
A Experiments

A.1 1D Synthetic Datasets

We show our experimental results on one-dimensional synthetic datasets Dsquare1 = {(xi, yi)}ni=1

such that yi = x2
i and Dsqrt1 = {(xi, yi)}ni=1 such that yi =

√
xi. Figures 1 and 2 show the

prediction results with various k for these two datasets. The blue lines show the predictions by HLL,
and the black lines show the ground truth. Both figures show that increasing k yields better prediction
results on these synthetic datasets.
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Figure 1: Prediction results of HLL with various k for dataset Dsquare1.
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Figure 2: Prediction results of HLL with various k for dataset Dsqrt1.

A.2 2D Synthetic Datasets.

We show our experimental results on two-dimensional synthetic datasets Dsquare2 = {(xi, yi)}ni=1

such that yi = (xi[1]
2 + xi[2]

2)/2 and Dsqrt2 = {(xi, yi)}ni=1 such that yi = (
√
xi[1] +

√
xi[2])/2

(recall that the i-th element of vector x is denoted as x[i]). Figures 3 and 4 show the prediction results
of HLL, TL Lattice, and TL RTL with k = 4 against the ground truth. These prediction models show
similar prediction results on these synthetic datasets.
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Figure 3: Comparison of predictions for Dsquare2.
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Figure 4: Comparison of predictions for Dsqrt2.
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A.3 Training Time

We compared the training times of HLL and TL Lattice on the small datasets. In these experiments,
we fixed the hyperparameters; k was set to 2, the learning rate was set to 0.001, and the batch size
was set to 128. The number of epochs was set to 100, and we did not use any early stopping. Figure 5
shows the results, where we varied the number of neurons in the auxiliary neural network gθ(p, v)
from 16 to 512 for HLL, and the execution times were the averages of five runs. These results show
that the training times of HLL were shorter than those of TL Lattice for these six small datasets.

16 32 64 128 256 512
Number of Neurons

0

20

40

60

80

Ti
m

e 
(s

ec
.)

TL Lattice
HLL

(a) Energy Efficiency

16 32 64 128 256 512
Number of Neurons

0

5

10

15

Ti
m

e 
(s

ec
.)

TL Lattice
HLL

(b) QSAR Aquatic Toxicity

16 32 64 128 256 512
Number of Neurons

0

20

40

60

80

100

120

Ti
m

e 
(s

ec
.)

TL Lattice
HLL

(c) Concrete Compressive Strength

16 32 64 128 256 512
Number of Neurons

0

20

40

60

80

100

120

Ti
m

e 
(s

ec
.)

TL Lattice
HLL

(d) Contraceptive Method Choice

16 32 64 128 256 512
Number of Neurons

0

250

500

750

1000

1250

Ti
m

e 
(s

ec
.)

TL Lattice
HLL

(e) Abalone

16 32 64 128 256 512
Number of Neurons

0

500

1000

1500

2000

Ti
m

e 
(s

ec
.)

TL Lattice
HLL

(f) Shill Bidding

Figure 5: Comparison of training times (in sec.) of neural network models for various numbers of
neurons of HLL on small datasets.

A.4 Combination with Calibration Layers

We conducted additional experiments by using the calibration layers [You et al., 2017]. More
specifically, we added the calibration layer for each dimension of the input x before the input of the
lattice layer and the monotonicity constraint were imposed on the calibration layers for the monotone
inputs. The number of the end points in each calibration layer was set to 100 and the end points
were uniformly distributed over the input domain. We used both the multilinear interpolation and the
simplex interpolation for TL Lattice.

Figure 6 shows the results, where the red dashed lines show the average of the MSEs for five runs
of MLP. The blue, orange, and brown lines show the average MSEs together with their standard
deviations for five runs of HLL, TL Lattice with multilinear interpolation, and TL Lattice with
simplex interpolation, respectively. These results showed that the prediction performance of TL
Lattice with the calibration layers were improved for the three datasets (a) Energy Efficiency, (c)
Concrete Compressive Strength, and (f) Shill Bidding compared with the results shown in Figure 4.
However, they were still not better than HL Lattice. We also note that there were no clear advantage
of the simplex interpolation compared to the multilinear interpolation with respect to MSEs.
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Figure 6: MSE (lower is better) of the neural network models with various k on small datasets.

B Multilinear Interpolation

For the completeness of this paper, we briefly describe multilinear interpolation algorithm [Gupta et
al., 2016] here. For simplicity, we assume that we are given a vector q ∈ [0, 1]m, and the set of vertices
that surround q is the set of vertices of the (undivided) unit hypercube Vq = {v | v ∈ {0, 1}m}.
Assuming that we know the value f(p, v) for any v ∈ Vq and p ∈ Rd−m, we can compute the
multilinear interpolation by

f(p, q) =
∑
v∈Vq

f(p, v)

m∏
i=1

q[i]v[i](1− q[i])1−v[i],

where q[i] and v[i] represent the i-th dimension of vectors q and v, respectively.

Example. We can compute f(p, q) for q = (0.3, 0.6) by

f(p, q) = f(p, v(0,0)) · (1− 0.3)(1− 0.6) + f(p, v(0,1)) · ((1− 0.3) · 0.6)
+f(p, v(1,0)) · (0.3 · (1− 0.6)) + f(p, v(1,1)) · (0.3 · 0.6)

when m = 2 and Vq = {v(0,0), v(0,1), v(1,0), v(1,1)}.
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