
Hierarchical Lattice Layer for Partially Monotone
Neural Networks

Hiroki Yanagisawa
IBM Research - Tokyo

IBM Japan, Ltd.
Tokyo, Japan

yanagis@jp.ibm.com

Kohei Miyaguchi
IBM Research - Tokyo

IBM Japan, Ltd.
Tokyo, Japan

miyaguchi@ibm.com

Takayuki Katsuki
IBM Research - Tokyo

IBM Japan, Ltd.
Tokyo, Japan

kats@jp.ibm.com

Abstract

Partially monotone regression is a regression analysis in which the target values
are monotonically increasing with respect to a subset of input features. The
TensorFlow Lattice library is one of the standard machine learning libraries for
partially monotone regression. It consists of several neural network layers, and
its core component is the lattice layer. One of the problems of the lattice layer is
that it requires the projected gradient descent algorithm with many constraints to
train it. Another problem is that it cannot receive a high-dimensional input vector
due to the memory consumption. We propose a novel neural network layer, the
hierarchical lattice layer (HLL), as an extension of the lattice layer so that we can
use a standard stochastic gradient descent algorithm to train HLL while satisfying
monotonicity constraints and so that it can receive a high-dimensional input vector.
Our experiments demonstrate that HLL did not sacrifice its prediction performance
on real datasets compared with the lattice layer.

1 Introduction

In regression analysis, we often have prior knowledge that the target values are monotonically
increasing (or decreasing) with respect to a subset of input features. For example, when we estimate
house prices from house data (e.g., the area size, the number of rooms, and the distance to the nearest
supermarket), we know that the target value (i.e., the house price) is monotonically increasing with
respect to some of the input features (e.g., the area size) if the other features are equal [Potharst and
Feelders, 2002].

Partially monotone regression is a regression analysis that exploits such prior knowledge. The input
of this regression is a feature vector x ∈ Rd, which can be partitioned into x = (p, q) such that
p ∈ Rd−m is non-monotone features and q ∈ Rm is monotone features. The goal of this regression
is to find a function f such that f(x) = f(p, q) ∈ R is monotonically increasing on q. Partially
monotone regression models have advantages over the standard regression models. For example, they
have a better regularization capability [Dugas et al., 2000; Fard et al., 2016; You et al., 2017] and
better interpretability [Gupta et al., 2016]. They can be used for fair machine learning [Wang and
Gupta, 2020].

Many machine learning models have been developed for partially monotone regression. For example,
there are decision-tree based models [Potharst and Feelders, 2002], SVM models [Lauer and Bloch,
2008], boosting models [Bartley et al., 2018], and random forest models [Bartley et al., 2019]. Many
popular open source libraries for gradient boosting can handle partial monotonicity (e.g., CatBoost,
LightGBM, and XGBoost). See a survey paper [Cano et al., 2019] and the references in [Gupta et al.,
2016] for comprehensive surveys.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

As for neural network models, the TensorFlow Lattice library [Canini et al., 2016; Gupta et al.,
2016; You et al., 2017] is a standard model for partially monotone regression, and it is available
as an open source library. It consists of several neural network layers, and its core component is
the lattice layer [Gupta et al., 2016]. Hereafter, we call this layer TL Lattice. TL Lattice constructs
a hypercube with kd vertices as an internal structure, where k ≥ 2 is an integer hyperparameter
for specifying the granularity of the hypercube, and d is the dimension of the input vector x ∈ Rd.
One of its problems is its memory consumption in storing kd parameters, and therefore, it cannot
receive a high-dimensional input vector with a large d. This means that we need to combine multiple
neural network layers to handle an input vector with a large d (e.g., by using small lattices [Canini et
al., 2016; You et al., 2017]). Another problem is its requirement for the projected gradient descent
algorithm with many constraints to train it to handle monotonicity constraints. This means that we
cannot use a standard stochastic gradient descent algorithm to train it. The details of the training
algorithms used for the TensorFlow Lattice library are described in [Gupta et al., 2016; You et al.,
2017].

In this paper, we propose a novel neural network layer, the hierarchical lattice layer (HLL), as
an extension of TL Lattice. The internal structure of HLL is similar to that of TL Lattice in
that both layers construct hypercube structures. However, they are different in several aspects.
For example, HLL constructs an m-dimensional hypercube, whereas TL Lattice constructs a d-
dimensional hypercube, where d and m are the dimensions of the input vector x ∈ Rd and its
monotone feature q ∈ Rm, respectively. Since m is usually a small integer in practice, the number
of vertices km in HLL is significantly smaller than that of TL Lattice (i.e., kd). Therefore, HLL
can receive a high-dimensional input vector as long as m is small. For another example, the
parameterization of HLL is designed to represent a class of partially monotone functions (i.e., HLL
cannot represent a function f(p, q) that is not monotonic on q) by using the hierarchical relationship
between the vertices of the hypercube. Therefore, the internal structure of HLL ensures partial
monotonicity regardless of the training algorithm used. In contrast, the internal structure of TL
Lattice is a lookup table, and the table itself can represent any function f(p, q), which means that the
parameterization of TL Lattice is not designed to satisfy monotonicity constraints.

In our experiments, we demonstrate that HLL did not sacrifice its prediction performance compared
with TL Lattice. Note that HLL is designed to satisfy monotonicity constraints and is not designed
to improve the prediction performance compared with TL Lattice. Therefore, the purpose of our
experiments was not to show improvements in prediction performance compared with TL Lattice but
to show that HLL did not sacrifice the prediction performance to satisfy the constraints. In addition,
we demonstrate that we could use HLL for high-dimensional input vectors with a small m.

2 Partially Monotone Regression

Regression analysis is a method for finding a function f : Rd → R such that f(xi) approximates
yi for a given dataset D = {(xi, yi)}ni=1, where xi ∈ Rd is a feature vector, and yi ∈ R is a target
value. In partially monotone regression, we assume that we can partition a feature vector x ∈ Rd into
x = (p, q) ∈ Rd−m × Rm, where 0 < m < d, such that f(x) ∈ R is monotonic on q. A function
f(x) for x = (p, q) is monotonic on q if this inequality holds:

f(p, q) ≤ f(p, q′), ∀p, ∀q ≤ q′,

where q ≤ q′ denotes the inequality for all the elements (i.e., q[i] ≤ q′[i] for all 1 ≤ i ≤ m, where
q[i] denotes the i-th element of q).

Partially monotone regression has many applications in various fields, and it has important applications
even if m = 1. An example of such application with m = 1 is quantile regression [Koenker and
Bassett, 1978; Zhou et al., 2020], which is used to estimate the conditional quantiles of a target
variable distribution. We show that the output q(x) = q(x′, τ) of the quantile regression for an input
x = (x′, τ) is monotonic on τ , where x′ ∈ Rd−1 is a feature vector, and τ ∈ [0, 1] is a quantile level.
In quantile regression, we estimate the quantile value q(x′, τ) defined by

q(x′, τ) = inf{y | F (y|X = x′) ≥ τ},

where F (y|X = x′) is the conditional cumulative distribution function of Y given X = x′:

F (y|X = x′) = Pr(Y ≤ y|X = x′).

2

Since the function q(x′, τ) is monotonically increasing on τ , this problem can be modeled as partially
monotone regression with m = 1. Note that, if we use a standard multi-layer perceptron without
any monotonicity constraints to estimate the quantile value q(x′, τ), it sometimes fails to satisfy
the monotonicity constraints, which is known as the crossing problem (see e.g., [Tagasovska and
Lopez-Paz, 2019]). In quantile regression, many algorithms have been proposed to resolve the
crossing problem (e.g., [Park et al., 2022]).

Another example of partially monotone regression with m = 1 is survival analysis, which is also
known as time-to-event analysis [Wang et al., 2019; Rindt et al., 2022]. We show that the output
f(x) = f(x′, t) of the survival analysis for an input x = (x′, t) is monotonic on t, where x′ ∈ Rd−1
is a feature vector of a patient, and t ∈ R is the time of an event of interest of this patient. In survival
analysis, the event of interest typically corresponds to the death of a patient. The goal of the analysis
is to estimate a survival function S(x′, t) for patient x′, which represents the probability that the
event does not occur until time t for patient x′. By setting f(x′, t) = 1− S(x′, t), we can model the
survival analysis as a partially monotone regression with m = 1, where the value f(x′, t) shows the
mortality rate of patient x′ at time t, and f(x′, t) is monotonically increasing on t.

3 Hierarchical Lattice Layer

In this section, we explain our new hierarchical lattice layer (HLL) for neural network models for
partially monotone regression. It can be seen as an extension of TL Lattice [Gupta et al., 2016]. Note
that the input of HLL is a d-dimensional vector x ∈ [0, 1]d, and its output f(x) is in [0, 1], where the
input vector x can be partitioned into two subvectors p ∈ [0, 1]d−m and q ∈ [0, 1]m such that f(x) is
monotonic on q.

We create the m-dimensional unit hypercube [0, 1]m as an internal structure of HLL, and we decom-
pose it into (k1− 1)× (k2− 1)× · · · × (km− 1) subhypercubes by dividing the interval [0, 1] of the
i-th dimension into ki− 1 subintervals, where each ki ≥ 2 is an integer hyperparameter that specifies
the granularity of the hypercube. Unless otherwise stated, we assume that k1 = k2 = · · · = km = k,
and the interval [0, 1] is divided into k − 1 equal-length subintervals just for simplicity. This means
that the length of an edge of a subhypercube is 1/(k − 1), and we have the km vertices in the unit
hypercube. We denote the set of the vertices in the unit hypercube by Vm. In this paper, we do not
distinguish between a vertex v ∈ Vm and its coordinate qv ∈ [0, 1]m. This means that the value
f(p, qv) for coordinate qv is written as f(p, v).

3.1 Key Idea of HLL

Before describing the details of HLL, we explain the key idea of HLL by using a simple case
with m = 1 and k = 3. In this case, HLL is supposed to learn a function f(p, q) such that
0 ≤ f(p, q0) ≤ f(p, q1) ≤ f(p, q2) ≤ 1 holds for any p ∈ Rd−m and q1 = 0, q2 = 1/2, and q3 = 1.
Hereafter, we use v1, v2, and v3 to represent q1, q2, and q3, respectively, to emphasize that they
correspond to the vertices in Vm.

In HLL, we associate a function g(p, v) for each vertex v ∈ Vm so that the function f(p, v) for
v ∈ Vm can be represented by using the function g(p, v). We show how the function g(p, v) is
defined here. First, the function g(p, v0) is defined as g(p, v0) = f(p, v0). Second, the function
g(p, v1) is defined as the function that satisfies this equation:

f(p, v1) = (1− g(p, v1))f(p, v0) + g(p, v1).

Note that 0 ≤ g(p, v1) ≤ 1 always holds because f(p, v0) ≤ f(p, v1) ≤ 1. Similarly, the function
g(p, v2) is defined as the function that satisfies this equation:

f(p, v2) = (1− g(p, v2))f(p, v1) + g(p, v2).

See Figure 1 for an illustration of these definitions. By using these definitions, the task of learning
the function f(p, v) with monotonicity constraints 0 ≤ f(p, v0) ≤ f(p, v1) ≤ f(p, v2) ≤ 1 is casted
as the task of learning the function g(p, v) such that 0 ≤ g(p, v) ≤ 1 without any monotonicity
constraints. We generalize this idea for m > 1 in the following.

We note here that HLL for the case with m = 1 is similar to some existing approaches used in
survival analysis (see e.g., [Ren et al., 2019; Zheng et al., 2019]). More specifically, the survival
function is decomposed into a product of hazard rates in these approaches, and the survival function
and the hazard rate can be represented by using f(p, v) and g(p, v) in HLL, respectively.

3

g(p, v0) : 1− g(p, v0)

g(p, v1) : 1− g(p, v1)

g(p, v2) : 1− g(p, v2)

0

f(p, v0) f(p, v1)

f(p, v2) 1

Figure 1: Illustration of parameterization of HLL for m = 1 and k = 3.

3.2 Hierarchical Relationship between Vertices

In HLL, we assume that there is a total order σ = (v0, v1, . . . , v|Vm|−1) of vertices in Vm. We
can use any total order σ to construct HLL, but unless otherwise stated, we assume that σ is
determined by the increasing order of the Manhattan distance (i.e., L1 distance) from the origin
vertex v0 = (0, 0, . . . , 0) ∈ [0, 1]m of the unit hypercube with an arbitrary tie-breaker. See Figure 2
for an example of a decomposed unit hypercube with m = 2 and k = 4 and the total order
σ = (v0, v1, . . . , v15) determined by the Manhattan distance.

We define the domination relationship between vertices in Vm, and we define the minimal dominated
and dominating sets based on σ.

Definition 3.1 (Domination.) A vertex v ∈ Rm is said to dominate another vertex u ∈ Rm if and
only if u[i] ≤ v[i] holds for all i ∈ {1, 2, . . . ,m} and there exists an index i′ ∈ {1, 2, . . . ,m} such
that u[i′] < v[i′].

Definition 3.2 (Minimal dominated set.) The set of vertices Lv,σ denotes the minimal set of vertices
that satisfy three conditions (i) every vertex u ∈ Lv,σ is dominated by v, (ii) vertex u precedes v in σ,
and (iii) no other vertex w ∈ Lv,σ dominates u.

Definition 3.3 (Minimal dominating set.) The set of vertices Uv,σ denotes the minimal set of vertices
that satisfy three conditions (i) every vertex u ∈ Uv,σ dominates v, (ii) vertex u precedes v in σ, and
(iii) no other vertex w ∈ Uv,σ is dominated by u.

Intuitively the domination relation means that f(p, u) ≤ f(p, v) holds for any p ∈ Rd−m if vertex v
dominates vertex u. Regarding the minimal dominated and dominating sets, there can be multiple
minimal sets that satisfy the conditions. Throughout this paper, we fix an (arbitrary) minimal
dominated set Lv,σ and an (arbitrary) minimal dominating set Uv,σ for each v ∈ σ. Note also that we
have |Lv,σ| ≤ m and |Uv,σ| = 0 if σ is determined by the Manhattan distance. This is why we use
the Manhattan distance to determine σ, because we have weaker upper bounds |Lv,σ| ≤ |Vm| and
|Uv,σ| ≤ |Vm| if σ is an arbitrary ordering.

Example. In the hypercube shown in Figure 2, vertex v8 dominates the vertices in
{v0, v1, v2, v4, v5} and is dominated by the vertices in {v11, v12, v13, v14, v15}. By the definition of
the minimal dominated set, we have Lv8,σ = {v4, v5} because vertices v0, v1, and v2 are dominated
by v4 or v5. By the definition of the minimal dominating set, we have Uv8,σ = ∅ because all the
vertices that dominate v8 appear after v8 in ordering σ.

3.3 Auxiliary Neural Network

We explain the function g(p, v) associated with each vertex v ∈ Vm. To define it, we define two
functions l(p, v) and u(p, v) for p ∈ Rd−m and a vertex v ∈ Vm as

l(p, v) =

{
max
v′∈Lv,σ

f(p, v′) if Lv,σ 6= ∅,

0 if Lv,σ = ∅,
(1)

u(p, v) =

{
min

v′∈Uv,σ
f(p, v′) if Uv,σ 6= ∅,

1 if Uv,σ = ∅,
(2)

4

v0

v2

v5

v9

v1

v4

v8

v12

v3

v7

v11

v14

v6

v10

v13

v15

v0 = (0, 0)

v9 = (0, 1)

v6 = (1, 0)

v15 = (1, 1)

l
l
l
l

l
l
l
l

l
l
l
l

l
l
l
l

Figure 2: Example of vertices in unit hypercube in HLL with m = 2 and k = 4.

where Lv,σ and Uv,σ are the minimal dominated and dominating sets, respectively. Note that l(p, v)
and u(p, v) are defined so as to satisfy the inequality l(p, v) ≤ f(p, v) ≤ u(p, v). By using this
inequality, we define g(p, v) as a function that satisfies

f(p, v) = (1− g(p, v))l(p, v) + g(p, v)u(p, v). (3)

Since we have l(p, v) ≤ f(p, v) ≤ u(p, v), there always exists 0 ≤ g(p, v) ≤ 1 that satisfies Eq. (3).

We construct an auxiliary neural network gθ(p, v) in HLL to learn the function g(p, v). To satisfy the
constraint 0 ≤ g(p, v) ≤ 1, we use the sigmoid function in the last layer of gθ(p, v) as the activation
function. Note that, by the definitions of the three functions l(p, v), u(p, v), and g(p, v), we can
compute f(p, v) for any p and v by using gθ(p, v).

Example of Parameterization of HLL. We show an example of the functions l(p, v), u(p, v), and
g(p, v) for a simple case with m = 1 and k = 3 (see Figure 1). In this case, the hypercube has three
vertices Vm = {v0, v1, v2}, and we use the total ordering σ = (v0, v1, v2) here. For the first element
v0 of σ, we have l(p, v0) = 0 and u(p, v0) = 1 because Lv0,σ = Uv0,σ = ∅ and g(p, v0) = f(p, v0),
which satisfies l(p, v0) ≤ f(p, v0) ≤ u(p, v0) and 0 ≤ g(p, v0) ≤ 1. For the second element v1 of σ,
we have l(p, v1) = f(p, v0) and u(p, v1) = 1 because Lv1,σ = {v0} and Uv1,σ = ∅. The function
g(p, v1) is defined as a function that satisfies

f(p, v1) = (1− g(p, v1)) · l(p, v1) + g(p, v1) · u(p, v1).
Note that this definition satisfies l(p, v1) ≤ f(p, v1) ≤ u(p, v1) and 0 ≤ g(p, v1) ≤ 1, which means
that the monotonicity constraint f(p, v0) ≤ f(p, v1) ≤ 1 is satisfied. Similarly, for the third element
v2 in σ, we have l(p, v2) = f(p, v1) and u(p, v2) = 1 because Lv2,σ = {v1} and Uv2,σ = ∅. The
function g(p, v2) is defined as a function that satisfies

f(p, v2) = (1− g(p, v2)) · l(p, v2) + g(p, v2) · u(p, v2).
Note that this definition satisfies l(p, v2) ≤ f(p, v2) ≤ u(p, v2) and 0 ≤ g(p, v2) ≤ 1, which means
that the monotonicity constraint f(p, v1) ≤ f(p, v2) ≤ 1 is satisfied.

3.4 Inference and Training Algorithms

The inference algorithm of HLL is similar to TL Lattice, and Figure 3 illustrates it. Given an input
x = (p, q), we first calculate f(p, v) for all v ∈ Vq by using gθ(p, v), where Vq ⊆ Vm is the set of
the vertices that surround q in the hypercube. Then, we estimate f(p, q) as an interpolation of the
values f(p, v) for v ∈ Vq. As for the interpolation algorithm, we can use multilinear interpolation
or simplex interpolation [Gupta et al., 2016]. Note that the size of Vq depends on the interpolation
algorithm (i.e., |Vq| = 2m if we use multilinear interpolation, and |Vq| = O(m logm) if we use
simplex interpolation).

The training algorithm of HLL is the same as that of the standard neural network layer. For example,
if we train a neural network model that consists of a single HLL, the parameters of HLL (i.e. the
parameters θ of the auxiliary neural network gθ) are trained to minimize the empirical loss

min
gθ

n∑
i=1

`(yi, f(xi)),

5

x = (p, q) -

Compute f(p, v)
by using gθ

f(p, v1)

f(p, v5)
f(p, v7)

qq
f(p, v2)
f(p, v4)

f(p, v8)

�� ��

�� ��

-
Interpolate

f(p, q)

Figure 3: Illustration of inference algorithm of HLL for case with m = 3, and q is surrounded by
vertices Vq = {v1, v2, . . . , v8}.

where {(xi, yi)}ni=1 is a dataset, f(xi) is the output of the inference algorithm of HLL for input xi,
and ` is a loss function.

3.5 Partial Monotonicity

As already proven in [Gupta et al., 2016], the function f(p, q) computed by an interpolation algorithm
satisfies monotonicity constraints if the values corresponding to the vertices of the hypercube satisfy
the constraints. Therefore, we show that we have f(p, u) ≤ f(p, v) for any pair of vertices u, v ∈ Vm
such that u is dominated by v. Note that this proposition holds for any vertex ordering σ and is not
restricted to the vertex ordering determined by the Manhattan distance.

Proposition 3.4 In HLL, f(p, u) ≤ f(p, v) holds for any p ∈ Rd−m and any pair of vertices
u, v ∈ Vm such that u is dominated by v

Proof. Suppose that u precedes v in the total ordering σ. By the definition of the minimal dominated
set, there exists a sequence of vertices u0(= u), u1, u2, . . . , uJ(= v) such that uj−1 ∈ Luj ,σ holds
for j = 1, 2, . . . , J . Since uj−1 ∈ Luj ,σ, we have f(p, uj−1) ≤ l(p, uj) ≤ f(p, uj) by Eq. (1).
Hence, we have f(p, u) = f(p, u0) ≤ f(p, u1) ≤ · · · ≤ f(p, uJ) = f(p, v).

Similarly, suppose that v precedes u in the total ordering σ. By the definition of the minimal
dominating set, there exists a sequence of vertices v0(= v), v1, v2, . . . , vJ(= u) such that vj−1 ∈
Uvj ,σ holds for j = 1, 2, . . . , J . Since vj−1 ∈ Uvj ,σ, we have f(p, vj−1) ≥ u(p, vj) ≥ f(p, vj) by
Eq. (2). Hence, we have f(p, v) = f(p, v0) ≥ f(p, v1) ≥ · · · ≥ f(p, vJ) = f(p, u).

3.6 Complexity Analysis

We show that the time complexity of the inference algorithm of HLL is O((T (gθ) +m)|Vm|), where
T (gθ) is the time complexity of computing gθ(p, v) for an input (p, v) ∈ Rd−m × Rm. First, the
time complexity to compute f(p, v) for all vertices v ∈ Vm is O((T (gθ) +m)|Vm|) since it takes
O(T (gθ) + |Lv,σ| + |Uv,σ|) time to compute f(p, v) for a single vertex v ∈ Vm, and we have
|Lv,σ|+ |Uv,σ| ≤ m. Then, the time complexity for the interpolation algorithm is O(2m) if we use
multilinear interpolation and O(m logm) if we use simplex interpolation [Gupta et al., 2016]. Since
we have 2m ≤ |Vm|, the time complexity for the interpolation algorithm is smaller than that for
the computation of f(p, v). Hence, the overall time complexity remains O((T (gθ) +m)|Vm|). If
we can assume that m is a small integer (i.e., m is a constant), the computation time for inference
can be written simply as O(T (gθ)). Note that, if the time complexity T (gθ) is a linear function
on d, the time complexity of the inference algorithm for HLL is smaller than that for TL Lattice
because the inference algorithm of TL Lattice takes O(2d) and O(d log d) times if we use multilinear
interpolation and simplex interpolation, respectively [Gupta et al., 2016].

The space complexity of HLL is O(|gθ| + m|Vm|) if the vertex ordering σ is determined by the
Manhattan distance, where we denote the size of the auxiliary neural network gθ(p, v) by |gθ|, and the
O(m|Vm|) term is the space required to store Lv,σ and Uv,σ for all v ∈ Vm. Note that, if we use an
arbitrary vertex ordering σ, we require O(|Vm|2) space to store Lv,σ and Uv,σ for all v ∈ Vm because
we know only that |Lv,σ| ≤ |Vm| and |Uv,σ| ≤ |Vm|. Since |Vm|2 is much larger than m|Vm|, we
recommend using the Manhattan distance to determine σ in HLL.

6

4 Experiments

In our experiments, we demonstrate that HLL did not sacrifice its prediction performance compared
with TL Lattice. Note that HLL is designed to satisfy monotonicity constraints and is not designed
to improve the prediction performance compared with TL Lattice. Therefore, the purpose of our
experiments was not to show such improvements but to show that HLL did not sacrifice the prediction
performance to satisfy the constraints. In addition, we demonstrate that we could use HLL for
high-dimensional input vectors with a small m. All our experiments were conducted on a virtual
machine with an Intel Xeon CPU (3.30 GHz) processor without any GPU and 64 GB of memory
running Red Hat Enterprise Linux Server 7.6.

4.1 Neural Network Models

In our experiments, we compared these four neural network models.

• MLP. A multi-layer perceptron model with three hidden layers. We used the ReLU acti-
vation layer for the hidden layers and the sigmoid function for the output layer. Note that
this neural network is not designed for partially monotone regression and cannot handle
monotonicity constraints.

• HLL. A neural network model consisting of a single hierarchical lattice layer. We used an
MLP model with three hidden layers for the auxiliary neural network gθ(p, v), and we used
multilinear interpolation in the inference algorithm.

• TL Lattice. A neural network model consisting of a single TL Lattice layer [Gupta et al.,
2016]. This layer uses O(kd) space, and therefore, it can be used only for low-dimensional
inputs (i.e., d is a small integer). We used multilinear interpolation in the inference algorithm.

• TL RTL. A neural network model consisting of a single RTL layer [Canini et al., 2016]
from the TensorFlow Lattice library, which is a random ensemble of tiny lattices (i.e.,
TL Lattices). This layer consists of dd/re tiny lattices, and each tiny lattice receives an
r-dimensional input vector, where r is an integer hyperparameter. Hence, this layer uses
O((d/r)kr) space, which is significantly smaller than that of TL Lattice when r � d. Note
that a theoretical analysis in [Canini et al., 2016] shows that TL RTL with d/r tiny lattices
is equivalent to the single d-dimensional TL Lattice. We used this model for datasets with
high-dimensional inputs (i.e., d is a large integer).

We used Python 3.8.12 and PyTorch 1.8.1 to implement MLP and HLL, and the implementation
of HLL is available at https://github.com/IBM/pmlayer. As for TL Lattice and TL RTL, we
used TensorFlow 2.3.0 and TensorFlow Lattice 2.0.10, which is the implementation provided by
the authors [Canini et al., 2016; Gupta et al., 2016] and available as an open source library under
Apache License 2.0 at https://www.tensorflow.org/lattice. The TensorFlow Lattice library
also provides an implementation of the Kronecker-Factored lattice layer [Morioka et al., 2021], which
uses a smaller amount of memory than TL Lattice. However, we did not include the experimental
results for this layer because TL RTL significantly outperformed it for the datasets we used in terms
of prediction performance.

Throughout our experiments, all problems were solved as regression problems, and we used mean
squared error (MSE) for the evaluation metric. For the training of the neural network models, we
used the Adam optimizer [Kingma and Ba, 2015]. In HLL, TL Lattice, and TL RTL, the number of
vertices in each dimension of the hypercube was set to k by default. However, the numbers of the
vertices in the dimensions that correspond to small categorical values were set to the numbers of the
categories. For example, if the i-th dimension corresponds to a binary feature, then we set ki = 2
instead of ki = k.

4.2 Real Datasets

We used 12 real datasets taken from the UCI Machine Learning Repository [Dua and Graff, 2017] in
our experiments. We used six small datasets: Energy Efficiency [Tsanas and Xifara, 2012], QSAR
Aquatic Toxicity [Cassotti et al., 2014], Concrete Compressive Strength [Yeh, 1998], Contraceptive
Method Choice [Lim et al., 2000], Abalone [Nash et al., 1994], and Shill Bidding [Alzahrani and
Sadaoui, 2020], and six large datasets: Online Shoppers Purchasing Intention [Sakar et al., 2019],

7

Table 1: Datasets obtained from UCI Machine Learning Repository.
Name n d Monotone features

Energy Efficiency 768 8 X3, X5, X7
QSAR Aquatic Toxicity 908 6 MLOGP, SM1_Dz(Z)
Concrete Compressive Strength 1 030 8 Water
Contraceptive Method Choice 1 473 12 Number of children ever born, wife age
Abalone 4 176 10 Shell, shucked, viscera, and whole weights
Shill Bidding 6 321 9 Winning_Ratio

Online Shoppers Purchasing 12 330 74 BounceRates, ExitRates
Adult 30 162 88 Age
Online News Popularity 39 644 58 n_tokens_content, n_tokens_title
Facebook Comment Volume 40 949 52 Column 37
Bank Marketing 41 188 63 cons.conf.idx
Blog Feedback 46 864 276 Columns 51–53

Adult, Online News Popularity [Fernandes et al., 2015], Facebook Comment Volume [Singh et al.,
2015], Bank Marketing [Moro et al., 2014], and Blog Feedback [Buza, 2014]. We confirmed that
none of these datasets contained any personally identifiable data points nor any offensive content.

Table 1 shows a summary of these 12 datasets. Some of the datasets were already split into training
and test data, and the others were unsplit (i.e., a single dataset was given). Column n of this table
shows the number of data points in the training dataset for the split datasets and the number of data
points for the unsplit datasets. In our experiments, we removed all the data points that had missing
feature values.

Column d of Table 1 shows the number of features after our feature encoding. We briefly explain
our feature encoding here. We normalized all the continuous values (including the target values) to a
range between 0 and 1 by using the min-max scaling algorithm (i.e. a simple linear transformation).
We used label encoding to encode the ordinal categorical values. For example, we replaced the ordinal
categorical values {low,med, high} with low = 0, med = 0.5, and high = 1 so that the replaced
values were in the range between 0 and 1. We used one-hot encoding for the other categorical values.
When we used TL Lattice and TL RTL, we renormalized the input feature vectors from [0, 1]d to
[0, k − 1]d, where k is a hyperparameter, to conform to the input specifications of these two models.

The last column of Table 1 shows the monotone features we used in our experiments. The italic
feature names represent monotonically decreasing features, and the others represent monotonically
increasing features. We should choose monotone features by using domain knowledge for each
dataset, but we used the SHAP values [Lundberg and Lee, 2017] to find candidates of monotone
features for the datasets for which we had little domain knowledge. We expected that there would be
an almost monotonic relationship between the SHAP value and the i-th feature value (i.e., x[i]) if the
target value was monotonic on the i-th feature. In our experiments, we constructed an MLP model for
each dataset and computed its SHAP values. Then, we checked for each feature if the SHAP values
were monotonically increasing (or decreasing) with respect to the feature values by using Spearman’s
rank correlation coefficients. Note that such correlation between SHAP values and feature values
does not mean a monotone relationship, but we found this approach helpful to find candidates of
monotone features for datasets with little domain knowledge.

4.3 Experimental Results

In our experiments, we split the data points into training, validation, and test data points. For the
unsplit datasets, we divided the data points into training (60%), validation (20%), and test (20%). We
used a single random split to search for the best hyperparameters and five random splits to obtain the
average prediction performance. For the datasets that were already split into training and test datasets,
we further divided the data points in the training dataset into training (80%) and validation (20%) and
kept the test dataset unchanged. We used a single random split to search for the best hyperparameters
and five random splits to obtain the average prediction performance without changing the test dataset.

8

2 3 4 5
k

0.000

0.002

0.004

0.006

0.008

M
ea

n
Sq

ua
re

d
Er

ro
r MLP

TL Lattice
HLL

(a) Energy Efficiency

2 3 4 5
k

0.005

0.010

0.015

0.020

M
ea

n
Sq

ua
re

d
Er

ro
r MLP

TL Lattice
HLL

(b) QSAR Aquatic Toxicity

2 3 4 5
k

0.00

0.01

0.02

0.03

M
ea

n
Sq

ua
re

d
Er

ro
r MLP

TL Lattice
HLL

(c) Concrete Compressive Strength

2 3 4 5
k

0.1

0.2

0.3

M
ea

n
Sq

ua
re

d
Er

ro
r MLP

TL Lattice
HLL

(d) Contraceptive Method Choice

2 3 4 5
k

0.002

0.004

0.006

0.008

0.010

0.012

M
ea

n
Sq

ua
re

d
Er

ro
r MLP

TL Lattice
HLL

(e) Abalone

2 3 4 5
k

0.00

0.01

0.02

0.03

M
ea

n
Sq

ua
re

d
Er

ro
r MLP

TL Lattice
HLL

(f) Shill Bidding

Figure 4: MSE (lower is better) of the neural network models with various k on small datasets.

Regarding the hyperparameters, we chose the best hyperparameters for each combination of a neural
network and a dataset; the learning rate was chosen from {1, 10−1, 10−2, 10−3, 10−4, 10−5}, the
batch size was chosen from {8, 16, 32, ..., 4096}, the number of neurons in the hidden layers was
chosen from {16, 32, 64, ..., 512} for MLP and HLL, and the hyperparameter r was chosen from
{4, 5, 6, 7} for TL RTL. We used only the training and validation datasets to determine the best
hyperparameters, and we used Optuna [Akiba et al., 2019] to search for the best hyperparameters.

Results for Small Datasets. We compared the prediction performances of MLP, HLL, and TL
Lattice by using the six small datasets (i.e., d was small). We trained these neural network models for
1000 epochs with certain early stopping criteria, and Figure 4 shows the results for various k. The
red dashed lines show the average of the MSEs for five runs of MLP, and we regard these values as
baselines of the prediction performance. The blue and orange lines show the average MSEs together
with their standard deviations for five runs of HLL and TL Lattice, respectively. These results showed
that our HLL performed comparably to MLP for all six datasets. Somewhat surprisingly, we note
that using a finer-grained lattice (i.e., increasing k) did not necessarily improve the MSEs. This
phenomenon was already mentioned in [Gupta et al., 2016] for TL Lattice, and we observed this
phenomenon both for TL Lattice and HLL in our experiments. Figure 4 also shows that the prediction
performance of HLL were also comparable with TL Lattice. Although TL Lattice showed worse
MSEs than MLP and HLL for some datasets, these differences in prediction performance were
supposed to come from two factors. One was the difference of the parameterization; HLL used
a hypercube of size km, whereas TL Lattice used a hypercube of size kd. The other one was the
difference of the neural network training algorithm; MLP and HLL used the standard stochastic
gradient descent algorithm, whereas TL Lattice used the projected gradient descent algorithm. In
addition, we compared the prediction performace of HLL and TL Lattice with the calibration layer,
and the results are shown in Appendix A.4.

Results for Large Datasets. For the datasets with a large d, we could not use TL Lattice due to its
space complexity O(kd), so we used TL RTL instead. TL Lattice requires that at least 252 parameters
be stored even if k = 2 since d ≥ 52, but we cannot store such a large number of parameters in
memory. In contrast, we could use HLL since m is small in the datasets we used.

We compared the prediction performance of MLP, HLL, and TL RTL by using the six large datasets.
We trained these neural network models for 100 epochs with certain early stopping criteria, and
Figure 5 shows the results for various k. The red dashed lines show the average MSEs for five runs
of MLP, and we regard these values as baselines of the prediction performance. The blue and green
lines show the average MSEs together with their standard deviations for five runs of HLL and TL

9

2 3 4 5
k

0.05

0.10

0.15

0.20

M
ea

n
Sq

ua
re

d
Er

ro
r MLP

TL RTL
HLL

(a) Online Shoppers Purchasing

2 3 4 5
k

0.05

0.10

0.15

0.20

0.25

0.30

M
ea

n
Sq

ua
re

d
Er

ro
r MLP

TL RTL
HLL

(b) Adult

2 3 4 5
k

0.0001

0.0002

0.0003

0.0004

M
ea

n
Sq

ua
re

d
Er

ro
r MLP

TL RTL
HLL

(c) Online News Popularity

2 3 4 5
k

0.001

0.002

0.003

0.004

M
ea

n
Sq

ua
re

d
Er

ro
r MLP

TL RTL
HLL

(d) Facebook Comment Volume

2 3 4 5
k

0.025
0.050
0.075
0.100
0.125
0.150

M
ea

n
Sq

ua
re

d
Er

ro
r MLP

TL RTL
HLL

(e) Bank Marketing

2 3 4 5
k

0.02

0.04

0.06

M
ea

n
Sq

ua
re

d
Er

ro
r MLP

TL RTL
HLL

(f) Blog Feedback

Figure 5: MSE (lower is better) of the neural network models with various k on large datasets.

RTL, respectively. Note that the result for TL RTL with k = 5 on the Blog Feedback dataset was
missing due to a memory limitation in our computer environment. These results showed that our
HLL performed comparably to MLP and TL RTL regardless of k for the six large datasets. We think
that HLL performed better than MLP for some datasets thanks to the regularization effects coming
from the monotonicity constraints.

5 Related Work

There are some neural networks for partially monotone regression other than the TensorFlow Lattice
library. One of the simplest approaches is to enforce non-negativity constraints on neural network
weights that are related to monotone inputs (e.g., [Daniels and Velikova, 2010; You et al., 2017]).
Another simple approach is to use a regularization term to enforce monotonicity [Gupta et al., 2019;
Monteiro et al., 2021], but a prediction model that uses this approach may not always satisfy the
monotonicity constraints. More complex approaches are proposed in [Liu et al., 2020; Sivaraman et
al., 2020]. These approaches use a mixed integer linear programming solver or a satisfiability modulo
theories (SMT) solver to ensure the monotonicity of the neural network. The disadvantages of these
approaches are their computational complexity and the costs of using the solvers.

6 Conclusion

We proposed the hierarchical lattice layer (HLL) for partially monotone neural networks as an
extension of TL Lattice [Gupta et al., 2016]. We demonstrated that HLL resolved two problems
with TL Lattice: the memory consumption and the requirement for the projected gradient descent
algorithm with many constraints. In our experiments, we showed that HLL did not sacrifice prediction
performances to resolve these problems. Note that our experiments were limited to a comparison
between single layers (i.e., HLL and TL Lattice). The prediction performance of these models might
be able to be improved by combining multiple layers (e.g., [You et al., 2017]) or any other techniques
(e.g., changing feature encoding and increasing the number of layers in MLP) and the memory
consumption might also be reduced by using smaller lattices, but note that the requirement for the
projected gradient descent algorithm with many constraints remains for TL Lattice.

A limitation of our HLL is that it cannot be used for the applications with a large m. If m is large, we
need to combine small HLL layers to construct a large neural network as demonstrated in [Canini et
al., 2016; You et al., 2017] for TL Lattice.

10

References
T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-generation hyperparameter

optimization framework. In Proceedings of KDD 2019, pages 2623–2631, 2019.

A. Alzahrani and S. Sadaoui. Clustering and labeling auction fraud data. Data Management, Analytics
and Innovation, pages 269–283, 2020.

C. Bartley, W. Liu, and M. Reynolds. A novel framework for constructing partially monotone rule
ensembles. In Proceedings of ICDE 2018, 2018.

C. Bartley, W. Liu, and M. Reynolds. Enhanced random forest algorithms for partially monotone
ordinal classification. In Proceedings of AAAI-19, pages 3224–3231, 2019.

K. Buza. Feedback prediction for blogs. Data Analysis, Machine Learning and Knowledge Discovery,
pages 145–152, 2014.

K. Canini, A. Cotter, M. R. Gupta, M. Milani Fard, and J. Pfeifer. Fast and flexible monotonic
functions with ensembles of lattices. In Proceedings of NIPS 2016, pages 2927–2935, 2016.

J.-R. Cano, P. A. Gutiérrez, B. Krawczyk, M. Woźniak, and S. García. Monotonic classification:
An overview on algorithms, performance measures and data sets. Neurocomputing, 341:168–182,
2019.

M. Cassotti, D. Ballabio, V. Consonni, A. Mauri, I. V. Tetko, and R. Todeschini. Prediction of acute
aquatic toxicity towards Daphnia magna using GA-kNN method. Alternatives to Laboratory
Animals, 42(1):31–41, 2014.

H. Daniels and M. Velikova. Monotone and partially monotone neural networks. IEEE Transactions
on Neural Networks, 21(6):906–917, 2010.

D. Dua and C. Graff. UCI Machine Learning Repository, 2017.

C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia. Incorporating second-order functional
knowledge for better option pricing. In Proceedings of NIPS 2000, pages 472–478, 2000.

M. Milani Fard, K. Canini, A. Cotter, J. Pfeifer, and M. Gupta. Fast and flexible monotonic functions
with ensembles of lattices. In Proceedings of NIPS 2016, pages 2927–2935, 2016.

K. Fernandes, P. Vinagre, and P. Cortez. A proactive intelligent decision support system for predicting
the popularity of online news. In Proceedings of EPIA 2015, pages 535–546, 2015.

M. Gupta, A. Cotter, J. Pfeifer, K. Voevodski, K. Canini, A. Mangylov, W. Moczydlowski, and
A. van Esbroeck. Monotonic calibrated interpolated look-up tables. Journal of Machine Learning
Research, 17(1):3790–3836, 2016.

A. Gupta, N. Shukla, L. Marla, A. Kolbeinsson, and K. Yellepeddi. How to incorporate monotonicity
in deep networks while preserving flexibility? In Proceedings of NeurIPS 2019 Workshop on
Machine Learning with Guarantees, 2019.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proceedings of ICLR 2015,
2015.

R. Koenker and B. Bassett, Jr. Regression quantiles. Econometrica, 46(1):33–50, 1978.

F. Lauer and G. Bloch. Incorporating prior knowledge in support vector regression. Machine
Learning, 70:89–118, 2008.

T.-S. Lim, W.-Y. Loh, and Y.-S. Shih. A comparison of prediction accuracy, complexity, and training
time of thirty-three old and new classification algorithms. Machine Learning, 40:203–228, 2000.

X. Liu, X. Han, N. Zhang, and Q. Liu. Certified monotonic neural networks. In Proceedings of
NeurIPS 2020, pages 15427–15438, 2020.

S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. In Proceedings
of NIPS 2017, pages 4768–4777, 2017.

11

J. Monteiro, M. O. Ahmed, H. Hajimirsadeghi, and G. Mori. Not too close and not too far: Enforcing
monotonicity requires penalizing the right points. In Proceedings of XAI for Debugging Workshop
at NeurIPS 2021, 2021.

N. Morioka, E. Louidor, and W. T. Bakst. Monotonic Kronecker-factored lattice. In Proceedings of
ICLR 2021, 2021.

S. Moro, P. Cortez, and P. Rita. A data-driven approach to predict the success of bank telemarketing.
Decision Support Systems, 62:22–31, 2014.

W. J. Nash, T. L. Sellers, S. R. Talbot, A. J. Cawthorn, and W. B. Fort. The population biology of
Abalone (Haliotis species) in Tasmania. I. Blacklip Abalone (H. rubra) from the north coast and
islands of bass strait. Technical report, Sea Fisheries Division, 1994.

Y. Park, D. Maddix, F.-X. Aubet, K. Kan, J. Gasthaus, and Y. Wang. Learning quantile functions
without quantile crossing for distribution-free time series forecasting. In Proceedings of AISTATS
2022, pages 8127–8150, 2022.

R. Potharst and A. J. Feelders. Classification trees for problems with monotonicity constraints. ACM
SIGKDD Explorations Newsletter, 4(1):1–10, 2002.

K. Ren, J. Qin, L. Zheng, Z. Yang, W. Zhang, L. Qiu, and Y. Yu. Deep recurrent survival analysis. In
Proceedings of AAAI-19, pages 4798–4805, 2019.

D. Rindt, R. Hu, D. Steinsaltz, and D. Sejdinovic. Survival regression with proper scoring rules and
monotonic neural networks. In Proceedings of AISTATS 2022, pages 1190–1205, 2022.

C. O. Sakar, S. O. Polat, M. Katircioglu, and Y. Kastro. Real-time prediction of online shoppers’
purchasing intention using multilayer perceptron and LSTM recurrent neural networks. Neural
Computing and Applications, 31:6893–6908, 2019.

K. Singh, R. Kaur, and D. Kumar. Comment volume prediction using neural networks and decision
trees. In Proceedings of UKSIM 2015, pages 15–20, 2015.

A. Sivaraman, G. Farnadi, T. Millstein, and G. Van den Broeck. Counterexample-guided learning of
monotonic neural networks. In Proceedings of NeurIPS 2020, pages 11936–11948, 2020.

N. Tagasovska and D. Lopez-Paz. Single-model uncertainties for deep learning. In Proceedings of
NeurIPS 2019, pages 6414–6425, 2019.

A. Tsanas and A. Xifara. Accurate quantitative estimation of energy performance of residential
buildings using statistical machine learning tools. Energy and Buildings, 49:560–567, 2012.

S. Wang and M. Gupta. Deontological ethics by monotonicity shape constraints. In Proceedings of
AISTATS 2020, pages 2043–2054, 2020.

P. Wang, Y. Li, and C. K. Reddy. Machine learning for survival analysis: A survey. ACM Computing
Surveys, 51(6):1–36, 2019.

I.-C. Yeh. Modeling of strength of high performance concrete using artificial neural networks. Cement
and Concrete Research, 28(12):1797–1808, 1998.

S. You, D. Ding, K. Canini, J. Pfeifer, and M. R. Gupta. Deep lattice networks and partial monotonic
functions. In Proceedings of NIPS 2017, pages 2985–2993, 2017.

P. Zheng, S. Yuan, and X. Wu. Safe: A neural survival analysis model for fraud early detection. In
Proceedings of AAAI-19, pages 1278–1285, 2019.

F. Zhou, J. Wang, and X. Feng. Non-crossing quantile regression for deep reinforcement learning. In
Proceedings of NeurIPS 2020, pages 15909–15919, 2020.

12

	Introduction
	Partially Monotone Regression
	Hierarchical Lattice Layer
	Key Idea of HLL
	Hierarchical Relationship between Vertices
	Auxiliary Neural Network
	Inference and Training Algorithms
	Partial Monotonicity
	Complexity Analysis

	Experiments
	Neural Network Models
	Real Datasets
	Experimental Results

	Related Work
	Conclusion

