
A Background on Martingale Concentration

In this section, we provide a background on the basics of martingale concentration needed throughout
this paper. Central to all results in this section is Ville’s inequality [Ville, 1939], which can be viewed
as a time-uniform version of Markov’s inequality for martingales.
Lemma A.1 (Ville’s Inequality [Ville, 1939]). Let (Xt)t�0 be a nonnegative supermartingale with
respect to some filtration (Ft)t�0. Then, for any confidence parameter � 2 (0, 1), we have
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While standard Brownian motion (Bt)t�0 is not a nonnegative supermartingale, geometric Brownian
motion given by Y �

t := exp
⇣
�Bt � �2

2 t
⌘

is a nonnegative martingale for any � 2 R, and hence
Lemma A.1 can be applied. In fact, the probability in the lemma above becomes exactly � when it
is applied to a nonnegative martingale with continuous paths like Y �

t . From Ville’s inequality, the
following line-crossing inequality for Brownian motion can be obtained.
Lemma A.2 (Line-Crossing Inequality). For � 2 (0, 1) and a, b > 0 satisfying e�2ab = �, we have

P (9t � 0 : Bt � at+ b) = �.

A proof of the above fact can be found in any standard book on continuous time martingale the-
ory [Le Gall, 2016, Durrett, 2019]. The above also follows from a special case of the more general
time-uniform Chernoff bound presented in Howard et al. [2020].

The above inequality can be seen as optimizing the tightness of the time-uniform boundary at one
pre-selected point in time. However, due to the adaptive nature of the Brownian mechanism presented
in Section 3, it is sometimes desirable to construct a time-uniform boundary which sacrifices tightness
at a fixed point in time to obtain greater tightness over all of time.

The method of mixtures provides one such approach for constructing tighter time-uniform bound-
aries [Kaufmann and Koolen, 2021, Howard et al., 2021]. We discuss this concept briefly in the
context of Brownian motion. Observe that, since (Y �

t )t�0 is a nonnegative martingale, for any
probability measure ⇡ on R, the process (X⇡

t )t�0 given by

X⇡
t :=

Z

R
Y �
t ⇡(d�)

is also nonnegative martingale. By appropriately choosing the probability measure ⇡ and applying
Ville’s inequality, one obtains the following concentration inequality [Howard et al., 2021].
Lemma A.3 (Mixture Inequality). Let ⇢ > 0 and � 2 (0, 1) be arbitrary. Then,
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We leverage Lemmas A.2 and A.3 to construct the privacy boundaries in Theorem 3.6 in Appendix B.

B Proofs From Section 3

Here, we prove the results from Section 3. We start by showing that BM is in fact a noise-reduction
mechanism, per the condition in Definition 2.3.

Proof of Lemma 3.2. For any initial value µ 2 Rd and any n � 1, let pµ1:n denote the joint density of
BTn , . . . , BT1 where (Bt)t�0 is a Brownian motion started at µ and Tn := Tn(x) is a time function.
We have the decomposition

pµ1:n (BTn , . . . , BT1) / exp
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(a) Variance of Noise vs. Privacy Loss (b) Privacy Loss vs. Variance of Noise

Figure 4: A comparison of the linear and mixture boundaries, both optimized for tightness at ✏ = 0.3
with � = 10�6. The first plot directly plots the corresponding bounds as in Theorem 3.6. The second
plot inverts the boundaries, showing the variance necessary to meet a target privacy level.

This decomposition follows as BT1 ⇠ N (µ, T1), and, given BT1 , . . . , BTm�1 , we have that BTm ⇠
N
⇣
µ+ Tm

Tm�1
(BTm�1 � µ), (Tm�1�Tm)Tm

Tm�1

⌘
, as BTm is conditionally distributed as a Brownian

bridge. Now, a straightforward calculation yields the equivalence
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Hence, for any two mean vectors µ, µ0 2 Rd, we can decompose the ratio of densities as

pµ(BTn , . . . , BT1)

pµ0(BTn , . . . , BT1)
=

exp
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which is just the ratio between the density of a N (µ, Tn) random variable evaluated at BTn and the
density of a N (µ0, Tn) random variable evaluated at BTn , proving precisely the desired result.

We now prove Theorem 3.4, which gives a closed form characterization of the Brownian mechanism.
In what follows, we use the same notation for the density of Brownian motion as in the above proof.

Proof of Theorem 3.4. The second statement of the theorem is trivial and follows from our assump-
tion of bounded `2 sensitivity. Hence, we only prove the first statement below.

Without loss of generality, and for the sake of simplicity, we can consider the function g(y) :=
f(y)� f(x), as then g(x) = 0. Observe that, for y 2 X , the vector g(y) +Bt has Lebesgue density

pg(y)t (�) / exp
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Consequently, the privacy loss can be written as
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Note that the last inequality follows from the fact that if (Bt)t�0 is a d-dimensional Brownian motion
and z 2 Rd is a unit vector under the `2 norm, then the process Wt := hz,Bti is a standard Brownian
motion. Noting that g(x0) = f(x0)� f(x) and that (�Wt)t�0 is also a Brownian motion furnishes
the result.

We now use the characterization of privacy loss in Theorem 3.4 alongside the time-uniform concen-
tration results for continuous time martingales found in Appendix A to construct two general families
of privacy boundaries. We now prove Theorem 3.6.

Proof of Theorem 3.6. Recall from Theorem 3.4 that we have the following bound

LBM
n (x, x0)  �2

2Tn(x)
+

�

Tn(x)
W+

Tn(x)
,

where A+ := max(A, 0). First, by leveraging Lemma A.3, we see that, with probability at least
1� �, for all n 2 N, we have
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proving that  M
⇢ is a valid �-privacy boundary. Likewise, by Lemma A.2, we have that
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showing  L
a,b is a valid �-privacy boundary.

C Proofs From Section 5

In this appendix, we provide proofs of the results in Section 5. We start by proving the privacy
guarantees for ReducedAboveThreshold.

Proof of Theorem 5.1. For ReducedAboveThreshold as described in Algorithm 1, on the event
{N(x) = n}, all information leaked about the underlying private dataset is contained in Alg1:n(x)
and ↵1:n(x), where ↵n(x) is defined to be the nth bit output by ReducedAboveThreshold. For
any y 2 X , let qy1:n denote the joint density of (Alg1:n(y),↵1:n(y)), py1:n the marginal density of
Alg1:n(y), and py1:n(· | ·) the conditional pmf of ↵1:n(y) given the observed values of Alg1:n(y).
As such, for any neighboring datasets x ⇠ x0, on the event {N(x) = n}, the privacy loss of
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ReducedAboveThreshold, denoted by LRAT(x, x0), is given by

LRAT
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✓
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where 0n�11 denotes the string of n� 1 0’s followed by a single 1. In the last line we leverage the
definition of the privacy loss between Alg1:n(x) and Alg1:n(x

0) and define
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Now, to finish the result, it suffices to prove that, for any n, Ln(x, x0)  En(Alg1:n�1(x)). With-
out loss of generality, we can assume all thresholds take the same value ⌧ across rounds, as
we can always define the shifted function u0

n(Alg1:n(x), x) := un(Alg1:n(x), x) � ⌧n + ⌧ . To
prove our desired inequality, we proceed largely in the same way as the proof of AboveThreshold
found in Lyu et al. [2017], noting that conditioning on Alg1:n(x) serves to fix the utility functions
u1(Alg1(x), ·), . . . , un(Alg1:n(x), ·) and the privacy levels E1, E2(Alg1(x)), . . . , En(Alg1:n�1(x)).
For simplicity, going forward, we refer to the former quantities as u1(·), . . . , un(·) and the latter
quantities just as ✏1, . . . , ✏n. The only remaining caveat that we must take care in handling variable
amount of noise on the threshold introduced by LNR. Going forward, let P1:n denote the conditional
probability P(· | Alg1:n(x)). First, observe that we can write the numerator of Ln(x, x0) as
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where g⌧1:n represents the density for the joint distribution of (⌧ +Z(2�/✏m))nm=1, where (Z(t))t�⌘

is as defined in Equation (5). We now need three inequalities. The first two are standard from the
analysis of Lyu et al. [2017], so we do not provide a proof. The third inequality is a product of our
novel ReducedAboveThreshold mechanism, and hence we provide a proof. The inequalities are:

1. For i < n and fixed si, P1:n(ui(x) + ⇠i < si)  P1:n(ui(x0) + ⇠i < si +�),

2. for i = n and any sn, P1:n(un(x) + ⇠n � sn)  e✏n/2P1:n(un(x0) + ⇠n � sn +�), and

3. for any s1:n 2 Rn, g⌧1:n(s1, . . . , sn)  e✏n/2g⌧1:n(s1 +�, . . . , sn +�).

We now prove the third inequality. We have that
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where the first equality follows from applying Bayes rule to the joint densities of the noisy thresholds,
and the second equality follows from the fact that (Z(t)) forms a Markov process. This in particular
implies that the density conditional density given the nth threshold satisfies ga1:n�1(s1, . . . , sn�1 |
sn) = gb1:n�1(s1, . . . , sn�1 | sn) for all a, b 2 R. The last inequality follows from examining the
ratio of densities of Lap(⌧, 2�/✏n) and Lap(⌧ ��, 2�/✏n) random variables. Now, observe that
by a simple shift of parameters we have

g⌧��
1:n (s1, . . . , sn) = g⌧1:n(s1 +�, . . . , sn +�).
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Plugging this in, we have
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Rearranging furnishes the desired result.

We can also prove a corresponding utility guarantee for ReducedAboveThreshold. As mentioned
earlier, this utility guarantee is naive in the sense that it is derived from a union bound. Thus,
instead of plotting the utility guarantee in our experiments in Section 6, we instead plot empirically
observed loss/accuracy. Additionally, for the utility guarantee to hold, the sequence of privacy
functions (En)n�1 must be constant functions, i.e. En = ✏n for each n. We now state the formal,
high-probability utility guarantee in the following proposition.
Proposition C.1. Let (pn)n�1 be a sequence of non-negative numbers such that

P1
i=1 pi = 1, and

let � 2 (0, 1) be a confidence parameter. Define the sequence of parameters (⌘n)n�1 by
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Then, if N(x) is the time defined in Theorem 5.1, with probability at least 1� �, we have

uN(x)(x) � ⌧N(x) � ⌘N(x).

Proof. The above utility guarantee follows from applying two simple union bounds. First, we have
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Second, we have that
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Thus, with probability at least 1 � �, we have simultaneously for all n � 1 that |⇠n|  ⌘n/2 and
|⇣n|  ⌘n/2. Thus, with the same probability, on round N(x), we have

uN(x)(x) � ⌧N(x) � ⌘N(x).

D Proofs From Section 4

We first prove that the process defined in Equation (5) has Laplace marginal distributions.
Theorem D.1. Let (Zt)t�⌘ be the process defined in Equation (5). Then, for any t � ⌘, we have

Zt ⇠ Lap(t).
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In what follows, we sometimes use the notation Z(t) interchangeably with Zt for convenience.

Proof. Recall that if X ⇠ Lap(s), then X has characteristic function 's given by

's(�) =
1

1 + �2s2
.

Let � denote the characteristic function of Zt � Z⌘ . Since Z⌘ and Zt � Z⌘ are independent, to show
Zt ⇠ Lap(t), it suffices to show that
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't(�)

'⌘(�)
=

1 + �2⌘2
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.

Now, observe that the inhomogenous Poisson process (Pt)t�⌘ can be written as ( eP (et/2))t�log(⌘2)

where eP is a homogeneous Poisson process with rate � = 1 on [log(⌘2),1). In terms of the process
eP , we can consider the process ( eZt)t�log(⌘2) given by

eZt =
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,

where eTn := inf{t � log(⌘2) : ePt � n} and eT0 = log(⌘2). It is easy to see that

eZ(log(t2))� eZ(log(⌘2)) =d Zt � Z⌘.

Leveraging this identity, it follows that we have
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In the above, f (n)(u1, . . . , un) := n!
[log(t2/⌘2)]n is the distribution of the order statistics

(U(1), . . . , U(n)) of n i.i.d. random variables that are uniform on [log(⌘2), log(t2)]. Essentially,
what we have done is first conditioned of the number of Poisson arrivals that occur in the interval
[log(⌘2), log(t2)]. Then, on the event {N(t) = n}, we condition again on the location of the n
arrivals, which we know to be uniformly distributed across the time interval. Once the arrival loca-
tions are known, we can compute the conditional characteristic function, which is the the product of
characteristic functions as illustrated in the integral above.

Now, we show inductively that
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The base case of n = 1 is trivially true. Now, we have that
Z

log(⌘2)u1<u2<···<unlog(t2)

nY

i=1

1

1 + �2eui
du

=

Z log(t2)

u1=log(⌘2)

1

1 + �2eu1

Z

u1<u2<···<un

nY

i=2

1

1 + �2eui
du�1du1

=
1

(n� 1)!

Z log(t2)

u=log(⌘2)

1

1 + �2eu


log

✓
t2

eu
1 + �2eu

1 + �2t2

◆�n�1

du

=
1

n!

Z log(t2)

log(⌘2)

d

du


� log

✓
t2

eu
1 + �2eu

1 + �2t2

◆�n
du =

1

n!


log

✓
t2

⌘2
1 + �2⌘2

1 + �2t2

◆�n
.

18



Leveraging this identity and picking up from the expression for �(�) in Equation (6), we have that
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This proves the desired result.

The above proof can also be leveraged to show that, for any finite fixed sequence of times (tn)n2[K],
(Z(t1), . . . , Z(tK)) has the same distribution as (⇣1, . . . , ⇣K), where (⇣n)n2[K] is the Laplace process
associated with times (tn)n2[K] as outlined in Equation (4). This justifies that the process (Z(t))t�⌘

is in fact a continuous time generalization of the aforementioned discrete time process.

E Additional Experimental Details

Parameter settings: We set the regularization parameter to be � = 0.05 and note that the `2 and
`1-sensitivity for the output perturbation of logistic regression are respectively 2

n� and 2
p
d

n� . Likewise,
for covariance perturbation in ridge regression, the `2-sensitivities for privately releasing XTX and
XT y are both 2.0, and the corresponding `1-sensitivities for releasing these quantities are 2.0d and
2.0

p
d respectively [Ligett et al., 2017, Chaudhuri et al., 2011]. We set the failure probability for BM

to be � = 10�6, and in each task map privacy parameters (✏n) to times (tn) using the linear privacy
boundary  L

a,b optimized for tightness at ✏ = 0.3.

Optimizing privacy boundaries: We provide a high level description of how one may set the
parameters associated with the privacy boundaries discussed in Theorem 3.6. Let us consider the
case of the mixture boundary  M

⇢ for illustrative purposes.

Suppose a data analyst desires that the final level of privacy loss obtained by interacting with the
Brownian mechanism should be approximately ✏. Then, intuitively, the analyst should want to add
the variance of the Gaussian noise added to be as small as possible when the privacy boundary takes
value ✏. In mathematical notation, the analyst wants to find a parameter ⇢⇤ satisfying

⇢⇤ = argmin
⇢

( M
⇢ )�1(✏),

where we note that the inverse function ( M
⇢ )�1 exists as  M

⇢ is strictly increasing. While this inverse
has no closed form in general, the parameter ⇢⇤ can be efficiently computed using a few lines of code.
A similar, even more straightforward computation can be conducted for the linear privacy boundary.

Simulating Noise Reduction Mechanisms: We briefly describe how a data analyst can produce
samples from the Brownian mechanism and the Laplace noise reduction mechanism. First, since
T1(x) is a constant, we have BM1(x) ⇠ N (f(x), T1(x)). Then, given BM1:m�1(x), we have
BMm(x) ⇠ N

⇣
f(x) + Tm(x)

Tm�1(x)
(BTm�1(x)� f(x)), (Tm�1(x)�Tm(x))Tm(x)

Tm�1(x)

⌘
. Since simulating

the Brownian mechnaism only requires normal samples, it can be efficiently computed.

Second, to sample from LNR, one can first generate the the points of arrival of the inhomogeneous
Poisson process (Pt)t�⌘ up to time T1(x). Let T1, . . . , TN denote these arrival times, where we
note that N , the number of arrivals up to time T1(x), is a random variable. Then, one can generate
Ym ⇠ Lap(Tm) for m  N . From this information, the process (Zt)⌘tT1(x) can be readily
computed, as in Equation (5).
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