
A Technical Lemmata

Proof of Lemma 1. We simply exihibit the proof for E = L2
ω(M, TM). Indeed, let f ∈

L2
ω(M, TM), then:

∥Lϕf∥2 =

∫
g(Lϕf, Lϕf)dω (10)

=

∫
supp(ϕ)

g(Lϕf, Lϕf)dω +

∫
M\supp(ϕ)

g(Lϕf, Lϕf)dω (11)

=

∫
ϕ(supp(ϕ))

g(dϕ−1.f, dϕ−1.f) det(Jϕ−1)dω′ +

∫
M\supp(ϕ)

g(f, f)dω (12)

≤
∫

supp(ϕ)
g(f, f)∥dϕ−1∥2 det(Jϕ−1)dω′ + ∥f∥2 (13)

≤ ( sup
ω∈supp(ϕ)

∥dϕ−1(ω)∥2(d+1) + 1)∥f∥2 <∞ (14)

(15)

Thus, Lϕ is bounded.

A.1 A remark on the Flowbox theorem

Usually, the Flowbox Theorem (here Theorem 4) is stated for a (often local) diffeomorphism.
If c(m) ̸= 0, c̃(m) ̸= 0, then there exists U, V and ϕ : U → V a diffeomorphism such that
m ∈ U ∩ V and Lϕ(1Uc) = 1V c̃. However, we note that thanks to Theorem 4 of [29], it is
possible to find Ũ smaller such that there exists ϕ̃ : M → M which is a global diffeomorphism and
∀m ∈ Ũ , ϕ̃(m) = ϕ(m). In this case, ϕ̃, Ũ and Ṽ = ϕ̃(Ũ) are the candidates of our statement in
Theorem 4. As this is quite technical and rather intuitive, we skipped this remark in the main paper.

A.2 Spatial localization (common to the scalar and vector case)

We now explain how to localize our operator M . Equipped with Lemma 2, we can extend our
contraction result on Rd to M as follow:
Corollary 1 (Contraction of an openset). For any U ∈ O1 and W openset such that Ū ⊂W ⊂ M,
there exists ϕn supported on W such that for any f ∈ Lpω(M, TM):

Lϕn(1Uf) → 0 .

Proof. We prove first the result for U = B(0, 1) and Ū ⊂W . In this case, it is possible to find ϵ > 0
such that B(0, 1 + ϵ) ⊂W . Now, taking ϕ−1

n as in Lemma 2, we get:∫
Rd

∥Lϕn(1B(0, 1)f)(u)∥p du =

∫
Rd

∥1B(0, 1)(ϕ−1
n (u))dϕn(u).f(ϕ

−1
n (u))∥p du (16)

=

∫
Rd

∥1B(0, 1n )(u)dϕn(u).f(nu)∥p du (17)

=
1

nd

∫
Rd

1B(0,1)(u)∥dϕn(
u

n
).f(u)∥p du (18)

≤ 1

nd+1
∥1B(0,1)f∥p → 0 (19)

Next, getting back to the manifold, we know that if U ∈ Ȯ1, there is V ∈ O1 such that Ū ⊂ V . We
can thus find an openset B ⊂ V , such that in the chart of V , B is an open ball, and U ⊂ B ⊂ W .
We can thus apply the technique derived above to get ϕn : V → V , compactly supported, which
contracts B(and thus U ) to 0 and supported in W . Since it is smooth, compactly supported on W , we
can extend it on M and we get the result.

Next, this technique can be used to build a sequence of contraction, which allows to explicitly localize
the image of a compactly supported function, as follow:
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Lemma 9 ( Lemma 3 restated for closed sets). Let F ⊂ M a closed set. Then, for any f ∈
Lpω(M,R), we have:

M [f1F ] = 1FM [f ]

Proof. Because M is a manifold, it is second countable and thus there is a countable collection of
opens such that M\F = ∪i≥0Ui with Ui ∈ O1. We use Lemma 12 and, we apply the dominated
convergence theorem to fn = 1∪i≤nUif to conclude.

Proof of Lemma 3. We note that if U ∈ Ȯ1, then ω(Ū\U) = 0 and we can thus use the Corollary 1
to conclude.

A.3 Action on locally constant functions, for the scalar and vector cases

We now prove the part specific to the vector field setting, i.e., that the action of M is locally a
multiplication by a scalar.

Proof of Lemma 4. Step 1:M(1Uc)(m) = 1V λ(m,U, c)c such that c(m) ̸= 0,∀m ∈ U .

Let c ∈ C∞
c (M, TM). For U ∈ Ȯ1, m0 ∈ U , fix a chart ψ : U → Rd, ψ(m0) = 0 and c is constant

in ψ denoted cψ ∈ Rd, which is possible thanks to the Theorem 4. This can also be written as for m
in a neighborhood of m0:

dψ(m).c(m) = cψ .

Following the strategy in Lemma 8,there is W ∈ Od such that Wcψ = cψ and Wv = −v for any
vector v orthogonal to cψ . By compacity, we can find A an open set small enough, with boundary of
measure 0, such that 0 ∈ A, and WA ⊂ ψ(U) for any W ∈ Od. Now, setting ϕ̃ = ψ−1 ◦W ◦ ψ,
which is well defined on the open ∪W∈OdWA, using Theorem 4 of [29](see remark Sec. A.1 of the
appendix), we can can extend ϕ globally such that on a local neighborhood, ∀m ∈ Ũ , ϕ(m) = ϕ̃(m).
Now, up to taking A even smaller, we can use: V = ψ−1(∪n∈ZWnA) ⊂ U , which is closed with a
measure 0 boundary(we have a countable union). We get:

Lϕ(1V c)(m0) = [dψ−1(m0) ◦W ◦ dψ(m0)]c(m0)1V (20)
= 1V c(m0) . (21)

Let us denote p⊥cψ the orthogonal projection (with respect to the Euclidean scalar product) on the
orthogonal plane to cψ .

As V ⊂ U , V is closed and U ∈ Ȯ1 from Lemma 9, we know that:

M(c)(m0) =M(1Uc)(m0) =M(1V c)(m0) = λ(m0, c, U)dψ−1(0)cψ+dψ−1(0)p⊥cψM(1V c)(m0)

Yet, on the other hand:

LϕM(1V c)(m0) = λ(m0, c, U)dψ−1(0)cψ − dψ−1(0)p⊥cψM(1V c)(m0) (22)

As this is true for any m0, we thus proved that:

M(1Uc)(m) = 1Uλ(m,U, c)c

Step 2: In fact, λ(m, c, U) = λ(m,U) if c does not cancel on U and m ∈ U .

Let c, c̃ be two vector fields as above and defined on U both not equal to 0, and m ∈ U . Using the
Theorem 4 combined with the remark of Sec. A.1 of the appendix, there exists ϕ : M → M a
diffeomorphism and Ṽ , V ⊂ U and m ∈ Ṽ ∩ V , such that Lϕ(1V c(m)) = 1Ṽ c̃(m) and ϕ(m) = m
Now, we could take a smaller closed set V ⊂ U with measure 0 boundary, so that M [1V c](m) =
M [1Uc](m) =M [c](m), which would lead to, following a similar argument to above:

λ(m, c̃, U)c̃(m) =M [1Ṽ c̃(m)] = LϕM [1V c](m) = Lϕ(λ(., c, U)c)(m) = λ(m, c, U)c̃(m)

and then locally λ is independent of the choice of a vector field, which implies the desired property.
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Step 3: In fact, λ(m,U) = λ(U). Indeed, let m,m0 ∈ V and ϕ ∈ Diff(M) such that ϕ(m) = m0

(as V is connex, by using Lemma 11). Now, along the same line as above:

λ(m,U) = λ(m0, U)

The previous results hold when the vector field can be locally straightened, however the vector
fields that take value 0 on some points of U can not be straightened. We will now show that vector
fields that can be straightened on U ∈ Ȯ1 are dense dense in C∞(U, TU) for the Lpω norm. Let
f ∈ C∞(U, TU), let A = {x ∈ U |f(x) = 0}, and Aϵ = {x ∈ U |∥f(x)∥ ≤ ϵ} for ϵ > 0. By
Urysohn’s lemma there is χϵ : U → R be such that χ|Aϵ = 1 and χ|U\A2ϵ = 0. Let,

f ϵ = f + 2ϵχϵ

For any x ∈ U ,

∥f ϵ(x)∥ ≥ |∥f(x)∥ − 2ϵχϵ(x)| (23)

and by construction |∥f(x)∥ − 2ϵχϵ(x)| > 0.

Therefore,

M [f ϵ1U ] = λ(U)f ϵ (24)

Furthermore for all 0 < ϵ ≤ 1, ∥f ϵ∥ is bounded by ∥f∥ + 2 that is integrable, so by dominated

convergence theorem, f ϵ
Lpω−→
ϵ→0

f . So, M [f1U ] = λ(U)f .

To end the proof, one remarks that C∞
c (M, TM) is dense in Lpω(M, TM).

The next Lemma shows that, in the scalar case, we can consider M̃f ≜ Mf − M(0) for f ∈
Lpω(M,R) without losing in generality.

Lemma 10. Under the assumptions of Theorem 1, M(0) is constant, and if ω(M) = ∞, then
M(0) = 0.

Proof. Following the Theorem 1 of [26], for any m,m0 ∈ M, we can find ϕ global diffeomorphism
such that ϕ(m) = m0. We note that Lϕ(0) = 0 and thus for any m ∈ M:

M(0)(m) =M [Lϕ(0)] = LϕM(0)(m) =M(0)(m0)

Thus, M(0) is constant, and if ω(M) = ∞, it is necessary that M(0) = 0.

The corresponding Lemma in the scalar case is substantially simpler, as strongly convex sets are
connex:

Proof of Lemma 5. Fix m0 ∈ V , and let m ∈ V , using Lemma 11(because V ∈ Ȯ1 is connex, we
can apply a connexity argument or the transitivity argument of Theorem 1 of [26] for compactly
supported diffeomorphisms), we can find ϕ supported in V such that ϕ(m0) = m. Thus, Lϕf = f
and Mf(m0) = MLϕf(m0) = LϕMf(m0) = Mf(m). Thus, M(c1V ) = h(c, V )1V . The
Lipschitz aspect is inherited from the fact that M is Lipschitz.

A.4 Extrapolation to any good open sets (common to the scalar and vector case)

In this section, we use the fact that we want to prove that both scalar and vector operators correspond
to point-wise non-linearity, which are locally Lipschitz due to the regularity assumptions that we
used.
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Proof of Proposition 1. Step 1:Fix c, for any m ∈ U such that V ⊂ U , then h(c, U)(m) =
h(c, V )(m)

Indeed, we note that for m ∈ U , where we used Lemma 3:

M(1V f)(m) = 1V (m)M(f)(m) = 1U (m)M(f)(m) =M(1Uf)(m)

Thus, h(c, V )|V = h(c, U)|V for any V ⊂ U .

Step 2: extension by density, for any f , M(f1U ) = 1Uh(f, U) for any f ∈ Lpω(M,R). Using
Lemma 7, consider f ∈ C∞

c (E), fn =
∑
n 1Uncn, where cn is either a constant scalar, either a vector

field, with disjoint support such that ∥1Uf − 1Ufn∥ < ϵ.

We know that, from Lemma 6 that:

M(1Ufn) =M [
∑
n

1Uncn] =
∑
n

1UnM [1Uncn] =
∑
n

1Unh(cn, U)

Next, we note that:

∥M1Uf − 1Uh(f, U)∥ ≤ ∥1U (Mfn −Mf)∥+ ∥1UMfn − 1Uh(fn, U)∥ (25)
+ ∥1U (h(fn, U)− h(f, U))∥ (26)
≤ 2L∥1U (fn − f)∥ (27)

and from this, given that h(., U) is L-Lipschitz, we conclude by density of C∞
c (M) in Lpω(M,R).

Step 3: Independence from U

Step 1 allows for the following definition of a global h from local hU : let m ∈ M, pose,

∀U ∈ Ȯ1 h(f(m)) := h(f(m), U) (28)

In the scalar case and in the vector case, one can build a scalar function and vector function such that,
f(m) = µ ∈ R or f(m) = c ∈ TxM (as shown in Step 3 of proof of 4). Therefore in the scalar case
h is a function from R to R and in the vector case for any x ∈ M and v ∈ TxM, h(x) = λx.

We only prove the Vitali version for Lpω(M,R), as the proof for Lpω(M, TM) would be identical,
replacing solely the scalar by constant vector fields in their local parametrization.

Proof of Lemma 7. We consider U small enough such that U ∈ Ȯ1, m ∈ U and expm : B → U
is locally a diffeomorphism from B ⊂ TMm, and let Ui = expm(Bi) with B(xi, ri) ⊂ B, which
is strongly convex and thus Ui ∈ Ȯ1. We remind that expm is bi-Lipschitz on the bounded
set U . In this case, there is C1, C2 > 0 such that for any xi, ri with B(xi, ri) ⊂ B, we have
rdi ≤ λ(B(xi, ri)) ≤ C1ω(Ui) ≤ C2λ(B(xi, ri)) ≤ Cdr

d. By Vitali’s lemma, we have for any
ϵ > 0 and r > 0, the existence of some xi, ri < r:

∥1B −
n∑
i=1

1B(xi,ri)∥
p ≤ ϵp

For f smooth, let:

∥f(x)1U −
n∑
i=1

f(xi)1Ui∥p ≤ ∥
n∑
i=1

(f(x)− f(xi))1Ui∥p + ∥1U\(∪iUi)f(x)∥
p (29)
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Now, as expm is bi-Lipschitz, we get a r small enough such that |f(x)− f(xi)| < ϵ. Next, because
the sets are disjoint:

∥
n∑
i=1

(f(x)− f(xi))1Ui∥p =
n∑
i=1

∫
Ui

|f(x)− f(xi)|p (30)

≤
n∑
i=1

ω(Ui)ϵ
p (31)

≤ ϵpω(U)) . (32)

Now, using |f(x)| ≤ ∥f∥∞, we get:

∥1U\(∪iUi)f(x)∥
p ≤ ∥f∥∞ϵp

And:

∥f −
n∑
i=1

f(xi)1Ui∥ < (1 + ω(U))1/pϵ .

The following Lemma allows to build diffeomorphism with compact support - we give this proof for
the sake of completeness, at it is proved in [26].
Lemma 11. Fix ρ > 0, and x0, x1 ∈ B(0, ρ), there exists ϕ diffeomorphism, such that ϕ(x0) = x1
and supp(ϕ) ⊂ B(0, ρ).

Proof. Consider f , smooth, supported in [−1, 1] and such that f(0) = 1. We will use a connexity
argument: let us fix x0 ∈ B(0, ρ). Let’s consider Γ = {x ∈ B(0, ρ) : ∃ϕ diffeomorphism ϕ(x) =
x0, supp(ϕ) ⊂ B(0, ρ)}. Let x1 ∈ Γ, then there is η < 1

2 , B(x1, η) ⊂ B(0, ρ). For x2 such that
∥x1 − x2∥ ≤ η

4 sup |f ′| , we introduce:

τ(x) = (x2 − x1)f(
∥x− x1∥2

η2
) .

We have that supp(I− τ) ⊂ B(x1, η), and:

∂τ

∂x
(x) = 2

(x2 − x1)⟨x− x1, x1⟩
η2

f ′(
∥x− x1∥2

η2
)

leading to:

∥∂τ
∂x

(x)∥ < 1

2
This implies that the spectrum of ∂τ is in [0, 1[ and thus, I− ∂τ is invertible. Now, by assumption,
we know there is ϕ such that ϕ(x1) = x0, compactly supported in Ω. Introducing ϕ′ = ϕ ◦ (I− τ),
then ϕ′ is a diffeomorphism, compactly supported in Ω and ϕ′(x2) = ϕ(x1) = x, thus x2 ∈ Γ. This
shows Γ is open. But also Γ is closed (otherwiwe, we can make a path ...). Thus, by connexity
Γ = Ω.

The next Lemma is crucial in our proof, and allows to characterize union of well behaving opensets:

Lemma 12. Let n ≥ 0, {Ui}i≤n ⊂ Ȯ1 and F a closed set such that Ūi ∩ F = ∅,∀i. Then for any
f ∈ Lpω(M, TM):

1FM [(1F + 1∪i≤nUi)f ] = 1FM [1F f ]

Proof. We work by induction on n. For n = 0, the result is true. Then, let’s write U ϵn+1 =

{x, d(Un+1, x) < ϵ}. It’s an openset which contains Ūn+1, and by assumption we can pick ϵ small
enough such that U ϵn+1 ∩ F = ∅. Next, let’s apply Corollary 1 to Un+1 and W = U ϵn+1. Then:

1FM [(1F + 1(∪i≤nUi\Uϵn+1)∪Un+1
)f ] = Lϕn1FM [(1F + 1(∪i≤nUi\Uϵn+1)∪Un+1

)f ] (33)

= 1FM [Lϕn(1F f + 1(∪i≤nUi\Uϵn+1)∪Un+1
f)] (34)

→ 1FM [1F f + 1(∪i≤nUi\Uϵn+1)
f ] (35)
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Now, we remark that:

1FM [1F f + 1(∪i≤nUi\Uϵn+1)
f ] = 1FM [1F f + 1∪i≤nUi(1M\Uϵn+1

f)] (36)

And we apply the induction hypothesis to (1M\Uϵn+1
f).

The next Lemma is crucial in our proof, and allows to characterize disjoint union of well behaving
opensets:

Proof of lemma 6. We note that ∪ni=1Ui = ∪ni=1Ui. Thus, using Lemma 9, given this union is closed
and disjoint and as for any closed set F ,

M [f1F ]1F c =M [0]1F c = 0 (37)

the following linearity property holds,

M [

n∑
i=1

1Ūif ] =

n∑
i=1

1ŪiM [f ] =

n∑
i=1

M [1Ūif ]

Now, we conclude as the boundaries have measure 0.
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