
A Notation and preliminaries

We introduce notation and preliminary results regarding finite differences, Sobolev spaces, the Legen-
dre basis, the Fourier basis, trigonometric polynomial interpolation and neural network approximation
theory.

A.1 Overview of used notation

Table 1: Glossary of used notation.
Symbol Description Page

� tanh activation function
d spatial dimension of domain
Td periodic torus, identified with [0, 2⇡)d

D general d-dimensional spatial domain p. 2
⌦ general domain, either ⌦ = D or ⌦ = [0, T]⇥D p. 2
@⌦ boundary of ⌦
H function space of PDE solution p. 2
Y function space of parameters for L, e.g. La with a 2 Y p. 2
Z function space of initial conditions for the PDE (2.1) p. 2
X input function space of the operator G p. 2
G operator of interest, G : X ! L2(⌦) p. 2
L, La differential operator that describes the PDE (with parameter a) p. 2
r, s regularity of the PDE solution, u 2 Cr(D) or u 2 C(s,r)([0, T]⇥D) p. 3
D(k,↵) D(k,↵) := Dk

t
D↵

x
:= @k

t
@↵1
x1

. . . @↵d
xd

, for (k,↵) 2 Nd+1
0 p. 5

` upper bound on k↵k1 p. 5
q see Assumption 3.1 p. 4
p see Assumption 3.6 p. 5
poly(d) a polynomial in d p. 5
Cr

0 subset of Cr functions with compact support
�↵,r

h
finite difference operator; if the variable is time: �↵,s

h,t
p. 15

JN grid point indices, JN = {0, . . . , 2N}d p. 16
KN Fourier wavenumbers KN = {k 2 Zd | |k|1  N}
L2 Space of square-integrable functions
Hs Sobolev space of smoothness s, with norm k · kHs p. 16
L2
N

L2
N
⇢ L2 trigonometric polynomials of degree  N p. 17

A.2 Finite differences

For h > 0, ↵ 2 Nd

0, r 2 N and ` := k↵k1, we define a finite difference operator �↵,r

h
as,

�↵,r

h
[f](t, x) =

X

j

c↵,r

j
f(t, x+ hb↵,r

j
), (A.1)

for f 2 Cr+`(Rd), where the number of non-zero terms in the summation can be chosen to be finite
and only dependent on ` and r and where the choice of b↵,r

j
2 Rd allows to approximate D↵

x
f up to

accuracy O(hr). This means that for any f 2 Cr+`(Rd) it holds for all x that,
���h�` ·�↵,r

h
[f](t, x)�D↵

x
f(t, x)

���  c`,r
��f(t, ·)

��
Cr+`h

r for h > 0, (A.2)

where c`,r > 0 does not depend on f and h. Similarly, we can define a finite difference operator
�k,s

h,t
[f](t, x) to approximate Dk

t
f(t, x) to accuracy O(hs).

15

A.3 Sobolev spaces

Let d 2 N, k 2 N0, 1  p  1 and let ⌦ ✓ Rd be open. For a function f : ⌦ ! R and a
(multi-)index ↵ 2 Nd

0 we denote by

D↵f =
@|↵|f

@x↵1
1 · · · @x↵d

d

(A.3)

the classical or distributional (i.e. weak) derivative of f . We denote by Lp(⌦) the usual Lebesgue
space and for we define the Sobolev space W k,p(⌦) as

W k,p(⌦) = {f 2 Lp(⌦) : D↵f 2 Lp(⌦) for all ↵ 2 Nd

0 with |↵|  k}. (A.4)

For p <1, we define the following seminorms on W k,p(⌦),

|f |
Wm,p(⌦) =

0

@
X

|↵|=m

kD↵fkp
Lp(⌦)

1

A
1/p

for m = 0, . . . , k, (A.5)

and for p =1 we define
|f |

Wm,1(⌦) = max
|↵|=m

kD↵fk
L1(⌦) for m = 0, . . . , k. (A.6)

Based on these seminorms, we can define the following norm for p <1,

kfk
Wk,p(⌦) =

0

@
kX

m=0

|f |p
Wm,p(⌦)

1

A
1/p

, (A.7)

and for p =1 we define the norm
kfk

Wk,1(⌦) = max
0mk

|f |
Wm,1(⌦). (A.8)

The space W k,p(⌦) equipped with the norm k·k
Wk,p(⌦) is a Banach space.

We denote by Ck(⌦) the space of functions that are k times continuously differentiable and equip
this space with the norm kfk

Ck(⌦) = kfkWk,1(⌦).

Lemma A.1 (Continuous Sobolev embedding). Let d, ` 2 N and let k � d/2 + `. Then there exists

a constant C > 0 such that for any f 2 Hk(Td) it holds that

kfk
C`(Td)  Ckfk

Hk(Td). (A.9)

A.4 Notation for Legendre basis

In a one-dimensional setting, we denote for j 2 N0 the j-th Legendre polynomial by Lj . Following
the notation of [64], it holds that Lj(x) =

P
`

j=0 c
j

`
x` where, with m(`) := (j � `)/2,

cj
`
=

(
0 j � `{0, . . . , j} [(2Z+ 1),
(�1)m2�j

�
j

m

��
j+`

j

�p
2j + 1 j � `{0, . . . , j} [2Z, (A.10)

where each polynomial is normalized in L2([�1, 1],�/2), where � is the Lebesgue measure. Simi-
larly, the tensorized Legendre polynomials,

L⌫(x) =
dY

j=1

L⌫j (xj) for all ⌫ 2 Nd

0, (A.11)

constitute an orthonormal basis of L2([�1, 1]d,�/2d). By considering the lexicographic order on
Nd

0, of which we denote the enumeration by  : N! Nd

0, one can defined an ordered basis (Lj)j2N
by setting Lj := L(j).

From [64, eq. (2.19)] it also follows that,

8s 2 N0,⌫ 2 Nd

0 : kL⌫kCs([�1,1]d) 
dY

j=1

(1 + 2⌫j)
1/2+2s. (A.12)

16

A.5 Notation for Standard Fourier basis

Using the notation from [43], we introduce the following “standard” real Fourier basis {e}2Zd in d
dimensions. For  = (1, . . . ,d) 2 Zd, we let �() be the sign of the first non-zero component of
 and we define

e := C

8
><

>:

1, �() = 0,
cos
�
h, xi

�
, �() = 1,

sin
�
h, xi

�
, �() = �1,

(A.13)

where the factor C > 0 ensures that e is properly normalized, i.e. that kekL2(Td) = 1. Next, let
 : N ! Zd be a fixed enumeration of Zd, with the property that j 7! |(j)|1 is monotonically
increasing, i.e. such that j  j0 implies that |(j)|1  |(j0)|1. This will allow us to introduce an
N-indexed version of the Fourier basis,

ej(x) := e(j)(x), 8j 2 N. (A.14)

Finally we note that
kekCs([0,2⇡]d)  kk

s

1. (A.15)

A.6 Trigonometric polynomial interpolation

For N 2 N, let xj =
2⇡j

2N+1 and let yj 2 R for all j 2 JN = {0, . . . , 2N + 1}d. We will construct
an operator

QN : R|JN | ! L2(Td) : y 7! QN (y), (A.16)
where QN (y) is a trigonometric polynomial of degree at most N such that QN (y)(xj) = yj for
all j 2 JN . We construct this polynomial using the discrete Fourier transform and its inverse. For
k 2 KN = {�N, . . . , N}d, we define the discrete Fourier transform as,

Xk(y) =
X

j2JN

yj exp
�
�ihk, xji

�
, (A.17)

and the trigonometric interpolation polynomial as,

QN (y)(z) =
1

|KN |
X

k2KN

Xk(y) exp
�
ihk, zi

�

=
1

|KN |
X

k2KN

X

j2JN

yj cos
�
hk, z � xji

�

=
1

|KN |
X

k2KN

X

j2JN

yj
⇣
cos
�
hk, xji

�
cos
�
hk, zi

�
� sin

�
hk, xji

�
sin
�
hk, zi

�⌘

=
1

|KN |
X

k2KN

X

j2JN

yjak,jek(z),

(A.18)

where,

ak,j =

8
><

>:

1, �(k) = 0,
cos
�
hk, xji

�
, �(k) = 1,

sin
�
hk, xji

�
, �(k) = �1,

(A.19)

with � as in SM A.5. We can also define an encoder EN by,

EN : C(Td)! R|JN | : f 7! (f(xj))j2JN . (A.20)

The composition QN � EN is called the pseudo-spectral projection onto the space of trigonometric
polynomials of degree at most N and has the following property [38].
Lemma A.2. For s, k 2 N0 with s > d/2 and s � k, and f 2 Cs(Td) it holds that

��f � (QN � EN)(f)
��
Hk(Td)

 C(s, d)N�(s�k)kfk
Hs(Td), (A.21)

for a constant C(s, d) > 0 that only depends on s and d.

17

A.7 Neural network approximation theory

We recall some basic results on the approximation of functions by tanh neural networks in this section.
All results are adaptations from results in [15]. The following two lemmas address the approximation
of univariate monomials and the multiplication operator.
Lemma A.3 (Approximation of univariate monomials, Lemma 3.2 in [15]). Let k 2 N0, s 2 2N� 1,

M > 0 and define fp : [�M,M] ! R : x 7! xp
for all p 2 N. For every " > 0, there exists a

shallow tanh neural network s," : [�M,M]! Rs
of width

3(s+1)
2 such that

max
ps

��fp � (s,")p
��
Wk,1  ". (A.22)

Lemma A.4 (Shallow approximation of multiplication of d numbers, Corollary 3.7 in [15]). Let

d 2 N, k 2 N0 and M > 0. Then for every " > 0, there exist a shallow tanh neural network

b⇥"

d
: [�M,M]d ! R of width 3

l
d+1
2

m ��Pd,d

�� (or 4 if d = 2) such that

������
b⇥"

d
(x)�

dY

i=1

xi

������
Wk,1

 ". (A.23)

B Additional material for Section 3

B.1 Auxiliary results for Section 3

Lemma B.1. Let q 2 [1,1], r, ` 2 N with `  r and f1, f2 2 C(0,r)([0, T]⇥D). If Assumption 3.3

holds then there exists a constant C(r) > 0 such that for any ↵ 2 Nd

0 with ` := k↵k1 it holds that
��D↵

x
(f1 � f2)

��
Lq  C(kf1 � f2kLqh�` + max

j=1,2

��fj
��
C(0,r)h

r�`) 8h > 0. (B.1)

Proof. From the triangle inequality and (A.2) the existence of a constant C(r) > 0 follows such that,
��D↵

x
(f1 � f2)

��
Lq  max

j=1,2

���D↵fj � h�` ·�↵,r

h
[fj]
���
Lq

+ C(r)h�`kf1 � f2kLq

 c`,r max
j=1,2

��fj
��
C(0,r)h

r�` + C(r)h�`kf1 � f2kLq .

Lemma B.2. Using the notation of the proof of Theorem 3.5 (SM B.2), it holds that���D(k,↵)(eu� bu)
���
C0
 �. (B.2)

Proof. Using the Faà di Bruno formula [12] and its consequences for estimating the norms of deriva-
tives of compositions [15, Lemma A.7] one can prove for sufficiently regular functions g1, g2, h1, h2

and a suitable multi-index � estimates of the form,���D�(g1 � h1 � g2 � h2)
���
C0
 C(kg1 � g2kCk�k1 + kh1 � h2kCk�k1), (B.3)

assuming that the compositions are well-defined and where the constant C > 0 may depend on
g1, g2, h1, h2 and their derivatives. Using this theorem we can prove that������

D(k,↵)bu�D(k,↵)
MX

m=1

s�1X

i=0

�i,s�i

1/M,t
[bu"

m
](tm, x)

M�ii!
· b'�

i
(t� tm) · �M

m
(t)

������
< C�. (B.4)

Because the size of the neural network b⇥� in the definition of bu does not depend on its accuracy �
(see Lemma A.4) we can rescale � and therefore set C = 1/2 in the above inequality.

Next, we observe that,

D(k,↵)
MX

m=1

s�1X

i=0

�i,s�i

1/M,t
[bu"

m
](tm, x)

M�ii!
· (b'�

i
� 'i)(t� tm) · �M

m
(t)

=
MX

m=1

s�1X

i=0

�i,s�i

1/M,t
[D↵

x
bu"

m
](tm, x)

M�ii!
·

kX

n=0

✓
k

n

◆
@n
t
(b'�

i
� 'i)(t� tm) · @k�n

t
�M

m
(t)

(B.5)

18

Analogously to before, because the sizes of the neural networks b'�

i
are independent of their accuracy

� we can rescale � such that k(B.5)k
C0  �/2. The claim follows by the triangle inequality,

���D(k,↵)(eu� bu)
���
C0
 k(B.4)k

C0 + k(B.5)k
C0  �. (B.6)

Lemma B.3. Let �k,s

h,t
be a finite difference operator cf. Section 3.3 and SM A.2, let 1  j  d, let

1  q  1, let ` 2 N0 and let ↵ 2 Nd

0 with k↵k1 = `. Let u, bu 2 C(s,`)([�2h, 2h]⇥D) such that

for all t 2 [�2h, 2h],
��D↵

x
(u(t, ·)� bu(t, ·))

��
Lq(D)

 ". (B.7)

Then there exists cs > 0 holds that,

������
Dk,↵

0

@
s�1X

i=0

�i,s�i

h,t
[bu](0, x)
hii!

ti � u(t, ·)

1

A

������
Lq

 cs
⇣
"h�k + |D↵

x
u|

C(s,0)hs�k

⌘
. (B.8)

Proof. Let t 2 [�2h, 2h], ↵ 2 Nd

0 with k↵k1 = ` and x 2 Rd be arbitrary. We first observe that,

Dk,↵
s�1X

i=0

�i,s�i

h,t
[u](0, x)

hii!
ti =

s�1X

i=k

�i,s�i

h,t
[D↵

x
u](0, x)

hi(i� k)!
ti�k. (B.9)

Taylor’s theorem then guarantees the existence of ⇠t,x 2 [�2h, 2h] such that

Dk,↵

0

@
s�1X

i=0

�i,s�i

h,t
[u](0, x)

hii!
ti � u(t, ·)

1

A

=
s�1�kX

i=0

2

4�
i+k,s�i�k

h,t
[D↵

x
u](0, x)

hi+ki!
ti � Di+k,↵u(0, x)

i!
ti

3

5+
Ds,↵u(⇠t,x, x)

(s� k)!
ts�k.

(B.10)

Now observe that because of assumption (B.7) and the definition and properties (A.2) of the finite
difference operator, there exists a constant Cs > 0 such that,

����i+k,s�i�k

h,t
[D↵

x
bu](0, x)��i+k,s�i�k

h,t
[D↵

x
u](0, x)

���
Lq
 Cs",

������

�i+k,s�i�k

h,t
[D↵

x
u](0, x)

hi+k
�Di+k,↵u(0, x)

������
 Cs|D↵

x
u|

C(s,0)hr�i�k.
(B.11)

Combining all previous results provides us with the existence of a constant cs > 0 such that,
������
Dk,↵

0

@
s�1X

i=0

�i,s�i

h,t
[bu](0, x)
hii!

ti � u(t, ·)

1

A

������
Lq


s�1�kX

i=0


Cs"

hi+ki!
hi +

Cs

i!
|D↵

x
u|

C(s,0)hs�i�khi

�
+

1

(s� k)!
|D↵

x
u|

C(s,0)hs�k

 cs
⇣
"h�k + |D↵

x
u|

C(s,0)hs�k

⌘
.

(B.12)

19

Definition B.4. Let C > 0, N 2 N, 0 < " < 1 and ↵ = ln
�
CNk/"

�
. For every 1  j  N , we

define the function �N

j
: [0, T]! [0, 1] by

�N

1 (t) =
1

2
� 1

2
�

↵

✓
t� T

N

◆!
,

�N

j
(t) =

1

2
�

↵

✓
t� T (j � 1)

N

◆!
� 1

2
�

↵

✓
t� Tj

N

◆!
,

�N

N
(t) =

1

2
�

↵

✓
t� T (N � 1)

N

◆!
+

1

2
.

(B.13)

The functions {�N

j
}j approximate a partition of unity in the sense that for every j it holds on IN

j

that for some " > 0,

1�
1X

v=�1

�N

j+v
. " and

X

|v|�2,
j+v2{1,...,N}

�N

j+v
. ". (B.14)

This is made exact in [15, Section 4].
Theorem B.5. Let k 2 N [{0}, q 2 {2,1}, ⇠ > 0 and s 2 N. Let µ be a probability measure on

D and let f 2 Cs([0, T], Lq(µ)). Assume that for every 0  `  k there is a constant C⇤
`
> 0 for

which it holds that for every N 2 N there exist functions {pN
j
}N
j=1 that satisfy for all 1  j  N ,

���f � pN
j

���
C`(JN

j ,Lq(µ))
= max

t2
h

(j�2)T
N ,

(j+1)T
N

i

���D`

t
(f(t, ·)� pN

j
(t, ·))

���
Lq(µ)

 C⇤
`
N�s+` + ⇠.

(B.15)
Let Ck := max{max0`k C⇤

`
, kfk

Ck([0,T],Lq(µ)), 1}. There exists a constant C(k) > 0 that only

depends on k such that for all N � 3 it holds that,������
f �

NX

j=1

pN
j
· �N

j

������
Ck([0,T],Lq(µ))

 C lnk (N)


Ck

Ns�k
+ ⇠Nk

�
. (B.16)

Proof. We follow the proof of [15, Theorem 5.1]. All steps of the proofs are identical, with the
only difference being that the W k,1([0, 1]d)-norm of [15] is replaced by the Ck([0, T], L2(µ))-norm
in this work. Following [15], one divides the domain [0, T] into intervals IN

i
= [ti�1, ti], with

ti = iT/N and N 2 N large enough. On each of these intervals, f locally can be approximated (in
Sobolev norm) by pN

j
, by virtue of the assumptions of the theorem. A global approximation can

then be constructed by multiplying each pN
j

with an approximation of the indicator function of the
corresponding intervals and summing over all intervals.

We now highlight the main steps in the proof. Step 2a (as in [15]) results in the following estimate,������
f �

NX

j=1

f · �N

j

������
Ck(IN

i ,Lq(µ))

 Ckfk
Ck(IN

i ,Lq(µ))

0

@"+Nk+1 lnk

CNk

"

!
"

1

A . (B.17)

Step 2b results in the estimate,������

NX

j=1

(f � pN
j
) · �N,d

j

������
Ck(IN

i ,Lq(µ))

 C lnk

CNk

"

!
Ck

Ns�k
+ ⇠Nk + CkNk+1"

�
, (B.18)

Putting everything together, we find that if CNk � "e,������
f �

NX

j=1

pN
j
· �N

j

������
Ck([0,T],Lq(µ))

 C lnk

CNk

"

!
(kfk

Ck(IN
i ,Lq(µ)) + Ck)Nk+1"+

Ck
Ns�k

+ ⇠Nk

�
.

(B.19)

20

In particular, if we set Nk+1" = N�s+k and N � 3, then we find that
������
f �

NX

j=1

pN
j
· �N

j

������
Ck([0,T],Lq(µ))

 C lnk (N)

"
kfk

Ck(IN
i ,Lq(µ)) + Ck
Ns�k

+ ⇠Nk

#
. (B.20)

Lemma B.6. Let G✓ : X ! H be a tanh FNO with grid size N 2 N and let B > 0. For every " > 0,

there exists a tanh DeepONet G⇤
✓
: X ! H with Nd

sensors and Nd
branch and trunk nets such that

sup
kvkL1B

sup
x2Td

��G⇤
✓
(v)(x)� G✓(v)(x)

��  ". (B.21)

Furthermore, width(�) ⇠ Nd
, depth(�) ⇠ ln(N), width(⌧) ⇠ Nd(N + ln

�
N/"

�
) and

depth(⌧) = 3.

Proof. This is a consequence of [38, Theorem 36] and Lemma D.1 with " Nd".

B.2 Proof of Theorem 3.5

Proof. Step 1: construction. To define the approximation, we divide [0, T] into M subintervals
of the form [tm�1, tm], where tm = mT/M with 1  m  M . One could approximate u on
every subinterval by an s-th order accurate Taylor approximation around tm, provided that one
has access to Di

t
u(·, tm) for 0  i  s � 1. As those values are unknown, we resort to the finite

difference approximation Di

t
u(·, tm) ⇡ M i ·�i,s�i

1/M,t
[U"(u0, tm)], which is a neural network. See

SM A.2 for an overview of the notation for finite difference operators. Moreover, we replace the
univariate monomials 'i : [0, T] ! R : t 7! ti in the Taylor approximation by neural networks
b'�

i
: [0, T] ! R with k'i � b'�

i
kCk+1 . �. Lemma A.3 guarantees that the output of (b'�

i
)s�1
i=1 can

be obtained using a shallow network with width 2(s + 1) (independent of �). The multiplication
operator is replaced by a shallow neural network b⇥� : [�a, a]2 ! R (for suitable a > 0) for which
k ⇥ �b⇥�kCk+1 . �. By Lemma A.4 only four neurons are needed for this network. This results in
the following approximation for f 2 C0([0, T]⇥D),

bN �

m
[f](t, x) :=

s�1X

i=0

b⇥�

0

@
�i,s�i

1/M,t
[f](tm, x)

M�ii!
, b'�

i
(t� tm)

1

A 8t 2 [0, T], x 2 D, 1  m M.

(B.22)
Next, we patch together these individual approximations by (approximately) multiplying them with a
NN approximation of a partition of unity, denoted by �M

1 , . . . ,�M

M
: [0, T]! [0, 1], as introduced

in Definition B.4 in SM B. Every �M

m
can be thought of as a NN approximation of the indicator

function on [tm�1, tm]. For any ", � > 0, we then define our final neural network approximation
bu : [0, T]⇥D ! R as,

bu(t, x) :=
MX

m=1

b⇥�

⇣
bN �

m
[U"(u0, tm)](t, x),�M

m
(t)
⌘
8t 2 [0, T], x 2 D. (B.23)

Step 2: error estimate. In order to facilitate the proof, we introduce the intermediate approximations
eu : [0, T]⇥D ! R and Nm : C0(D)⇥ [0, T]⇥D ! R by,

eu(t, x) :=
MX

m=1

Nm[bu"

m
](t, x)·�M

m
(t) :=

MX

m=1

s�1X

i=0

�i,s�i

1/M,t
[bu"

m
](tm, x)

M�ii!
·'i(t�tm)·�M

m
(t), (B.24)

where bu"

m
= U"(u0, tm). Note that bu can be obtained from eu by replacing the multiplication operator

and the monomials by neural networks. Since these the size of these networks are independent of
their accuracy �, we can assume without loss of generality that kD(k,↵)(eu � bu)(t, ·)kLq  � (see
Lemma B.2) for any relevant D(k,↵) and t.

21

It remains to prove that D(k,↵)eu ⇡ D(k,↵)u. Combining the observation that D(k,↵)Nm[bu"

m
] =

Dk

t
Nm[D↵

x
bu"

m
] with Lemma B.3 lets us conclude that for all 0  k  s� 1 and t 2 [tm�2, tm+2],

���D(k,↵)(Nm[bu"

m
](t, ·)� u(t, ·))

���
Lq
 C(r)Mk(

��D↵
x
(bu"

m
� u)(·, tm)

��
Lq + |u|

C(s,`)M�s)

(B.25)
We use Theorem B.5 with f u, pN

j
 Nm[D↵

x
bu"

m
], ⇠ C(r)Mk

��D↵
x
(bu"

m
� u)(·, tm)

��
Lq ,

C⇤
`
 C(s)|u|

C(k,`) , N M to find that,
���D(k,↵)(bu� u)

���
Lq
 C lnk(M)(kuk

C(s,`)Mk�s +M2k
��D↵

x
(bu"

m
� u)(·, tm)

��
Lq), (B.26)

where C(r, s) > 0 only depend on r and s. Finally, using Lemma B.1 to bound��D↵
x
(bu"

m
� u)(·, tm)

��
Lq and combining this with Assumption 3.1 proves (3.4).

Step 3: size estimate. The following holds,

depth(bu)  Cdepth(U"),width(bu)  CMwidth(U"). (B.27)

B.3 Proof of Theorem 3.7

Proof. Step 1: construction. Let N 2 N, let EN : C0(T d) ! R|JN | be an encoder and
QN : R|JN | ! L2

N
be a trigonometric polynomial interpolation operator, cf. SM A.6. If we

let bG = U" � QN � EN then we can define an FNO G✓ : L2
N
(Td) ! L2

N
(Td) as G✓(u0)(x) =

(QN � EN � bG)(u0)(x).

Step 2: error estimate. We decompose the L2-error of the FNO using the triangle inequality and the
inequality kU" � bGkL2  C"

stabku0 �QN � EN � u0kLp , which follows from Assumption 3.6,

kG � G✓kL2  kG � U"k
L2 + C"

stabku0 �QN � EN � u0kLp + kbG � G✓kL2 . (B.28)

First, we find using a Sobolev embedding result (Lemma A.1) and Lemma A.2 that,
��u0 � (QN � EN)(u0)

��
Lp 

��u0 � (QN � EN)(u0)
��
Hd/p⇤  C(d, r)N�r+d/p

⇤
ku0kHr ,

(B.29)
where p⇤ is such that 1/p+ 1/p⇤ = 1/2. Next, we observe that for any u0 2 X with ku0kCr  B
that

��(QN � EN)(u0)
��
Hr(Td)

 CB =: B. Hence, by applying Lemma A.2 to the second and last
term of (B.28) we find that,

kG � G✓kL2  C("+ C"

stabBN�r+d/p
⇤
+ CB

",r
N�r). (B.30)

Step 3: size estimate. As for any FNO, the width is equal to Ndwidth(U"). The depth in this case
is equal to depth(U").

B.4 Proof of Theorem 3.10

Proof. Step 1: construction.

Let " > 0 and n,N 2 N. We first introduce some notation. Let JN = {0, . . . , 2N + 1}d,
KN = {�N, . . . , N}d, let {ej}j2N be an ordered Fourier basis, as described in SM A.5, and let
{bej}j2N be a neural network approximation of the same basis such that

max
k2KN

kek � bekkCr  ⌘, (B.31)

cf. Lemma D.1. Using notation from SM A.6, let QN : R|JN | ! C(Td) be the trigonometric
polynomial interpolation operator as in (A.18) and let EN : C(Td) ! R|JN | be the encoder as in
(A.20). We define

bQN : R|JN | ! C(Td) : y 7! 1

|KN |
X

k2KN

X

j2JN

yjak,jbek, (B.32)

22

with coefficients ak,j as in (A.19), as a neural network approximation of QN .

Inspired by the proof of Theorem 3.5 (and using its notation as well), we define bG : C(Td)! L2(µ)
by

bG(u0)(t, x) =
MX

m=1

s�1X

i=0

�i,s�i

1/M [U"(QZ � EZ � u0, tm)](tm, x)

M�ii!
· '�

i
(t� tm)�M

m
(t), (B.33)

Then it holds that

(QN � EN � bG)(u0)(t, x) =
X

k2KN

X

j2JN

MX

m=1

s�1X

i=0

ak,j
|KN |

�i,s�i

1/M [U"(QZ � EZ � u0, tm)](tm, xj)

M�ii!
· i,m,k(t, x)

 i,m,k(t, x) = '�

i
(t� tm)�M

m
(t)ek(x).

(B.34)

Now for every i,m, k let i,m,k : [0, T]⇥ Td ! R be defined as,

b i,m,k(t, x) = b⇥�

⇣
'�

i
(t� tm),�M

m
(t),bek(x)

⌘
, (B.35)

where b⇥� is a neural network approximation of the multiplication operator. We can then construct a
DeepONet as

G✓(u0)(t, x) =
pX

j=1

�j(u0)⌧j(t, x)

=
s�1X

i=0

MX

m=1

X

k2KN

2

4
X

j2JN

ak,j
|KN |

�i,s�i

1/M [U"(QZ � EZ � u0, tm)](tm, xj)

M�ii!

3

5 · b i,m,k(t, x).

(B.36)

We see that we need to set p = sM(2N + 1)d and that the trunk nets are given by ⌧j ⇠ b i,m,k, up
to a different indexing.

Step 2: error estimate. First we use Assumption 3.4 to see that
��L(G � G✓)

��
L2  C

X

k,↵

���D(k,↵)(G � G✓)
���
L2
. (B.37)

Next, we observe that using Assumption 3.1, Assumption 3.6 and (B.29) it holds that for all t,
��(U"(QZ � EZ � u0)� G(u0))(·, t)

��
L2  "+ C"

stabCBZ�r+d/p
⇤
. (B.38)

One can then use Theorem 3.5, but by replacing " by (B.38) in the error bound (3.4), to find that
���D(k,↵)(G � bG)

���
L2
 C lnk(M)(kuk

C(s,`)Mk�s+M2k(("+C"

stabZ
�r+d/p

⇤
)h�`+CCB

",`
hr�`))

(B.39)
Then, using the observation that D(k,↵)(Id�QN � EN)bG = D↵

x
(Id�QN � EN)Dk

t
bG we find that

���D(k,↵)(Id�QN � EN)bG(u0)
���
L2
 CN�(r�`)

���Dk

t
bG(u0)

���
Hr

, (B.40)

which can be combined with the estimate���Dk

t
bG(u0)

���
Hr
Ms�1 ·Mk lnk(M)

��U"(QZ � EZ � u0)
��
Hr Ms+k�1 lnk(M)CB

",r
, (B.41)

where we used that for u0 2 X with ku0kCr  B it holds
��(QN � EN)(u0)

��
Hr(Td)

 CB =: B.
Next, we make the rough estimate that,

���D(k,↵)(bQN �QN) � EN)bG(u0)
���
L2
 CNdMs+k�1 lnk(M)max

k

kek � bekkCr . (B.42)

Finally, using Lemma B.2 we find that
���D(k,↵)(bQN � EN � bG � G✓)(u0)

���
L2
 �. (B.43)

23

By setting ⌘ = N `�r�d, h = 1/N and using that M2k Mk+s�1 and CB

",`
 CB

",r
we find,

��L(G � G✓)
��
L2  C lnk(M)(kuk

C(s,`)Mk�s+Mk+s�1(("+C"

stabZ
�r+d/p

⇤
)N `+CB

",r
N `�r)).

(B.44)
We conclude by using that lnk(M)  CM⇢ for any ⇢ > 0.

Step 3: size estimate. It follows immediately that depth(�) = depth(U"), width(�) = O(M(Zd+
Ndwidth(U"))), depth(⌧) = 3 and width(⌧) = O(MNd(N + ln(N))).

B.5 Proof of Theorem 3.11

Proof. Define the random variable Y = EG(✓⇤(S))2�ET (✓⇤(S),S)2. Then if follows from equation
(4.8) in the proof of [16, Theorem 5] that

P(Y > "2) 
✓
2RL

"2

◆d⇥

exp

�2"4n
c2

!
, (B.45)

since P(Y > "2) = 1� P (A), where A is as defined in the proof of [16, Theorem 5]. It follows that

E[Y] = E[Y Y"2] + E[Y Y >"2]  "2 + cP
⇣
Y > "2

⌘
. (B.46)

Setting "2 = cP
�
Y > "2

�
leads to

E[Y]  2"2 =

vuut2c2

n
ln

c

"2

✓
2RL

"2

◆d⇥
!
. (B.47)

For " < 1, and using that ln(x) 
p
x for all x > 0, this equality implies that

"d⇥+1  2c3(2RL)d⇥/2

n
. (B.48)

Hence, we find that if n � 2c2e8/(2RL)d⇥/2 then "d⇥+1  ce�8(2RL)d⇥ which implies that
2

4ln

c

"2

✓
2RL

"2

◆d⇥
!3

5
�1/2

 1

2
p
2
. (B.49)

Using once more that "2 = cP
�
Y > "2

�
and (B.49) gives us,

E[Y] 

vuuuuut
2c2

n
ln

0

BB@c(2RL)d⇥

0

B@
p
2n

c

2

4ln

c

"2

✓
2RL

"2

◆d⇥
!3

5
�1/2

1

CA

d⇥+1
1

CCA


r

2c2

n
ln
�
(aL
p
n)d⇥+1

�
=

r
2c2(d⇥ + 1)

n
ln
�
aL
p
n
�
.

(B.50)

C Additional material for Section 4.1

C.1 Auxiliary results

Lemma C.1. Let " > 0, let (⌦,F ,P) be a probability space, and let X : ⌦ ! R be a random

variable that satisfies E
⇥
|X|
⇤
 ". Then it holds that P(|X|  ") > 0.

Proof. This result is [23, Proposition 3.3].

24

Lemma C.2. Let � 2 {0, 1}, � 2 [1,1), ↵0,↵1, x0, x1, x2, . . . 2 [0,1) satisfy for all k 2 N0 that

xk  N(k)(↵0 + ↵1k)�
k +

k�1X

l=0

(k � l)� �(k�l)
h
xl + xmax{l�1,0}

i
. (C.1)

Then it holds for all k 2 N0 that

xk 
(↵0 + ↵1)�k N(k)

(4 + �)1/2(1 + 2(1+�)/2)�k
=

8
<

:
N(k)(↵0 + ↵1)2�1(1 + 21/2)k�k : � = 0

N(k)(↵0 + ↵1)5�1/2(3�)k : � = 1.
(C.2)

Proof. This result is [33, Corollary 4.3].

Lemma C.3. Let ↵ 2 [1,1), x0, x1, . . . 2 [0,1) satisfy for all k 2 N0 that xk  ↵xk

k�1. Then it

holds for all k 2 N0 that

xk  ↵(k+1)!xk!
0 (C.3)

Proof. We provide a proof by induction. First of all, it is clear that x0  ↵x0. For the induction step,
assume that xk�1  ↵k!x(k�1)!

0 for an arbitrary k 2 N0. We calculate that

xk  ↵
⇣
↵k!x(k�1)!

0

⌘k
 ↵(k+1)!xk!

0 . (C.4)

This proves the statement.

Lemma C.4. Let ` 2 N, f 2 C`(R,R), h 2 C`(Td,R) and let B` denote the `-th Bell number.

Then it holds that

|f � h|
C`(R)  kfkC`(R)

⇣
B`khk`C`�1(Td) + |h|

C`(Td)

⌘
. (C.5)

Proof. Let ⇧ be the set of all partitions of the set {1, . . . , `}, let ↵ 2 Nd

0 such that k↵k1 = ` and
let ◆ : N` ! Nd be a map such that D↵ = @

`
Q`

j=1 x◆(j)
. Then the Faà di Bruno formula can be

reformulated as [12],

D↵f(h(x)) =
X

⇡2⇧

f (|⇡|)(h(x)) ·
Y

B2⇡

@|B|h(x)Q
j2B

@x◆(j)

=
X

⇡2⇧,

|⇡|�2

f (|⇡|)(h(x)) ·
Y

B2⇡

@|B|h(x)Q
j2B

@x◆(j)
+ f 0(h(x))D↵h(x).

(C.6)

Combining this formula with the definition of the Bell number as B` = |⇧|, we find the following
upper bound,

|f � h|
C`(R) 

X

⇡2⇧

kfk
C`(R)khk

`

C`�1(R) + kfkC1(R)|h|C`(R)

 kfk
C`(R)

⇣
B`khk`C`�1(R) + |h|

C`(R)

⌘
.

(C.7)

C.2 Proof of Theorem 4.2

Definition C.5. Let (⌦,F , µ) be a measure space and let q > 0. For every F/B(Rd)-measurable

function f : ⌦! d
, we define

kfkLq(µ,k·kRd)
:=

ˆ
⌦

��f(!)
��q
Rdµ(d!)

�1/q
. (C.8)

25

Let (⌦,F , P, (Ft)t2[0,T]) be a stochastic basis, D ✓ Rd a compact set and, for every x 2 D, let
Xx : ⌦ ⇥ [0, T] ! Rd be the solution, in the Itô sense, of the following stochastic differential
equation,

dXx

t
= µ(Xx

t
)dt+ �(Xx

t
)dBt, Xx

0 = x, x 2 D, t 2 [0, T], (C.9)
where Bt is a standard d-dimensional Brownian motion on (⌦,F , P, (Ft)t2[0,T]). The existence of
Xx is guaranteed by [3, Theorem 4.5.1].

As in [16, Theorem 3.3] we define ⇢d as

⇢d := max
x2D

sup
s,t2[0,T],

s<t

kXx

s
�Xx

t
kLq(P,k·kRd)

|s� t|
1
p

<1, (C.10)

where Xx is the solution, in the Itô sense, of the SDE (C.9), q > 2 is independent of d and
k·kLq(P,k·kRd)

is as in Definition C.5.

Lemma C.6. In Setting 4.1, Assumption 3.1 and Assumption 3.6 are satisfied with

��u(·, t)� U"(', t)
��
L2(µ)

 ", CB

",`
= CB · poly(d⇢d), C"

stab = 1, p =1, (C.11)

where t 2 [0, T] and ' 2 C2
0 (Rd). Moreover, there exists C⇤ > 0 (independent of d) for which it

holds that depth(U")  C⇤depth(b'") and {width, size}(U")  C⇤"�2{width, size}(b'").

Proof. It follows from the Feynman-Kac formula that u(t, x) = E
⇥
'(Xx

t
)
⇤

[62]. Replacing ' by a
neural network b'" with k'� b'"k

C0  " gives us for any probability measure µ that,
���E
⇥
'(Xx

t
)
⇤
� E

⇥
b'"(Xx

t
)
⇤���

L2(µ)
 k'� b'"k

C0 . (C.12)

Using [16, Lemma A.2] (which is based on [23]) we find,

E
⇥
(I)
⇤
:= E

2

664

0

B@
ˆ
D

������
E
⇥
b'"(Xx

t
)
⇤
� 1

m

mX

i=1

b'"(Xx

t
(!m))

������

2

µ(dx)

1

CA

1/2
3

775 
2kb'"k

C0p
m

. (C.13)

From [16, Lemma A.5], for all x 2 Rd, t 2 [0, T] and ! 2 ⌦ it holds that

Xx

t
(!) =

dX

i=1

⇣
Xei

t
(!)�X0

t
(!)
⌘
xi +X0

t
(!). (C.14)

Using this equality, together with Hölder’s inequality and the boundedness of kXx

t
k
Lp [16, Lemma

A.5] we find that,

E
⇥
(II↵)

⇤
:= E

2

664

0

B@
ˆ
D

������
E
⇥
D↵

x
b'"(Xx

t
)
⇤
� 1

m

mX

i=1

D↵
x
b'"(Xx

t
(!m))

������

2

µ(dx)

1

CA

1/2
3

775

 C · poly(d⇢d) · E

2

664

0

B@
ˆ
D

������
E
⇥
b'"(Xx

t
)
⇤
� 1

m

mX

i=1

b'"(Xx

t
(!m))

������

4

µ(dx)

1

CA

1/4
3

775

 CB · poly(d⇢d)
(C.15)

Combining the previous results gives us,

E

2

64
p
m · (I) +

X

k↵k1`

(II↵)

3

75  CB · poly(d⇢d). (C.16)

26

If we combine this with Lemma C.1 then we find the existence of (!⇤
i
)m
i=1 such that for

U"(', t)(x) =
1

m

mX

i=1

b'"

0

@
dX

i=1

⇣
Xei

t
(!⇤

i
)�X0

t
(!⇤

i
)
⌘
xi +X0

t
(!⇤

i
)

1

A (C.17)

it holds that ���E
⇥
b'"(Xx

t
)
⇤
� U"(', t)

���
L2(D)

 2Cp
m
. (C.18)

and by setting m = "�2 and (C.12) we find that,
��u(·, t)� U"(', t)

��
L2(D)

 ", CB

",`
= CB · poly(⇢d), C"

stab = 1, p =1. (C.19)

Moreover, it holds that

depth(U")  C⇤depth(b'"), {width, size}(U")  C⇤"�2{width, size}(b'") (C.20)

where we write C⇤ = Cpoly(d⇢d).

We can now present the proof of the actual theorem.

Proof of Theorem 4.2. We use Theorem 3.5 with k = 1 and ` = 2 and combine the result with
Lemma C.6. We find that for every M 2 N and �, h > 0 it holds that,

��L(bu� u)
��
Lq([0,T]⇥D)

+ kbu� uk
L2(@([0,T]⇥D))

 CB · poly(d⇢d) · ln(M)(kuk
C(1,2)M1�s +M2(�h�2 + hr�2)).

(C.21)

Set � = hr, M�1�s = �1�2/r we find that
��L(bu� u)

��
Lq([0,T]⇥D)

+ kbu� uk
L2(@([0,T]⇥D))  CB · poly(d⇢d) ln

�
1/�
�
�

r�2
r

s�1
s+1 (C.22)

Using that ln(M)  CM� for arbitrarily small � > 0, we find that we should set

� = "
r+�
r�2

s+1
s�1 , M = "

�1��
s�1 (C.23)

C.3 Nonlinear parabolic equations

Some examples of nonlinear parabolic PDEs of the type (4.3) are:

• The Kolmogorov–Petrovsky–Piskunov (KPP) equation [37] is a celebrated model that is often
used to model wave propagation and population genetics. The model is particularly useful
for systems that exhibit phase transitions. One obtains the KPP equation if one chooses
a sufficiently smooth nonlinearity F that satisfies the requirements F (0) = F (1) = 0,
F 0(0) = r > 0, F (u) > 0 and F 0(u) < r for all 0 < u < 1. Well-known examples include
the Fisher equation [21] with F (u) = ru(1 � u) and the Allen-Cahn equation [1] with
F (u) = ru(1� u2).

• Branching diffusion processes give a probabilistic representation of the KPP equation for
the case where F (u) = �(

P1
k=0 aku

k � u) with ak � 0 and
P

k
ak = 1. In this setting,

the PDE (4.3) describes a d-dimensional branching Brownian motion, where every particle
in the system dies in an an exponential time of parameter � and created k i.i.d. descendants
with probability ak [29, 58].

• Finally, the PDE (4.3) arises in the context of credit valuation adjustment when pricing
derivative contracts to compute the counterparty risk valuation, e.g. [28]. The dimension d
corresponds to the number of underlying assets and can be very high.

27

C.4 Multilevel Picard approximations

In what follows, we will provide a definition of a particular kind of MLP approximation (cf. [33])
and a theorem that quantifies the accuracy of the approximation. First, we rigorously introduce the
setting of the nonlinear parabolic PDE (4.3) that is under consideration, cf. [33, Setting 3.2 with
p 0]. We choose the d-dimensional torus Td = [0, 2⇡)d as domain and impose periodic boundary
conditions. This setting allows us to use the results of [33], which are set in Rd, and yet still consider
a bounded domain so that the error can be quantified using an uniform probability measure.
Setting C.7. Let d,m 2 N, T, L,L 2 [0,1), let (Td,B(Td), µ) be a probability space where µ is

the rescaled Lebesgue measure, let g 2 C(Td,R) \ L2(µ), let F 2 C(R,R), assume for all x 2 Td
,

y, z 2 R that ��F (y)� F (z)
��  L|y � z|, max{

��F (y)
��,
��g(x)

��}  L. (C.24)
Let ud 2 C1,2([0, T]⇥ Rd,R) \ L2(µ) satisfy for all t 2 [0, T], x 2 Rd

that

(@tud)(t, x) = (�xud)(t, x) + F (ud(t, x)), ud(0, x) = g(x). (C.25)

Assume that for every " > 0 there exists a neural network bF", a neural network bg" and a neural

network I" with depth depth(I") = depth(bF") such that
��� bF" � F

���
C0(R)

 ", kbg" � gk
L2(µ)  ", kI" � Idk

C0([�1�L,1+L])  ". (C.26)

Note that for some of the equations introduced in Section C.3 the nonlinearity F might not be globally
Lipschitz and hence does not satisfy (C.24). However, it is easy to argue or rescale g [43, 5] such
that ud is globally bounded by some constant C. For instance, for the Allen-Cahn equation it holds
that if kgk

L1  1 then
��ud(t, ·)

��
L1  1 for any t 2 [0, T] [75]. One can then define a ‘smooth’,

globally Lipschitz, bounded function eF : R! R such that eF (v) = F (v) for |v|  C and such that
eF (v) = 0 for |v| > 2C. This will then also ensure the existence of a neural network bF that is close
to eF in C0(R)-norm.

In this setting, multilevel Picard approximations can be introduced. We follow the definition of [33].
Definition C.8 (MLP approximation). Assume Setting C.7. Let ⇥ =

S
n2NZn

, let (⌦,F ,P) be a

probability space, let Y ✓ : ⌦ ! [0, 1], ✓ 2 ⇥, be i.i.d. random variables, assume for all ✓ 2 ⇥,

r 2 (0, 1) that P(Y ✓  r) = r, let U✓ : [0, T]⇥ ⌦! [0, T], ✓ 2 ⇥, satisfy for all t 2 [0, T], ✓ 2 ⇥
that U✓

t
= t + (T � t)Y ✓

, let W ✓ : [0, T] ⇥ ⌦ ! Rd
, ✓ 2 ⇥, be independent standard Brownian

motions, assume that (U✓)✓2⇥ and (W ✓)✓2⇥ are independent, and let U✓

n
: [0, T]⇥ Td ⇥ ⌦ ! R,

n 2 Z, ✓ 2 ⇥, satisfy for all n 2 N0, ✓ 2 ⇥, t 2 [0, T], x 2 Td
that

U✓

n
(t, x) = N(n)

mn

"
m

nX

k=1

g(x+W (✓,0,�k)
T�t

)

#

+
n�1X

i=0

(T � t)

mn�i

"
m

n�iX

k=1

(F (U (✓,i,k)
i

)� N(i)F (U (✓,�i,k)
i�1))(U(✓,i,k)

t
, x+W (✓,i,k)

U
(✓,i,k)
t �t

)

#
.

(C.27)
Example C.9. In order to improve the intuition of the reader regarding Definition C.8, we provide

explicit formulas for the multilevel Picard approximation (C.27) for n = 0 and n = 1,

U✓

0 (t, x) = 0 and U✓

1 (t, x) =
1

m

"
mX

k=1

g(x+W (✓,0,�k)
T�t

)

#
+ (T � t)F (0). (C.28)

Finally, we provide a result on the accuracy of MLP approximations at single space-time points.
Theorem C.10. It holds for all n 2 N0, t 2 [0, T], x 2 Td

that

E
���U0

n
(t, x)� u(t, x)

���
2
�!1/2

 L(T + 1) exp(LT)(1 + 2LT)n

mn/2 exp
�
�m/2

� . (C.29)

Proof. This result is [33, Corollary 3.15] with p 0, p 2 and L L/2.

28

C.5 Neural network approximation of nonlinear parabolic equations

In this section, we will prove that the solution of the nonlinear parabolic PDE as in Setting C.7 can
be approximated with a neural network without the curse of dimensionality. At this point, we do not
specify the activation function, with the only restriction being that the considered neural networks
should be expressive enough to satisfy (C.26). By emulating an MLP approximation and using that
F , g and the identity function can be approximated using neural networks, the following theorem can
be proven.
Theorem C.11. Assume Setting C.7. For every ",� > 0 and t 2 [0, T] there exists a neural network

bu" : Td ! R such that ��bu"(·)� u(t, ·)
��
L2(µ)

 ". (C.30)

In addition, bu satisfies that

depth(bu")  depth(bg�) + log
C2

(3C1 exp
�
m/2

�
/")depth(bF�),

width(bu"), size(bu")  (size(bg�) + size(bF�) + size(I�))

4C1 exp

�
m/2

�

"

!2+3�

,
(C.31)

where

C1 = (T + 1)(1 + L exp(LT)), C2 = 5 + 3LT,

� =
"2

9C2
1 exp

�
m/2

� , m = C2(1+1/�)
2 .

(C.32)

Proof. Step 1: construction of the neural network. Let ", � > 0 be arbitrary and let bF = bF�,
bg = bg� and I = I� as in Setting C.7. We then define for all n 2 N and ✓ 2 ⇥,

bU✓

n
(t, x) = N(n)

mn

"
m

nX

k=1

(In�1 � bg)(x+W (✓,0,�k)
T�t

)

#

+
n�1X

i=0

(T � t)

mn�i

"
m

n�iX

k=1

((In�i�1 � bF)(bU (✓,i,k)
i

)� N(i)(In�i � bF)(bU (✓,�i,k)
i�1))(U(✓,i,k)

t
, x+W (✓,i,k)

U
(✓,i,k)
t �t

)

#
,

(C.33)

with notation and random variables cf. Definition C.8. Note that for every t 2 [0, T], n 2 N, ✓ 2 ⇥,
every realization of the random variable bU✓

n
(t, ·) is a neural network that maps from Td to R.

Let n 2 N0, m 2 N and t 2 [0, T] be arbitrary. Integrating the square of the error bound of Theorem
C.10 and Fubini’s theorem tell us that

E
ˆ

Td

���U0
n
(t, x)� u(t, x)

���
2
dµ(x)

�
=

ˆ
Td

E
���U0

n
(t, x)� u(t, x)

���
2
�
dµ(x)

 4L2(T + 1)2 exp(2LT)(1 + 2LT)2n

mn exp(�m)
.

(C.34)

From Lemma C.1 it then follows that

P
 ˆ

Td

���U0
n
(t, x)� u(t, x)

���
2
dµ(x)  4L2(T + 1)2 exp(2LT)(1 + 2LT)2n

mn exp(�m)

!
> 0. (C.35)

As a result, there exists ! = !(t, n,m) 2 ⌦ and a realization U0
n
(!) such that

���U0
n
(!)(t, ·)� u(t, ·)

���
L2(µ)

 L(T + 1) exp(LT)(1 + 2LT)n

mn/2 exp
�
�m/2

� . (C.36)

We define
! : [0, T]⇥ N2 ! ⌦ : (t, n,m) 7! !(t, n,m) (C.37)

and set for every 1  k  n,

bU✓

k,!
(t, x) = bU✓

k
(!(t, n,m))(t, x) and U✓

k,!
(t, x) = U✓

k
(!(t, n,m))(t, x) (C.38)

29

for all k 2 N0 and all ✓ 2 ⇥. We then define our approximation as bU0
n,!

(t, ·).

Step 2: error estimate. We will quantify how well bU0
n,!

approximates U0
n,!

. Using the calculation
that for f1, f2 2 C1(R) and h1, h2 2 L2(µ) it holds that

kf1 � h1 � f2 � h2kL2(µ)  kf1 � h1 � f2 � h1kL2(µ) + kf2 � h1 � f2 � h2kL2(µ)

 kf1 � f2kC0(R) + |f2|Lip(R)kh1 � h2kL2(µ),
(C.39)

and the fact that 2n  2n for n 2 N we find that it holds for every ✓ 2 ⇥ that,
���bU✓

n,!
(t, ·)� U✓

n,!
(t, ·)

���
L2(µ)

 N(n)
⇣
kbg � gk

L2(µ) + (n� 1)kI � Idk
C0

⌘
+ T

n�1X

i=0

���In�i�1 � bF � bU (✓,i,k)
i,!

� F � U (✓,i,k)
i,!

���
L2(µ)

+ T
n�1X

i=0

N(i)
���In�i � bF � bU (✓,�i,k)

i�1,! � F � U (✓,�i,k)
i�1,!

���
L2(µ)

 N(n)

"
kbg � gk

L2(µ) + 2Tn
��� bF � F

���
C0(R)

+

✓
(n� 1) +

(n� 1)n

2
+

(n+ 1)n

2

◆
kI � Idk

C0

#

+ LT
n�1X

i=0

✓���bU (✓,i,k)
i

� U (✓,i,k)
i

���
L2(µ)

+ N(i)
���bU (✓,�i,k)

i�1 � U (✓,�i,k)
i�1

���
L2(µ)

◆

 N(n)2
n


kbg � gk

L2(µ) + T
��� bF � F

���
C0(R)

+ nkI � Idk
C0

�

+
n�1X

i=0

(max{1, LT})n�i

✓���bU (✓,i,k)
i

� U (✓,i,k)
i

���
L2(µ)

+ N(i)
���bU (✓,�i,k)

i�1 � U (✓,�i,k)
i�1

���
L2(µ)

◆
.

,

(C.40)

Now let us set for every k 2 N0,

xk = sup
✓2⇥

���bU✓

k,!
(t, ·)� U✓

k,!
(t, ·)

���
L2(µ)

, (C.41)

and in addition we define ↵0 = kbg � gk
L2(µ)+T

��� bF � F
���
C0(R)

, ↵1 = kI � Idk
C0 and � = 2+LT .

Taking the supremum over all ✓ 2 ⇥ in (C.40) gives us for all k 2 N0 that,

xk  N(k)(↵0 + ↵1k)�
k +

k�1X

i=0

�k�i(xi + xmax{i�1,0}). (C.42)

Therefore, we can use Lemma C.2 with � 0 then gives us that for all k 2 N0 it holds that,

sup
✓2⇥

���bU✓

k,!
(t, ·)� U✓

k,!
(t, ·)

���
L2(µ)

 N(k)
(1 +

p
2)k

2

✓
kbg � gk

L2(µ) + T
��� bF � F

���
C0(R)

+ kI � Idk
C0

◆
(2 + LT)k.

(C.43)
Next we define

C1 = (T + 1)(1 + L exp(LT)), C2 = 5 + 3LT. (C.44)
Combining (C.36) with (C.43) then gives us that,
���bU0

n,!
(t, ·)� u(t, ·)

���
L2(µ)


���bU0

n,!
(t, ·)� U0

n,!
(t, ·)

���
L2(µ)

+
���U0

n,!
(t, ·)� u(t, ·)

���
L2(µ)

 C1C
n

2

✓
kbg � gk

L2(µ) +
��� bF � F

���
C0(R)

+ kI � Idk
C0 +m�n/2 exp

�
m/2

�◆
.

(C.45)

30

For an arbitrary � > 0, we choose

m = C2(1+1/�)
2 , n = � log

C2
(4C1 exp

�
m/2

�
/") (C.46)

and if we choose bg = bg� and bF = bF� such that,

kbg � gk
L2(µ)  � =

"

4C1Cn

2

=
"1+�

(4C1)1+� exp
�
�m/2

� , (C.47)

then we obtain that ���bU0
n,!

(t, ·)� u(t, ·)
���
L2(µ)

 ". (C.48)

Step 3: size estimate. We now provide estimates on the size of the network constructed in Step 1.
First of all, it is straightforward to see that the depth of the network can be bounded by

L"(bU0
n,!

)  L�(bg) + (n� 1)L�(bF)  L�(bg) + log
C2

(3C1 exp
�
m/2

�
/")L�(bF). (C.49)

Next we prove an estimate on the number of needed neurons. For notation, we write Mn =
M"(bU0

n,!
). We find that for all 0  k  n,

Mk  N(k)m
k(M�(bg) + (k � 1)M�(I))

+
k�1X

i=0

mk�i(2M�(bF) + (2k � 2i� 1)M�(I) +Mi +Mmax{i�1,0})

 N(k)(M�(bg) +M�(bF) + kM�(I))(2m)k +
k�1X

i=0

mk�i(Mi +Mmax{i�1,0}).

(C.50)

Applying Lemma C.2 to (C.50) (i.e. ↵0 M�(bg) +M�(bF), ↵1 M�(I) and � 2m) then
gives us that

Mn 
1

2
(M�(bg) +M�(bF) +M�(I))(1 +

p
2)n(2m)n. (C.51)

Observing that 2 + 2
p
2  C2 and recalling that m = C2(1+1/�)

2 we find that

Mn 
1

2
(M�(bg) +M�(bF) +M�(I))C(3�+2)n/�

2

=
1

2
(M�(bg) +M�(bF) +M�(I))

4C1 exp

�
m/2

�

"

!2+3�

.
(C.52)

For the width, we make the estimate width"(bU0
n,!

) Mn.

C.6 PINN approximation of nonlinear parabolic equations

Setting C.12. Assume Setting C.7, let bg 2 C(Td,R) \ L2(µ)3
and let ! : [0, T] ⇥ N2 ! ⌦ be

defined as in (C.37) in the proof of Theorem C.11. Let bU✓

n,!
: [0, T]⇥ Td ⇥ ⌦! R, n 2 Z, ✓ 2 ⇥,

satisfy for all n 2 N0, " > 0, ✓ 2 ⇥, t 2 [0, T], x 2 Td
that

bU✓

n,!
(t, x) = N(n)

mn

"
m

nX

k=1

(In�1
"
� bg)(x+W (✓,0,�k)

T�t
(!(t, n,m)))

#

+
n�1X

i=0

(T � t)

mn�i

"
m

n�iX

k=1

⇣
(In�i�1

"
� bF")(bU (✓,i,k)

i,!
)

� N(i)(In�i

"
� bF")(bU (✓,�i,k)

i�1,!)
⌘�

U
(✓,i,k)
t

(!(t, n,m)), x+W (✓,i,k)

U
(✓,i,k)
t �t

(!(t, n,m))
�
#
.

(C.53)
3The function bg can but need not be the same as the function bg", for some " > 0, of Setting C.7.

31

Lemma C.13. Assume Setting C.12. Under the assumption that,

max
1jk

���Ij

���
Ck([�L�1,L+1])

 2, (C.54)

where Ij
denotes j compositions of I, it holds for all `, k 2 N0 that,

sup
✓2⇥

���bU✓

k,!

���
C(0,`)([0,T]⇥Td)

 Ck,` :=


kbgk

C`(Td) + 2B`(1 +
p
2)k(1 + 2B`T

��� bF
���
`

C`(R)
)k
�2(`+1)!

,

(C.55)

and where B` denote the `-th Bell number i.e., the number of possible partitions of a set with `
elements.

Proof. We prove the claim by induction on `.

Base case. From Definition C.8, we find that for ` = 0 and all k 2 N0 it holds that

sup
✓2⇥

���bU✓

k,!

���
C0([0,T]⇥Td)

 kbgk
C0(Td) + 2T

��� bF
���
C0(R)

k. (C.56)

Claim (C.55) follows immediately for ` = 0.

Induction step. We assume that claim (C.55) holds true for all 0  `⇤  ` � 1 and k 2 N0. From
this assumption, we will deduce that (C.55) holds true for ` and all k 2 N0. We first observe that it
follows from Lemma C.4, the induction hypothesis and the fact that (Ck,`)`�0 is non-decreasing for
any k, that for all ✓ 2 ⇥ and 0  i, j  k it holds that,

���(Ij � bF)(bU✓

i,!
)
���
C`([0,T]⇥Td)


���Ij � bF

���
C`(R)

✓
B`C

`

k,`�1 +
��� bU✓

i,!

���
C(0,`)([0,T]⇥Td)

◆
, (C.57)

and where (again using Lemma C.4) it holds that
���Ij � bF

���
C`(R)

 2B`

��� bF
���
`

C`
.

Using this estimate and the fact that (Ck,`)k�0 is non-decreasing for any `, we can make the following
calculation for every k 2 N0,

sup
✓2⇥

��� bU✓

k,!

���
C(0,`)([0,T]⇥Td)

 N(k)|bg|C`(Td) + T
k�1X

i=0

sup
✓2⇥

���(Ik�i�1 � bF)(bU✓

i,!
)
���
C(0,`)(([0,T]⇥Td))

+ T
k�1X

i=0

N(i) sup
✓2⇥

���(Ik�i � bF)(bU✓

i�1,!)
���
C(0,`)(([0,T]⇥Td))

 N(k)|bg|C`(Td) + 2B`T
��� bF
���
`

C`(R)

k�1X

i=0

B`C

`

k,`�1 + sup
✓2⇥

��� bU✓

i,!

���
C(0,`)(([0,T]⇥Td))

!

+ 2B`T
��� bF
���
`

C`(R)

k�1X

i=0

N(i)

B`C

`

k,`�1 + sup
✓2⇥

��� bU✓

i�1,!

���
C(0,`)(([0,T]⇥Td))

!

 N(k)(|bg|C`(Td) + 2B`T
��� bF
���
`

C`(R)
C`

k,`�1k)

+
k�1X

i=0

2B`T
��� bF
���
`

C`(R)

sup
✓2⇥

��� bU✓

i,!

���
C(0,`)(([0,T]⇥Td))

+ N(i) sup
✓2⇥

��� bU✓

i�1,!

���
C(0,`)(([0,T]⇥Td))

!

(C.58)

32

Application of Lemma C.2 with ↵0 |bg|
C`(Td), ↵1 2B`C`

k,`�1, � (1 + 2B`T
��� bF
���
`

C`(R)
) and

� 0 gives us

sup
✓2⇥

���bU✓

k,!

���
C0([0,T]⇥Td)


|bg|

C`(Td) + 2B`C`

k,`�1

2
(1 +

p
2)k(1 + 2B`T

��� bF
���
`

C`(R)
)k



|bg|

C`(Td) + 2B`(1 +
p
2)k(1 + 2B`T

��� bF
���
`

C`(R)
)k
�
C`

k,`�1.

(C.59)

Filling in the definition of Ck,`�1 indeed gives us the formula as stated in (C.55), thereby concluding
the proof of the claim.

Lemma C.14. Let F be a polynomial. For every �, " > 0 there is an operator U"
as in Assumption

3.1 such that for every t 2 [0, T],
��U"(u0, t)� G(v)(u0, t)

��
L2(Td)

 ", CB

",`
 C(B"��)2(l+1)!, C"

stab  C"��. (C.60)

Moreover it holds that depth(U"(u0, t))  depth(bu0) + C ln
�
"�1
�
, width(U"(u0, t)) 

width(bu0)"�2��
and size(U"(u0, t))  size(bu0)"�2��

.

Proof. The three bounds are a consequence of, respectively, Theorem C.11 and Lemma C.13 and
(C.45). The size estimates follow from Theorem C.11. Note that one might have to rescale the
constant � > 0.

D Additional material for Section 4.2

D.1 Errors of DeepONets

In [43], numerous error estimates for DeepONets are proven, with a focus on DeepONets that use
the ReLU activation function. In order to quantify this error, the authors fix a probability measure
µ 2 P(X) and define the error as,

bE =

0

B@
ˆ

X

ˆ

U

��G(u)(y)� G✓(u)(y)
��2 dy dµ(u)

1

CA

1/2

, (D.1)

assuming that there exist embeddings X ,!L2(D) and Y,!L2(U). From [43, Lemma 3.4], it then
follows that bE (D.1) can be bounded as,

bE  Lip
↵
(G)Lip(R � P) (bEE)

↵ + Lip(R) bEA + bER, (D.2)

where Lip
↵
(·) denotes the ↵-Hölder coefficient of an operator and where bEE quantifies the encoding

error, where bEA is the error incurred in approximating the approximator A and where bER quantifies
the reconstruction error. Assuming that all Hölder coefficients are finite, one can prove that bE is
small if bEE , bEA and bER are all small. We summarize how each of these three errors can be bounded
using the results from [43].

• The upper bound on the encoding error bEE depends on the chosen sensors and the spectral
decay rate for the covariance operator associated to the measure µ. Use bespoke sensor
points to obtain optimals bounds when possible, otherwise use random sensors to obtain
almost optimal bounds. More information can be found in [43, Section 3.5].

• The upper bound on the reconstruction error bER depends on the smoothness of the operator
and the chosen basis functions ⌧ i.e., neural networks, for the reconstruction operator R.
Following [43, Section 3.4], one first chooses a standard basis e⌧ of which the properties
are well-known. We denote the corresponding reconstruction by eR and the corresponding
reconstruction error by bE eR. In this work, we focus on Fourier and Legendre basis function,

33

both of which are introduced in SM A. One then proceeds by constructing the neural network
basis ⌧ i.e., the trunk nets, that satisfy for some " > 0 and p � 1 the condition

max
k=1,...,p

k⌧k � e⌧kkL2  "

p3/2
, (D.3)

which is shown to imply that,
bER  bE eR + C", (D.4)

where C � 1 depends only on
´
L2 kuk2 dG#µ(u). Using standard approximation theory,

one can calculate an upper bound on bE eR and using neural network theory one can quantify
the network size of ⌧ needed such that (D.3) is satisfied. For the Fourier and Legendre bases
such results are presented in Lemma D.1 and Lemma D.2, respectively.

• The upper bound on the approximation error bEA depends on the regularity of the operator
G. We present the tanh counterparts of some results of [43, Section 3.6] in the following
sections, with the main result being Theorem D.6.

For bounded linear operators, these calculations are rather straightforward and are presented in [43,
SM D]. For nonlinear operators, one has to complete all the above steps for each specific case. In [43,
Section 4], this has been done for four types of differential equations.

D.2 Auxiliary results for linear operators

Following Section D.1, we need results on the required neural network size to approximate the
reconstruction basis to a certain accuracy (D.3). The following lemma provides such a result for the
Fourier basis introduced in SM A.5.
Lemma D.1. Let s, d, p 2 N. For any " > 0, there exists a trunk net ⌧ : Rd ! Rp

with 2 hidden

layers of width O(p
d+1
d + ps ln

�
ps"�1

�
) and such that

p3/2 max
j=1,...,p

k⌧j � ejkCs([0,2⇡]d)  ", (D.5)

where e1, . . . , ep denote the first p elements of the Fourier basis, as in SM A.5.

Proof. We note that each element in the (real) trigonometric basis e1, . . . , ep can be expressed in the
form

ej(x) = cos( · x), or ej(x) = sin( · x), (D.6)
for  = (j) 2 Zd with ||1  N , where N is chosen as the smallest natural number such that
p  (2N + 1)d. We focus only focus on the first form, as the proof for the second form is entirely
similar. Define f : [0, 2⇡]d ! R : x 7!  · x and g : [�2⇡dN, 2⇡dN] ! R : x 7! cos(x).
As f([0, 2⇡]d) ⇢ [�2⇡dN, 2⇡dN], the composition g � f is well-defined and one can see that it
coincides with a trigonometric basis function ej . Moreover, the linear map f is a trivial neural
network without hidden layers. Approximating ej by a neural network ⌧j therefore boils down to
approximating g by a suitable neural network.

From [15, Theorem 5.1] it follows that the function g there exists an independent constant R > 0 such
that for large enough t 2 N there is a tanh neural network bgt with two hidden layers and O(t+N)
neurons such that

kg � bgtkCs([�2⇡dN,2⇡dN])  4(8(s+ 1)3R)s exp(t� s). (D.7)

This can be proven from [15, eq. (74)] by setting � 1
3 , k s, s t, N 2 and using kgk

Cs = 1
and Stirling’s approximation to obtain

1

(t� s)!

✓
3

2 · 2

◆t�s

 1p
2⇡(t� s)

✓
e

t� s

◆t�s

 exp(s� t) for t > s+ e2. (D.8)

Setting t = O(ln
�
��1
�
+ s ln(s)) then gives a neural network bgt with kg � bgtkCs < ⌘. Next, it

follows from [15, Lemma A.7] that
kg � f � bgt � fkCs([0,2⇡]d)  16(e2s4d2)skg � bgtkCs([�2⇡dN,2⇡dN])kfk

s

Cs([0,2⇡]d)

 16(e2s4d2)s⌘(2⇡dN)s.
(D.9)

34

From this follows that we can obtain the desired accuracy (D.5) if we set ⌧j = bgt(⌘) � f with

⌘ =
"p�3/2

16(2⇡Nd3e2s4)s
, (D.10)

which amounts to t = O(s ln
�
sN"�1

�
). As a consequence, the tanh neural network ⌧j has two

hidden layers with O(s ln
�
sN"�1

�
+ N) neurons and therefore, by recalling that p ⇠ Nd, the

combined network ⌧ has two hidden layers with

O(p(s ln
⇣
sN"�1

⌘
+N)) = O(ps ln

⇣
ps"�1

⌘
+ p

d+1
d) (D.11)

neurons.

D.3 Proof of Theorem 4.6

Proof. Consider the setting of Theorem 4.6. Using [43, Theorem D.3], the reasoning as in [43,
Example D.4] and Lemma D.1 we find that there exists a constant C = C(d, `) > 0, such that for
any m, p, s 2 N there exists a DeepONet with trunk net ⌧ and branch net �, such that

size(⌧)  C(p
d+1
d + ps ln

⇣
ps"�1

⌘
), depth(⌧) = 3, (D.12)

and where

size(�)  p, depth(�)  1, (D.13)

and such that the DeepONet approximation error (D.1) is bounded by

��G(v)� G✓(v)
��
L2(µ⇥�)

 "+ C exp
⇣
�c p1/d

⌘
+ C exp

� cm1/d

log(m)1/d

!
. (D.14)

Moreover, it holds that ��N (u)(·)
��
Cs  Cps/d, (D.15)

since in this case ⌧ approximates the Fourier basis (SM A.5). From (A.15), one can then deduce
the estimate on the Cs-norm of the DeepONet. This proves that (3.7) in Theorem 3.9 holds with
�(s) = s/d. This concludes the proof.

D.4 Auxiliary results for nonlinear operators

We provide a neural network approximation result for the Legendre basis from SM A.4.
Lemma D.2. Let n, p 2 N. For any " > 0, there exists a trunk net ⌧ : Rd ! Rp

with two hidden

layers of width O(p) such that

p3/2 max
j=1,...,p

k⌧j � LjkCs([�1,1]d)  ", (D.16)

where L1, . . . , Lp denote the first p elements of the Legendre basis, as in SM A.4.

Proof. Let j 2 1, . . . , p. It holds by definition of Legendre polynomials and the corresponding
enumeration (SM A.4) that the degree in every variable is at most p. Therefore, Lj is a product of d
univariate polynomials of degree at most p. From [15, Lemma 3.2] it follows that one needs a shallow
tanh neural network with O(p) neurons to approximate a univariate polynomial to any accuracy. The
result from [15, Corollary 3.7] can be used to construct a shallow tanh network that approximates the
product of the d univariate polynomials. Note that its size only depends on the dimension d and not
on the polynomial degree p or the accuracy. Finally, [15, Lemma A.7] ensures the accuracy of the
composition of the two subnetworks. It then follows that there exist a tanh neural network of width
O(p) and two hidden layers that achieves the wanted error estimate.

In our proofs, we require tanh counterparts to the results for DeepONets with ReLU activation
function from [43]. We present these adapted results below for completeness.

The first lemma considers the neural network approximation of the map u 7! bY (u), as defined in
[43, Eq. (3.59)].

35

Lemma D.3. Let N, d 2 N, and denote m := (2N+1)d. There exists a constant C > 0, independent

of N , such that for every N there exists a tanh neural network : Rm ! Rm
, with

size()  C(1 +m log(m)), depth()  C(1 + log(m)), (D.17)

and such that (u) = (bY1(u), . . . , bYm(u)), for all u 2 Rm
.

Proof. The proof is identical to that of [43, Lemma 3.28].

We can now state the following result [70, Theorem 3.10] which is the counterpart of [43, Theorem
3.32] for tanh neural networks.
Theorem D.4. Let V be a Banach space and let J be a countable index set. Let F : [�1, 1]J ! V
be a (b, ",)-holomorphic map for some b 2 `q(N) and q 2 (0, 1), and an enumeration  : N! J .

Then there exists a constant C > 0, such that for every N 2 N, there exists an index set

⇤N ⇢
n
⌫ = (⌫1, ⌫2, . . .) 2

Q
j2JN0 | ⌫j 6= 0 for finitely many j 2 J

o
, (D.18)

with |⇤N | = N , a finite set of coefficients {c⌫}⌫2⇤N ⇢ V , and a tanh network : RN ! R⇤N ,

y 7! { ⌫(y)}⌫2⇤N with

size()  C(1 +N log(N)), depth()  C(1 + log log(N)), (D.19)
and such that

sup
y2[�1,1]J

������
F(y)�

X

⌫2⇤N

c⌫ ⌫(y(1), . . . , y(N))

������
V

 CN1�1/q. (D.20)

Using this theorem, we can state the tanh counterpart to [43, Corollary 3.33].
Corollary D.5. Let V be a Banach space. Let F : [�1, 1]J ! V be a (b, ",)-holomorphic map

for some b 2 `q(N) and q 2 (0, 1), where  : N ! J is an enumeration of J . In particular, it is

assumed that {bj}j2N is a monotonically decreasing sequence. If P : V ! Rp
is a continuous linear

mapping, then there exists a constant C > 0, such that for every m 2 N, there exists a tanh network

 : Rm ! Rp
, with

size()  C(1 + pm log(m)), depth()  C(1 + log log(m)), (D.21)
and such that

sup
y2[�1,1]J

kP � F(y)� (y(1), . . . , y(m))k`2(Rp)  CkPkm�s, (D.22)

where s := q�1 � 1 > 0 and kPk = kPkV!`2 denotes the operator norm.

Proof. The proof is identical to the one presented in [43, Appendix C.18].

Finally, we use this result to state the counterpart to [43, Theorem 3.34], which considers the
approximation of a parametrized version of the operator G, defined as a mapping

F : [�1, 1]J ! L2(U) : y 7! G(u(·;y)). (D.23)
A more detailled discussion can be found in [43, Section 3.6.2].
Theorem D.6. Let F : [�1, 1]J ! L2(U) be (b, ",)-holomorphic with b 2 `q(N) and  : N! J
an enumeration, and assume that F is given by (D.23). Assume that the encoder/decoder pair is

constructed as in [43, Section 3.5.3], so that [43, Eq. (3.69)] holds. Given an affine reconstruction

R : Rp ! L2(U), let P : L2(U)! Rp
denote the corresponding optimal linear projection [43, Eq.

(3.17)]. Then given k 2 N, there exists a constant Ck > 0, independent of m, p and an approximator

A : Rm ! Rp
that can be represented by a neural network with

size(A)  Ck(1 + pm log(m)), depth(A)  Ck(1 + log(m)).

and such that the approximation error bEA can be estimated by

bEA  CkkPkm�k,

where kPk = kPkL2(U)!Rp is the operator norm of P .

Proof. The proof is as in [43, Appendix C.19.1].

36

D.5 Gravity pendulum with external force

Next, we consider the following nonlinear ODE system, already considered in the context of approxi-
mation by DeepONets in [49] and [43],

8
>><

>>:

dv1
dt

= v2,

dv2
dt

= �� sin(v1) + u(t).
(D.24)

with initial condition v(0) = 0 and where � > 0 is a parameter. Let us denote v = (v1, v2) and

g(v) :=

✓
v2

�� sin(v1)

◆
, U(t) :=

✓
0

u(t)

◆
, (D.25)

so that equation (D.24) can be written in the form

Lu(v) :=
dv

dt
� g(v) + U = 0, v(0) = 0. (D.26)

In (D.26), v1, v2 are the angle and angular velocity of the pendulum and the constant � denotes a
frequency parameter. The dynamics of the pendulum is driven by an external force u. With the
external force u as the input, the output of the system is the solution vector v and the underlying
nonlinear operator is given by G : L2([0, T]) ! L2([0, T]) : u 7! G(u) = v. Following the
discussion in [43], we choose an underlying (parametrized) measure µ 2 P(L2([0, T])) as a law of a
random field u, that can be expanded in the form

u(t;Y) =
X

k2Z
Yk↵kek

✓
2⇡t

T

◆
, t 2 [0, T], (D.27)

where ek(x), k 2 Z, denotes the one-dimensional standard Fourier basis (A.5) and where the coeffi-
cients ↵k � 0 decay to zero as ↵k  C↵ exp

�
�|k|`

�
for some constants C↵, ` > 0. Furthermore,

we assume that the {Yk}k2Z are iid random variables on [�1, 1].
Assuming the described setting, the following lemma gives an error bound of tanh DeepONets in
terms of the sizes of the corresponding branch and trunk nets.
Lemma D.7. Consider the DeepONet approximation problem for the gravity pendulum (D.24), where

the forcing u(t) is distributed according to a probability measure µ 2 P(L2([0, T])) given as the

law of the random field (D.27). For any k, r 2 N, there exists a constant C = C(k, r) > 0, and a

constant c > 0, independent of m, p, such that for any m, p 2 N, there exists a DeepONet G✓ with

trunk net ⌧ and branch net �, such that

size(⌧)  Cp, depth(⌧) = 2, (D.28)

and

size(�)  C(1 + pm log(m)), depth(�)  C(1 + log(m)), (D.29)

and such that the DeepONet approximation error (D.1) is bounded by

bE  Ce�c`m + Cm�k + Cp�r, (D.30)

and that for all s 2 N , ��G✓(u)(·)
��
Cs  Cpd/2+2sd. (D.31)

Proof. The proof of the statement is identical to that of [43, Theorem 4.10], with the only difference
that we consider tanh neural networks instead of ReLU neural networks. As a result, the proof comes
down to determining the size of the trunk net ⌧ using Lemma D.2 instead of [64, Proposition 2.10],
thereby proving the tanh counterpart of [43, Proposition 4.5], and replacing [43, Proposition 4.9] by
Theorem D.6. The Cs-bound of the DeepONet follows from the Cs-bound of Legendre polynomials
(A.12) and Lemma D.2.

We can again follow Theorem 3.9 to obtain error bounds for physics-informed DeepONets. As-
sumption 3.3 is satisfied for [0, T]. As a result, we can apply Theorem 3.9 to obtain the following
result.

37

Theorem D.8. Consider the setting of Lemma D.7. For every � > 0, there exists a constant C > 0
such that for any p 2 N , there exists a DeepONet G✓ with a trunk net ⌧ = (0, ⌧1, . . . , ⌧p) with p
outputs and branch net � = (0,�1, . . . ,�p), such that

size(⌧)  Cp, depth(⌧) = 2, (D.32)

and

size(�)  C(1 + p2 log(p)), depth(�)  C(1 + log(p)), (D.33)

and such that����
dG✓(u)1

dt
� G✓(u)2

����
L2(µ)

+

����
dG✓(u)2

dt
+ � sin

�
G✓(u)1

�
� u(t)

����
L2(µ)

 Cp�� . (D.34)

Proof. Lemma D.7 with s 1, k r and m p then provides a DeepONet that satisfies
the conditions of Theorem 3.9 with r⇤ = +1 and equation (3.7) with �(s) = d/2 + 2sd. The
smoothness of v is guaranteed by [43, Lemma 4.3]. Moreover, it holds that,
����
dG✓(u)1

dt
� G✓(u)2

����
L2(µ)


����
dG✓(u)1

dt
� dG(u)1

dt

����
L2(µ)

+
��G(u)2 � G✓(u)2

��
L2(µ)

, (D.35)

and also that,
����
dG✓(u)2

dt
+ � sin

�
G✓(u)1

�
� u(t)

����
L2(µ)


����
dG✓(u)2

dt
� dG(u)2

dt

����
L2(µ)

+ �
���sin

�
G(u)1

�
� sin

�
G✓(u)1

����
L2(µ)


����
dG✓(u)2

dt
� dG(u)2

dt

����
L2(µ)

+ �
��G(u)1 � G✓(u)1

��
L2(µ)

.

(D.36)

Combining this estimate with Theorem 3.9 with k = 2 then gives the wanted result.

D.6 An elliptic PDE: Multi-d diffusion with variable coefficients

Next, again following [43], we consider a popular model problem for elliptic PDEs with unknown
diffusion coefficients [11] and references therein. For the sake of definiteness and simplicity, we shall
assume a periodic domain D = Td in the following. For b 2 N0, we consider an elliptic PDE with
variable coefficients a,

La(u) := r · (a(x)ru(x)) + f(x) = 0, (D.37)

for u 2 Cb+2(D) with suitable boundary conditions, and for fixed f 2 Cb(D). Similar to the
previous examples, we fix a probability measure µ on the coefficient a by assuming that every a can
be written as

a(x, Y) = a(x) +
X

k2Zd

↵kYkek(x), (D.38)

with notation from SM A.5, and where for simplicity a(x) ⌘ 1 is assumed to be constant. Further-
more, we will consider the case of smooth coefficients x 7! a(x;Y), which is ensured by requiring
that there exist constants C↵ > 0 and ` > 1, such that |↵k|  C↵ exp

�
�`|k|1

�
for all k 2 Zd. Still

following [43], we define b = (b1, b2, . . .) 2 `1(N) by

bj := C↵ exp
�
�`|(j)|1

�
, (D.39)

where  : N ! Zd is the enumeration for the standard Fourier basis, (SM A.5). Note that by
assumption on the enumeration , we have that b is a monotonically decreasing sequence. In the
following, we will assume throughout that kbk`1 < 1, ensuring a uniform coercivity condition on all
random coefficients a = a(· ;Y) in (D.37). Finally, we assume that the Yj 2 [�1, 1] are centered
random variables and we let µ 2 P(L2(Td)) denote the law of the random coefficient (D.38).

The following lemma provides an error estimate for DeepONets approximating the operator G that
maps the input coefficient a into the solution field u of the PDE (D.37).

38

Lemma D.9. For any k, r 2 N, there exists a constant C > 0, such that for any m, p 2 N, there

exists a DeepONet G✓ = R �A � E with m sensors, a trunk net ⌧ = (0, ⌧1, . . . , ⌧p) with p outputs

and branch net � = (0,�1, . . . ,�p), such that

size(�)  C(1 + pm log(m)), depth(�)  C(1 + log(m)), (D.40)

and

size(⌧)  Cp
d+1
d depth(⌧)  2 (D.41)

such that the DeepONet approximation error (D.1) satisfies

bE  Ce�c`m
1
d + Cm�k + Cp�r, (D.42)

and that for all s 2 N ��G✓(u)(·)
��
Cs  Cps/d. (D.43)

Proof. This statement is the tanh counterpart of [43, Theorem 4.19], which addresses ReLU Deep-
ONets. We only highlight the differences in the proof. First, one should use Lemma D.1 instead of
[43, Lemma 3.13], which then results in different network sizes in [43, Lemma 3.14, Proposition
3.17, Corollary 3.18, Proposition 4.17]. Second, one needs to replace [43, Proposition 4.18] with
Theorem D.6.

Moreover, in this case the trunk net ⌧ approximates the Fourier basis (SM A.5). From (A.15), one
can then deduce the estimate on the Cs-norm of the DeepONet.

It is straightforward to verify that the conditions of Theorem 3.9 are satisfied in the current setting.
Applying Theorem 3.9 then results in the following theorem on the error of physics-informed
DeepONets for (D.37).
Theorem D.10. Consider the elliptic equation (D.37) with b � 1. For every � > 0, there exists

a constant C > 0 such that for any p 2 N , there exists a DeepONet G✓ with a trunk net ⌧ =
(0, ⌧1, . . . , ⌧p) with p outputs and branch net � = (0,�1, . . . ,�p), such that

size(�)  C(1 + p2 log(p)), depth(�)  C(1 + log(p)), (D.44)

and

size(⌧)  Cp2 depth(⌧)  2 (D.45)

such that ��r · (a(x)rG✓(a)(x))� f(x)
��
L2(µ)

 Cp�� . (D.46)

Proof. We first check the conditions of Theorem 3.9. Lemma D.9 with s 1, k r and m p
then provides a DeepONet that satisfies the conditions of Theorem 3.9 with r⇤ = +1 and equation
(3.7) with �(s) = s/d. Moreover, the following estimate holds,

��r · (a(x)rG✓(a)(x))� f(x)
��
L2(µ)


��r · (a(x)rG✓(a)(x))�r · (a(x)rG(a)(x))

��
L2(µ)


dX

j=1

kak
C0

���@2j (G✓ � G)(a)(x)
���
L2(µ)

+
dX

j=1

kak
C1

��@j(G✓ � G)(a)(x)
��
L2(µ)

.

(D.47)

Combining this estimate with Theorem 3.9 with k = 2 then gives the wanted result.

39

	Introduction
	Preliminaries
	Setting
	Approximating PDEs with neural networks

	General results
	Estimates for (physics-informed) neural networks
	Estimates for operator learning
	Estimates for physics-informed operator learning
	A posteriori bound on the generalization error

	Applications
	Overcoming the curse of dimensionality
	Error bounds for physics-informed operator learning

	Related work and discussion
	Notation and preliminaries
	Overview of used notation
	Finite differences
	Sobolev spaces
	Notation for Legendre basis
	Notation for Standard Fourier basis
	Trigonometric polynomial interpolation
	Neural network approximation theory

	Additional material for Section 3
	Auxiliary results for Section 3
	Proof of Theorem 3.5
	Proof of Theorem 3.7
	Proof of Theorem 3.10
	Proof of Theorem 3.11

	Additional material for Section 4.1
	Auxiliary results
	Proof of Theorem 4.2
	Nonlinear parabolic equations
	Multilevel Picard approximations
	Neural network approximation of nonlinear parabolic equations
	PINN approximation of nonlinear parabolic equations

	Additional material for Section 4.2
	Errors of DeepONets
	Auxiliary results for linear operators
	Proof of Theorem 4.6
	Auxiliary results for nonlinear operators
	Gravity pendulum with external force
	An elliptic PDE: Multi-d diffusion with variable coefficients

