynamics to be autonomous,

the theory applies whether there is external input or not. In fact, mathematically, non-autonomous

(externally forced) systems can always be rewritten as autonomous dynamical systems [3, 71, 97],

see Appx. A.1.1 for details.

The results above ensure that loss gradients will not diverge (explode) as T ! 1 in RNNs that
are “well-behaved” in the sense that they converge to a fixed point or cycle (see Fig. 1a). This is a
generalization of the results given in Theorem 1 in Schmidt et al. [80], where this was shown only a)
for the specific class of PLRNNs and b) for specific constraints imposed on the eigenvalue spectrum
of the RNN’s Jacobians which were relaxed in our theorem above.

While our treatment above is centered on the “exploding-gradients” case, various architectural
modifications or regularization techniques can ensure that gradients do not vanish either, i.e. remain
bounded from below as well. This was established, for instance, in Schmidt et al. [80] for PLRNNs
using ’manifold attractor regularization’. In Appx. A.2.1 we show that the results from Theorem 2
from Schmidt et al. [80] on doubly bounded (from below and above) loss gradients can indeed be
extended to the more general case covered by Theorem 1 above.

3.3 Chaotic dynamics

We will now consider the all-important chaotic case. Let F be a recursive map and Oz1 =
{z1, z2, z3, · · · } be an orbit of F . The orbit is chaotic if (i) it is not asymptotically periodic and
(ii) has at least one positive Lyapunov exponent [26, 60]. If the system’s invariant set is bounded,
condition (ii) is considered a standard signature of chaos, as in this case two nearby orbits separate
exponentially fast, but at the same time their mutual separation cannot go to infinity so that there are
also folds. The following theorem states the sufficient condition for exploding gradients:

5

101 102 103

state separation T

10�29

10�18

10�7

||
J
||

2
=

||
�
z T

/�
z 1

||
2

(a)

101 102 103

state separation T

1013

1028

||
J
||

2
=

||
�
z T

/�
z 1

||
2

(b)

Figure 1: Illustration of the exploding gradient problem when training RNNs on dynamical systems. Jacobians
(a) decay away across time separation T for an RNN trained on a simple cycle (cf. Thm. 1), but (b) quickly
shoot through the roof when training was performed on chaotic time series (Lorenz system; cf. Thm. 2). Note
the doubly-logarithmic scale of these graphs.

Theorem 2. Suppose that an RNN F✓ 2 R (parameterized by ✓) has a chaotic attractor �⇤
with B�⇤

as its basin of attraction. Then, for almost every orbit with z1 2 B�⇤ , (i) the Jacobians connecting

temporally distal states zT and zt (T � t),
@zT
@zt

, will exponentially explode for T ! 1, and (ii) the

tangent vector
@zT
@✓

and so the gradients of the loss function,
@LT
@✓

, will diverge as T ! 1.

Proof. Let the RNN F✓ 2 R have a chaotic orbit denoted by �⇤ = {z
⇤
1 , z

⇤
2 , · · · , z

⇤

T
, · · · }. Then,

denoting by J
⇤

T
the Jacobian of (1) at z⇤

T
2 �⇤, the largest Lyapunov exponent of �⇤ is given by

� = lim
T!1

1

T
ln

��J
⇤

T
J
⇤

T�1 · · · J
⇤

2

�� . (12)

Since �⇤ is chaotic, so � > 0. Hence, from (12), it is concluded that

lim
T!1

��J
⇤

T
J
⇤

T�1 · · · J
⇤

2

�� = lim
T!1

����
@z

⇤

T

@z⇤
t

���� = 1, T � t. (13)

Now, according to Oseledec’s multiplicative ergodic Theorem, almost all the points in the basin of
attraction of �⇤ have the same largest Lyapunov exponent �. Thus, (13) holds for almost every
z1 2 B�⇤ .

(ii) See Appx. A.2.2.

Remark 3. The first part of Theorem 2 holds for all first-order-Markovian recursive maps (1). Note

that for LSTMs,
@zT
@zt

(z := (h, c)T) denotes the full Jacobian of both hidden and cell states.

We collect some further mathematical results and remarks related to Theorem 2 in Appx. A.3.1.

Hence, the essential result is that for all popular RNNs R and activation functions, loss gradients will
inevitably diverge if the RNN latent states converge to a chaotic attractor (as illustrated in Fig. 1b).

3.4 Quasi-periodicity

Quasi-periodicity is a long-term behavior which occurs on a torus and, superficially, bears some
similarity to chaos in the sense that, strictly speaking, orbits are also aperiodic. That is, as T ! 1,
trajectories will never close up with themselves. Moreover, every trajectory becomes arbitrarily
close to any point on the torus, that is, it is dense. One important difference between quasi-periodic
and chaotic systems is, however, that in a quasi-periodic system, as time passes, two close initial
conditions are linearly diverging, while in a chaotic system the divergence is exponential.
Theorem 3. Assume that an RNN F✓ 2 R (parameterized by ✓) has a quasi-periodic attractor �
with B� as its basin of attraction. Then, for every z1 2 B�

8 0 < ✏ < 1 9 T0 > 1 s.t. 8 T � T0 =)

(1 � ✏)T�1
<

����
@zT

@z1

���� < (1 + ✏)T�1
. (14)

Proof. See Appx. A.2.3.

6

According to Theorem 3, for every orbit converging to a quasi-periodic attractor, the Jacobians @zT
@zt

may diverge or vanish as T ! 1, but this will not occur exponentially fast as T ! 1. Thus, even
for bounded non-chaotic RNNs we may sometimes stumble into the problem of diverging gradients.
Although this may be a less common scenario, we point out it may occur if we train RNNs on real data
from oscillatory systems with incommensurate frequencies, as for instance encountered in electronic
engineering.

In Appx. A.3.2 we have collected further mathematical results on the connection between RNN
dynamics and loss gradients that hold regardless of the RNN’s limiting behavior.

4 Empirical evaluation

Our theoretical results imply that chaotic time series pose a principle challenge for RNN training that
cannot easily be circumvented through specifically designed architectures, constraints, or regulariza-
tion criteria. If the underlying DS we aim to capture is chaotic, loss gradients propagated back in
time will inevitably explode. Hence we need to curtail gradients in an ideal way. The issue arises
especially in scientific ML where time series from chaotic systems are ubiquitous and the aim is to
reconstruct the generating DS with its limiting behavior. Thus, our exposition will focus on this area.

4.1 Training on systems with exploding gradients by sparse teacher forcing

To illustrate the connections between theory and RNN training, we revive the old idea of TF [95]
as a mechanism for truncating error gradients and keeping model-generated trajectories on track
while training. However, we would like to do this such that important information about the system
dynamics does not get lost, for which Lyapunov theory offers some guidance. Specifically, we should
not force the system back onto the true trajectory all or most of the time (as in “classical TF”), but
should effectively “re-calibrate” it only at certain time points chosen wisely according to the system’s
local divergence rates. This procedure will be referred to as sparsely forced BPTT in the following.
Assume we want to train an RNN with hidden states zt 2 RM and linear (or affine) output layer on a
time-series {x1,x2, · · · ,xT } generated by a chaotic system.3 The linear output layer x̂t = Bzt,
B 2 RN⇥M , maps the RNN hidden states into the observation space. This allows us to modify the
original TF procedure by constructing a control series {z̃1, z̃2, · · · , z̃T } from the observations by
“inverting” the linear output mapping 4

z̃t = (BT
B)�1

B
T
xt. (15)

The idea is to supply this control signal only sparsely, separated by the learning interval ⌧ between
consecutive forcings. Hence, defining T = {n⌧ + 1}n2N0 as the set of all time points at which we
force the RNN onto the ‘true’ values, the RNN updates can be written as

zt+1 =

⇢
RNN(z̃t) if t 2 T

RNN(zt) else
. (16)

This forcing is applied after calculation of the loss, such that Lt = kxt � Bztk
2
2 irrespective of

whether t is in T or not (and of course it is applied only during training, not at test time!). Replacing
hidden states zt with their teacher-forced signals z̃t simply breaks divergence between true and
predicted trajectories at time points t 2 T , and also cuts off the Jacobians by breaking the temporal
contingency (for details see Appx. A.7). The learning interval ⌧ hence controls how many time steps
are included in the gradient calculation and has to be chosen with care such as to balance the effects
of exploding gradients vs. those of losing relevant time scales and long-term dependencies. While
it is general wisdom that an optimal batch size will facilitate training,5 the point here is thus much

3Note that in DS reconstruction one usually considers the data as observations (unsupervised problem).
4To ensure invertibility, one could add a regularizer �I to BTB in eqn. (15), as in ridge regression, but we

did not find this necessary in any of our examples.
5It is also reminiscent of truncated BPTT, but with the all-important differences that we suggest 1) a

theoretically informed choice of the optimal ‘truncation length’ (forcing interval) and 2) a specific procedure
for replacing current latent states by control values. As shown in sect. 4.2 & 4.3, both these aspects are indeed
crucial to avoid diverging gradients and trajectories whilst not loosing relevant longer time scales.

7

�pred 100 200
learning interval �

0

5

10

15

D
st

sp

(a)

�pred 100 200
learning interval �

0.0

0.5

1.0

D
H

RNN

PLRNN

LSTM

�pred 100 200
learning interval �

0

5

10

15

D
st

sp

RNN

PLRNN

LSTM

(b)

�pred 100 200
learning interval �

0.0

0.5

1.0

D
H

Figure 2: Overlap in attractor geometry (Dstsp, lower = better) and dimension-wise comparison of power-
spectra (DH , lower = better) against learning interval ⌧ for (a) the Lorenz and (b) the chaotically forced Duffing
oscillator. Continuous lines = sparsely forced BPTT. Dashed lines = classical BPTT with gradient clipping.
Prediction time indicated vertically in black.

more specific: Ideally ⌧ should be chosen in accordance with the system’s Lyapunov spectrum, for
instance based on the predictability time [7]

⌧pred =
ln 2

�max
. (17)

Various open-source packages exist for calculating the maximal Lyapunov exponent �max from
empirical time series data (e.g., Julia: DynamicalSystems.jl [12], C++: TISEAN [30]), potentially
after delay-embedding the data (see Appx. A.4 for more details). Note that this needs to be done on
the empirical data and only once before RNN training, as �max is an invariant characteristic of the
empirical system that we are aiming to reconstruct by our RNN (i.e., after successful training the
RNN should have the same invariant properties as the underlying DS). We also emphasize that such
a simple recipe for addressing the exploding gradient problem is based on modifying the training
routine, and is thus in principle applicable to any model architecture.

4.2 Example 1: Lorenz system and externally forced Duffing oscillator in chaotic regime

Let us illustrate these ideas on two classical textbook examples of chaotic DS, the chaotic Lorenz
attractor as an autonomous system, and the chaotically forced Duffing oscillator as an example
with explicit external input (see Appx. A.4 for details). Trajectories were repeatedly drawn from
these systems, on which we trained a PLRNN, a vanilla RNN with tanh activation function, and a
LSTM by stochastic gradient descent (SGD) to minimize the MSE loss between predicted and actual
observations. As optimizer we used Adam [47] from PyTorch [68] with a learning rate of 0.001. For
all models, training proceeded solely by sparsely forced BPTT and did not employ gradient clipping
or any other technique that may interfere with optimal loss truncation.

In nonlinear DS reconstruction, we are mainly interested in reproducing invariant properties of the
underlying system such as the attractor geometry (or topology [78, 82]) or the frequency composition
(i.e., time-independent properties), while measures like ahead-prediction errors are less meaningful
especially on chaotic time series [50, 96]. Thus, in evaluating training performance, here we follow
Koppe et al. [50] in using a Kullback-Leibler divergence Dstsp to quantify the agreement between
observed and generated probability distributions across state-space to asses the overlap in attractor
geometry (Appx. A.5). Moreover, we calculate the dimension-wise Hellinger distance DH between
power spectra to quantify the temporal agreement of the observed and generated time-series (Appx.
A.5).

8

Fig. 2 shows the dependence of the reconstruction quality on the learning interval ⌧ for all RNN
architectures on (a) the Lorenz and (b) the externally forced Duffing system. Fig. 3 provides
particular examples of reconstructions for ⌧ chosen too small, too large, or about right.

Figure 3: Lorenz attractor (blue) and example reconstructions by an LSTM (orange) trained with a learning
interval (a) chosen too small (⌧ = 5), (b) chosen optimally (⌧ = 30), and (c) chosen too large (⌧ = 200). See
Fig. 14 for a vanilla RNN example.

For all models we find a system-dependent range for the optimal learning interval that agrees well
with the predictability time defined in eqn. (17), where estimates for the maximal Lyapunov exponent
were taken from the literature [24, 72]. As a reference, dashed lines represent the reconstruction
performance for all architectures when trained with classical BPTT and gradient clipping. The
training procedure was the same as for sparsely forced BPTT, except that instead of supplying a
control-signal, gradients were normalized to 1 prior to each parameter update (see Fig. 13 for a
more systematic evaluation of different clipping procedures and thresholds). As evidenced by the
much worse performance, gradient clipping does not effectively address the EVGP, even for LSTMs.
As further shown in Fig. 10 in Appx. A.6.4, using the optimal (or any other) window length ⌧ but
resetting the initial condition for each chunk to either zero or the last forward-iterated state F✓(zt�1)
(instead of its control value z̃t) equally destroys performance. This suggests that neither mere gradient
normalization nor simple windowing are sufficient, but will wipe out essential information about the
dynamics.

In Appx. A.6 we collect further results on the chaotic Rössler attractor (Fig. 6 & 7), high-dimensional
Mackey-Glass equations (Fig. 8), and the Lorenz attractor with partial observations (Fig. 9).

4.3 Example 2: Chaotic weather data

0 50 100 150
time-steps �

�1.5

�1.0

�0.5

�
lo

g
d(

�)
�

m=6

m=5

m=4

�max = 0.016

(a)

�pred 100 200
learning interval �

0

5

10

15

D
st

sp

RNN

PLRNN

LSTM

(b)

�pred 100 200
learning interval �

0.0

0.5

1.0

D
H

Figure 4: (a) The maximal Lyapunov exponent was determined as the slope of the average log-divergence of
nearest neighbors in embedding space (m = embedding dimension). (b) Reconstruction quality assessed by
attractor overlap (lower = better) and dimension-wise comparison of power-spectra (DH , lower = better). Black
vertical lines = ⌧pred.

As for an empirical example, we trained all RNNs (vanilla RNN, PLRNN, LSTM) on a temperature
time series recorded at the Weather Station at the Max Planck Institute for Biogeochemistry in Jena,
Germany. To expose the chaotic behavior and obtain a robust estimate of the maximal Lyapunov
exponent, trends and yearly cycles were removed, and nonlinear noise-reduction was performed ([43];
Appx. A.4). The maximal Lyapunov exponent was determined with the TISEAN package [30], as
shown in Figure 4 (a). The value obtained is in close agreement with the literature (�max ⇡ 0.017
[62]).

Figure 4 shows that also for these empirical data the optimal training interval ⌧ agrees well with
the predictability time, eqn. (17), for all trained RNNs. Furthermore, as was the case for the DS
benchmarks, gradient clipping was not able to satisfactorily tackle the EVGP, even when paired with

9

https://www.bgc-jena.mpg.de/wetter/
https://www.bgc-jena.mpg.de/wetter/

architectures like LSTMs explicitly designed for alleviating this problem. Similar results are reported
for another real-world dataset, electroencephalogram (EEG) recordings, in Appx. A.6.5.

5 Discussion and conclusions

In this paper we proved that RNN dynamics and loss gradients are intimately related for all major
types of RNNs and activation functions. If the RNN is “well behaved” in the sense that its dynamics
converges to a fixed point or cycle, loss gradients will remain bounded, and established remedies [35,
80] can be used to refrain them from vanishing. However, if the dynamics are chaotic, gradients will
always explode. This constitutes a principle problem in RNN training that cannot easily be mastered
through architectural design or gradient clipping. This is because to avoid exploding gradients
while training on time series from chaotic systems, one either needs to constrain the RNN so much
that chaotic behavior is completely disabled to begin with (i.e., ultimately by forcing all Lyapunov
exponents to be smaller or equal to zero), implying a very poor fit to such data. Or one needs to be
a bit more lenient and thereby allow for the possibility of exploding loss gradients (as LSTMs or
PLRNNs in fact do). This problem is furthermore practically highly relevant, as most time series we
encounter in nature, and many from man-made systems as well, are inherently chaotic.

While we do not offer a full solution to this problem here, we suggest it might be tackled in training
by taking a system’s local divergence rates as measured through the Lyapunov spectrum into account.
Hence, rather than conquering the EVGP by structural design or specific constraints or regularization
terms, we recommend to put the focus more on the training process itself. We illustrated this point
empirically using sparsely forced BPTT, a training technique that pulls trajectories back on track at
times determined by the maximal Lyapunov exponent. Doing so leads to optimal reconstruction results
for a variety of simulated and real-world benchmarks, regardless of the specific RNN architecture
employed in training.

As noted in sect. 4.1, fairly standard packages are available for computing maximal Lyapunov
exponents from data. Some background knowledge, as provided in classical textbooks (e.g. Ch.
5 in [42]), may be required for properly reading the output from these packages: Essentially, one
would be looking be for a linear scaling region as in Figs. 4a & 12a, ignoring both the initial noise
transient as well as the plateau caused by reaching the full attractor extent. If unsure about the
exact value, a moderate amount of jittering around the estimated mean value may help (see Appx.
Fig. 15). A further interesting direction for improvement might be to regulate the forcing interval
through an annealing procedure [1, 2], for instance starting at ⌧ = 1 and ramping up to ⌧ = ⌧pred
throughout training, similar as in adaptive schemes [5].6 The idea here would be to first get the
short-term behavior right, and then challenge the system more and more for longer time spans until
the predictability time is reached.

We stress that our goal here above all was to provide a mathematically grounded perspective on
the problem, with the empirical section focused on elucidating the practical implications of the
theoretical results. We believe that a more thorough theoretical understanding is important and
needed for guiding future research into more powerful training procedures that avoid exploding
gradients without compromising expressiveness. In our application examples, we developed the case
from the perspective of scientific machine learning, which by now is a broad area in its own right with
huge societal relevance (e.g., climate or epidemiological time series), and where the reconstruction of
geometrical or topological (invariant) properties is important, beyond mere prediction. Nevertheless,
we believe that our theoretical results will also have implications for other domains, like NLP [36].
While scientific time series problems traditionally have been extensively considered from a DS
perspective (e.g., [42]), much more groundwork is needed, however, in areas like NLP, where, for
instance, it may not even be immediately clear how to best define a Lyapunov spectrum.

All code from this paper is available at https://github.com/DurstewitzLab/ChaosRNN.

Acknowledgements

This work was funded by the German Research Foundation (DFG) under Germany’s Excellence
Strategy – EXC-2181 – 390900948 (STRUCTURES), and through grant Du 354/10-1 to DD.

6We thank one of the referees for pointing this out.

10

https://github.com/DurstewitzLab/ChaosRNN

References
[1] H. D. I. Abarbanel. Predicting the Future: Completing Models of Observed Complex Systems.

Understanding Complex Systems. Springer-Verlag, 2013.
[2] H. D. I. Abarbanel, P. J. Rozdeba, and S. Shirman. “Machine Learning: Deepest Learning as

Statistical Data Assimilation Problems”. In: Neural Computation 30.8 (2018), pp. 2025–2055.
[3] K. T. Alligood, T. D. Sauer, and J. A. Yorke. Chaos: An Introduction to Dynamical Systems.

Springer, New York, NY, 1996.
[4] M. Arjovsky, A. Shah, and Y. Bengio. “Unitary Evolution Recurrent Neural Networks”. In:

Proceedings of the 33rd International Conference on International Conference on Machine

Learning. Vol. 48. ICML’16. New York, NY, USA: JMLR, 2016, pp. 1120–1128.
[5] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer. “Scheduled sampling for sequence prediction

with recurrent Neural networks”. In: Proceedings of the 28th International Conference on

Neural Information Processing Systems - Volume 1. NIPS’15. Cambridge, MA, USA: MIT
Press, 2015, pp. 1171–1179.

[6] Y. Bengio, P. Simard, and P. Frasconi. “Learning long-term dependencies with gradient descent
is difficult”. In: IEEE Transactions on Neural Networks 5.2 (1994), pp. 157–166.

[7] B. P. Bezruchko and D. A. Smirnov. Extracting Knowledge From Time Series: An Introduction

to Nonlinear Empirical Modeling. Springer Series in Synergetics. Berlin Heidelberg: Springer-
Verlag, 2010. DOI: 10.1007/978-3-642-12601-7.

[8] M. Brenner, F. Hess, J. M. Mikhaeil, L. F. Bereska, Z. Monfared, P.-C. Kuo, and D. Durstewitz.
“Tractable Dendritic RNNs for Reconstructing Nonlinear Dynamical Systems”. In: Proceedings

of the 39th International Conference on Machine Learning. Vol. 162. Proceedings of Machine
Learning Research. PMLR, 2022, pp. 2292–2320.

[9] B. Chang, M. Chen, E. Haber, and E. H. Chi. “AntisymmetricRNN: A Dynamical System
View on Recurrent Neural Networks”. In: Proceedings of the International Conference on

Learning Representations (ICLR). 2019.
[10] K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio. “On the Properties of Neural

Machine Translation: Encoder–Decoder Approaches”. In: Proceedings of SSST-8, Eighth

Workshop on Syntax, Semantics and Structure in Statistical Translation. Association for
Computational Linguistics, 2014, pp. 103–111.

[11] K. Cho, B. van Merriënboer, C. Gulcehre, F. Bougares, H. Schwenk, and Y. Bengio. “Learning
phrase representations using RNN encoder-decoder for statistical machine translation”. In:
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing

(EMNLP). 2014.
[12] G. Datseris. “DynamicalSystems.jl: A Julia software library for chaos and nonlinear dynamics”.

In: Journal of Open Source Software 3.23 (2018), p. 598.
[13] K. Doya. “Bifurcations in the learning of recurrent neural networks”. In: Proceedings of the

IEEE International Symposium on Circuits and Systems. Vol. 6. 1992, pp. 2777–2780.
[14] J. Duarte, C. Januário, N. Martins, and J. Sardanyés. “Quantifying chaos for ecological

stoichiometry”. In: Chaos: An Interdisciplinary Journal of Nonlinear Science 20.3 (Sept.
2010), p. 033105.

[15] G. Duffing. Forced vibrations with variable natural frequencies and their technical significance.
F. Vieweg und Sohn, Braunschweig, 1918.

[16] D. Durstewitz. Advanced Data Analysis in Neuroscience: Integrating Statistical and Com-

putational Models. Bernstein Series in Computational Neuroscience. Springer International
Publishing, 2017.

[17] D. Durstewitz and T. Gabriel. “Dynamical Basis of Irregular Spiking in NMDA-Driven
Prefrontal Cortex Neurons”. In: Cerebral Cortex 17.4 (2007), pp. 894–908.

[18] R. Engelken, F. Wolf, and L. F. Abbott. “Lyapunov spectra of chaotic recurrent neural net-
works”. In: arXiv:2006.02427 (2020).

[19] N. B. Erichson, O. Azencot, A. Queiruga, L. Hodgkinson, and M. W. Mahoney. “Lipschitz
Recurrent Neural Networks”. In: Proceedings of the International Conference on Learning

Representations (ICLR). 2021.

11

https://doi.org/10.1007/978-3-642-12601-7

[20] M. Faggini. “Chaotic time series analysis in economics: Balance and perspectives”. In: Chaos:

An Interdisciplinary Journal of Nonlinear Science 24.4 (2014). Publisher: American Institute
of Physics, p. 042101.

[21] R. J. Field and L. Györgyi. Chaos in Chemistry and Biochemistry. World Scientific, 1993.
[22] S. Fusi, W. F. Asaad, E. K. Miller, and X.-J. Wang. “A neural circuit model of flexible

sensorimotor mapping: learning and forgetting on multiple timescales”. In: Neuron 54.2
(2007), pp. 319–333.

[23] Z. Ghahramani and S. Roweis. “Learning Nonlinear Dynamical Systems Using an EM Algo-
rithm”. In: Advances in Neural Information Processing Systems. Vol. 11. MIT Press, 1999.

[24] W. Gilpin. “Chaos as an interpretable benchmark for forecasting and data-driven modelling”.
In: Proceedings of the Thirty-fifth Conference on Neural Information Processing Systems

Datasets and Benchmarks Track. 2021.
[25] L. Glass and M. C. Mackey. “Pathological conditions resulting from instabilities in phys-

iological control systems”. In: Annals of the New York Academy of Sciences 316 (1979),
pp. 214–235.

[26] P. A. Glendinning and D. J. W. Simpson. “A constructive approach to robust chaos using
invariant manifolds and expanding cones”. In: Discrete & Continuous Dynamical Systems 41.7
(2021), pp. 3367–3387.

[27] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark,
J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley. “PhysioBank, PhysioToolkit, and
PhysioNet: Components of a New Research Resource for Complex Physiologic Signals”. In:
Circulation 101.23 (2000), e215–e220.

[28] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
[29] A. Graves, G. Wayne, M. Reynolds, and et al. “Hybrid computing using a neural network with

dynamic external memory”. In: Nature 538 (2016), pp. 471 –476.
[30] R. Hegger, H. Kantz, and T. Schreiber. “Practical implementation of nonlinear time series

methods: The TISEAN package”. In: Chaos: An Interdisciplinary Journal of Nonlinear Science

9.2 (1999), pp. 413–435.
[31] K. Helfrich, D. Willmott, and Q. Ye. “Orthogonal Recurrent Neural Networks with Scaled

Cayley Transform”. In: Proceedings of the International Conference on Machine Learning.
PMLR, 2018, pp. 1969–1978.

[32] M. Henaff, A. Szlam, and Y. LeCun. “Recurrent Orthogonal Networks and Long-Memory
Tasks”. In: Proceedings of the International Conference on Machine Learning. PMLR, 2016,
pp. 2034–2042.

[33] D. Hernandez, A. K. Moretti, Z. Wei, S. Saxena, J. Cunningham, and L. Paninski. “Nonlinear
Evolution via Spatially-Dependent Linear Dynamics for Electrophysiology and Calcium Data”.
In: arXiv preprint arXiv:1811.02459 (2020).

[34] S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis. Institut
für Informatik, Technische Universität München. 1991.

[35] S. Hochreiter and J. Schmidhuber. “Long Short-Term Memory”. In: Neural Computation 9.8
(1997), pp. 1735–1780.

[36] K. Inoue, S. Ohara, Y. Kuniyoshi, and K. Nakajima. “Transient Chaos in BERT”. In:
arXiv:2106.03181 (2021).

[37] L. Jing, C. Gulcehre, J. Peurifoy, Y. Shen, M. Tegmark, M. Soljacic, and Y. Bengio. “Gated
Orthogonal Recurrent Units: On Learning to Forget”. In: Neural Computation 31.4 (2019),
pp. 765–783.

[38] A. Kag and V. Saligrama. “Time Adaptive Recurrent Neural Network”. In: Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2021,
pp. 15144–15153.

[39] A. Kag and V. Saligrama. “Training Recurrent Neural Networks via Forward Propagation
Through Time”. In: Proceedings of the 38th International Conference on Machine Learning.
Vol. 139. Proceedings of Machine Learning Research. PMLR, 2021, pp. 5189–5200.

12

[40] A. Kag, Z. Zhang, and V. Saligrama. “RNNs Incrementally Evolving on an Equilibrium Mani-
fold: A Panacea for Vanishing and Exploding Gradients?” In: Proceedings of the International

Conference on Learning Representations. 2020.
[41] L. Kamdjeu Kengne, J. R. Mboupda Pone, and H. B. Fotsin. “On the dynamics of chaotic

circuits based on memristive diode-bridge with variable symmetry: A case study”. In: Chaos,

Solitons & Fractals 145 (2021), p. 110795.
[42] H. Kantz and T. Schreiber. Nonlinear Time Series Analysis. 2nd ed. Cambridge University

Press, 2003.
[43] H. Kantz, T. Schreiber, I. Hoffmann, T. Buzug, G. Pfister, L. G. Flepp, J. Simonet, R. Badii,

and E. Brun. “Nonlinear noise reduction: A case study on experimental data”. In: Physical

Review E 48 (1993), pp. 1529–1538.
[44] M. B. Kennel, R. Brown, and H. D. I. Abarbanel. “Determining embedding dimension for

phase-space reconstruction using a geometrical construction”. In: Phys. Rev. A 45 (1992).
[45] G. Kerg, K. Goyette, M. Puelma Touzel, G. Gidel, E. Vorontsov, Y. Bengio, and G. Lajoie.

“Non-normal Recurrent Neural Network (nnRNN): learning long time dependencies while im-
proving expressivity with transient dynamics”. In: Advances in Neural Information Processing

Systems. Vol. 32. Curran Associates, Inc., 2019.
[46] M. Kesmia, S. Boughaba, and S. Jacquir. “Control of continuous dynamical systems modeling

physiological states”. In: Chaos, Solitons & Fractals 136 (2020), p. 109805.
[47] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. In: 3rd International

Conference on Learning Representations. Ed. by Y. Bengio and Y. LeCun. ICLR, 2015.
[48] D. P. Kingma and M. Welling. “Auto-Encoding Variational Bayes”. In: Proceedings of the 2nd

International Conference on Learning Representations. 2014.
[49] J. Z. Kolter and G. Manek. “Learning Stable Deep Dynamics Models”. In: Advances in Neural

Information Processing Systems. Vol. 32. Curran Associates, Inc., 2019.
[50] G. Koppe, H. Toutounji, P. Kirsch, S. Lis, and D. Durstewitz. “Identifying nonlinear dynamical

systems via generative recurrent neural networks with applications to fMRI”. In: PLOS

Computational Biology 15.8 (2019), pp. 1–35.
[51] D. Kramer, P. L. Bommer, C. Tombolini, G. Koppe, and D. Durstewitz. “Reconstructing

Nonlinear Dynamical Systems from Multi-Modal Time Series”. In: Proceedings of the 39th

International Conference on Machine Learning. Vol. 162. PMLR, 2022.
[52] J. Laskar and P. Robutel. “The chaotic obliquity of the planets”. In: Nature 361.6413 (1993),

pp. 608–612. (Visited on 09/10/2021).
[53] S. Li, W. Li, C. Cook, C. Zhu, and Y. Gao. “Independently Recurrent Neural Network (In-

dRNN): Building A Longer and Deeper RNN”. In: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition. 2018, pp. 5457–5466.
[54] Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. liu, K. Bhattacharya, A. Stuart, and A. Anandku-

mar. “Fourier Neural Operator for Parametric Partial Differential Equations”. In: Proceedings

of the International Conference on Learning Representations. 2021.
[55] Z. C. Lipton, J. Berkowitz, and C. Elkan. “A Critical Review of Recurrent Neural Networks

for Sequence Learning”. In: arXiv:1506.00019 [cs] (2015).
[56] E. N. Lorenz. “Deterministic Nonperiodic Flow”. In: Journal of the Atmospheric Sciences 20.2

(1963), pp. 130–141.
[57] N. Maheswaranathan, A. Williams, M. Golub, S. Ganguli, and D. Sussillo. “Reverse engi-

neering recurrent networks for sentiment classification reveals line attractor dynamics”. In:
Advances in Neural Information Processing Systems. Vol. 32. Curran Associates, Inc., 2019.

[58] S. Mangiarotti, M. Peyre, Y. Zhang, M. Huc, F. Roger, and Y. Kerr. “Chaos theory applied to
the outbreak of COVID-19: an ancillary approach to decision making in pandemic context”.
In: Epidemiology and Infection 148 (2020), e95.

[59] R. M. May. “Chaos and the Dynamics of Biological Populations”. In: Proceedings of the Royal

Society of London. Series A, Mathematical and Physical Sciences 413.1844 (1987), pp. 27–44.
[60] J. D. Meiss. Differential Dynamical Systems. Society for Industrial and Applied Mathematics,

2007.

13

[61] J. Menick, E. Elsen, U. Evci, S. Osindero, K. Simonyan, and A. Graves. “Practical Real
Time Recurrent Learning with a Sparse Approximation”. In: Proceedings of the International

Conference on Learning Representations. 2021.
[62] H. Millán, B. Ghanbarian-Alavijeh, and I. García-Fornaris. “Nonlinear dynamics of mean daily

temperature and dewpoint time series at Babolsar, Iran, 1961–2005”. In: Atmospheric Research.
Clouds, Aerosols and Radiation 98.1 (2010), pp. 89–101. DOI: 10.1016/j.atmosres.2010.
06.001.

[63] Z. Monfared and D. Durstewitz. “Existence of n-cycles and border-collision bifurcations
in piecewise-linear continuous maps with applications to recurrent neural networks”. In:
Nonlinear Dynamics 101.2 (2020), pp. 1037–1052.

[64] Z. Monfared and D. Durstewitz. “Transformation of ReLU-based recurrent neural networks
from discrete-time to continuous-time”. In: Proceedings of the 37th International Conference

on Machine Learning. PMLR, 2020, pp. 6999–7009.
[65] L. F. Olsen and H. Degn. “Chaos in an enzyme reaction”. In: Nature 267.5607 (1977), pp. 177–

178.
[66] E. Orhan and X. Pitkow. “Improved memory in recurrent neural networks with sequential

non-normal dynamics”. In: Proceedings of the International Conference on Learning Repre-

sentations. ICLR, 2020.
[67] R. Pascanu, T. Mikolov, and Y. Bengio. “On the Difficulty of Training Recurrent Neural

Networks”. In: Proceedings of the 30th International Conference on International Conference

on Machine Learning. Vol. 28. ICML’13. JMLR, 2013, III–1310–III–1318.
[68] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L.

Antiga, and A. Lerer. “Automatic differentiation in PyTorch”. In: Proceedings of the 31st

Conference on Neural Information Processing Systems. NIPS, 2017.
[69] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott. “Model-Free Prediction of Large Spatiotem-

porally Chaotic Systems from Data: A Reservoir Computing Approach”. In: Phys. Rev. Lett.

120 (2018), p. 024102. DOI: 10.1103/PhysRevLett.120.024102.
[70] B. Pearlmutter. Dynamic recurrent neural networks. Carnegie Mellon University. 1990.
[71] L. Perko. Differential Equations and Dynamical Systems. Vol. 7. Springer, New York, NY,

2001.
[72] M. T. Rosenstein, J. J. Collins, and C. J. De Luca. “A practical method for calculating largest

Lyapunov exponents from small data sets”. In: Physica D: Nonlinear Phenomena 65.1 (1993),
pp. 117–134. DOI: 10.1016/0167-2789(93)90009-P.

[73] T. K. Rusch and S. Mishra. “Coupled Oscillatory Recurrent Neural Network (coRNN): An ac-
curate and (gradient) stable architecture for learning long time dependencies”. In: Proceedings

of the International Conference on Learning Representations. ICLR, 2021.
[74] T. K. Rusch and S. Mishra. “UnICORNN: A recurrent model for learning very long time

dependencies”. In: Proceedings of the 38th International Conference on Machine Learning.
Vol. 139. PMLR, 2021, pp. 9168–9178.

[75] E. Russo and D. Durstewitz. “Cell assemblies at multiple time scales with arbitrary lag
constellations”. In: eLife 6 (2017). Ed. by M. Howard, e19428.

[76] O. E. Rössler. “An equation for continuous chaos”. In: Physics Letters A 57.5 (1976), pp. 397–
398.

[77] S. Sabanal and M. Nakagawa. “The fractal properties of vocal sounds and their application in
the speech recognition model”. In: Chaos, Solitons & Fractals 7.11 (1996), pp. 1825–1843.

[78] T. Sauer, J. A. Yorke, and M. Casdagli. “Embedology”. In: Journal of Statistical Physics 65.3
(1991), pp. 579–616.

[79] G. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, and J. R. Wolpaw. “BCI2000: a
general-purpose brain-computer interface (BCI) system”. In: IEEE transactions on bio-medical

engineering 51.6 (2004), pp. 1034–1043.
[80] D. Schmidt, G. Koppe, Z. Monfared, M. Beutelspacher, and D. Durstewitz. “Identifying

nonlinear dynamical systems with multiple time scales and long-range dependencies”. In:
Proceedings of the International Conference on Learning Representations. ICLR, 2021.

14

https://doi.org/10.1016/j.atmosres.2010.06.001
https://doi.org/10.1016/j.atmosres.2010.06.001
https://doi.org/10.1103/PhysRevLett.120.024102
https://doi.org/10.1016/0167-2789(93)90009-P

[81] B. Sivakumar. “Chaos theory in geophysics: past, present and future”. In: Chaos, Solitons &

Fractals. Fractals in Geophysics 19.2 (2004), pp. 441–462.
[82] F. Takens. “Detecting strange attractors in turbulence”. In: Dynamical Systems and Turbulence,

Warwick 1980. Springer Berlin Heidelberg, 1981, pp. 366–381.
[83] R. Tchitnga, B. A. Mezatio, T. Fonzin Fozin, R. Kengne, P. H. Louodop Fotso, and A. Fomethe.

“A novel hyperchaotic three-component oscillator operating at high frequency”. In: Chaos,

Solitons & Fractals 118 (2019), pp. 166–180.
[84] D. J. Thomson. “Time series analysis of Holocene climate data”. In: Philosophical Transactions

of the Royal Society of London. Series A, Mathematical and Physical Sciences 330.1615 (1990),
pp. 601–616.

[85] T. H. Trinh, A. M. Dai, M.-T. Luong, and Q. V. Le. “Learning Longer-term Dependencies in
RNNs with Auxiliary Losses”. In: arXiv:1803.00144v3 (2018).

[86] A. P. Trischler and G. M. D’Eleuterio. “Synthesis of recurrent neural networks for dynamical
system simulation”. In: Neural Networks 80 (2016), pp. 67–78.

[87] P. Turchin and A. D. Taylor. “Complex Dynamics in ecological Time Series”. In: Ecology 73.1
(1992), pp. 289–305.

[88] E. Tziperman, H. Scher, S. E. Zebiak, and M. A. Cane. “Controlling Spatiotemporal Chaos in
a Realistic El Niño Prediction Model”. In: Physical Review Letters 79 (1997), pp. 1034–1037.

[89] P. R. Vlachas, G. Arampatzis, C. Uhler, and P. Koumoutsakos. “Learning the Effective Dynam-
ics of Complex Multiscale Systems”. In: arXiv:2006.13431 [nlin, physics:physics] (2020).

[90] P. R. Vlachas, W. Byeon, Z. Y. Wan, T. P. Sapsis, and P. Koumoutsakos. “Data-driven fore-
casting of high-dimensional chaotic systems with long short-term memory networks”. In: Pro-

ceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474.2213
(2018), p. 20170844.

[91] R. Vogt, M. Puelma Touzel, E. Shlizerman, and G. Lajoie. “On Lyapunov Exponents for RNNs:
Understanding Information Propagation Using Dynamical Systems Tools”. In: Frontiers in

Applied Mathematics and Statistics 8 (2022).
[92] H. U. Voss, J. Timmer, and J. Kurths. “Nonlinear dynamical system identification from uncer-

tain and indirect measurements”. In: Proceedings of the International Journal of Bifurcation

and Chaos 14.06 (2004), pp. 1905–1933.
[93] C. van Vreeswijk and H. Sompolinsky. “Chaos in Neuronal Networks with Balanced Excitatory

and Inhibitory Activity”. In: Science 274.5293 (1996), pp. 1724–1726.
[94] J. H. M. Wedderburn. Lectures on Matrices. New York: American mathematical society, New

York : Dover Publications, 1964.
[95] R. J. Williams and D. Zipser. “A Learning Algorithm for Continually Running Fully Recurrent

Neural Networks”. In: Neural Computation 1.2 (1989), pp. 270–280.
[96] S. N. Wood. “Statistical inference for noisy nonlinear ecological dynamic systems”. In: Nature

466.7310 (2010).
[97] H. Zhang, D. Liu, and Z. Wang. Controlling Chaos. Springer, London, 2009.

15

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Sec. 5.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] We provide
comprehensive proofs of all presented theorems in the Appendix.

(b) Did you include complete proofs of all theoretical results? [Yes]
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] The code will
be made public after publication.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

16

	Introduction
	Related works
	Theoretical analysis: Relation between RNN dynamics and loss gradients
	Preliminaries: RNN dynamics and loss gradients
	Fixed points and cyclic dynamics
	Chaotic dynamics
	Quasi-periodicity

	Empirical evaluation
	Training on systems with exploding gradients by sparse teacher forcing
	Example 1: Lorenz system and externally forced Duffing oscillator in chaotic regime
	Example 2: Chaotic weather data

	Discussion and conclusions
	Appendix
	Theorems: Preliminaries
	Transforming non-autonomous into autonomous discrete-time DS
	RNN derivatives
	Piecewise-linear RNN (PLRNN)
	Long Short-Term Memory (LSTM)
	Gated Recurrent Unit (GRU)
	Unitary evolution RNN (uRNN)

	Theorems: Proofs
	Proof of theorem 1, parts (ii) & (iii)
	Proof of theorem 2, part (ii)
	Proof of theorem 3

	Additional results on relation between dynamics and gradients
	Further results and remarks related to Theorem 2
	Other connections between dynamics and gradients

	Empirical evaluation: Datasets
	Empirical evaluation: measures of reconstruction quality
	Further empirical evaluations
	Reconstruction: Rössler System
	Reconstruction: High-dimensional Mackey-Glass system
	Reconstruction: Partially observed Lorenz System
	Other initialization procedures: Truncated BPTT with zero resetting or forward-iterated states
	Electroencephalogram (EEG) data
	 Miscellaneous additional results

	Sparsely forced BPTT

