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Abstract

We propose a very general framework for deriving rigorous bounds on the approxi-
mation error for physics-informed neural networks (PINNs) and operator learning
architectures such as DeepONets and FNOs as well as for physics-informed opera-
tor learning. These bounds guarantee that PINNs and (physics-informed) Deep-
ONets or FNOs will efficiently approximate the underlying solution or solution
operator of generic partial differential equations (PDEs). Our framework utilizes
existing neural network approximation results to obtain bounds on more involved
learning architectures for PDEs. We illustrate the general framework by deriving
the first rigorous bounds on the approximation error of physics-informed operator
learning and by showing that PINNs (and physics-informed DeepONets and FNOs)
mitigate the curse of dimensionality in approximating nonlinear parabolic PDEs.

1 Introduction

The efficient numerical approximation of partial differential equations (PDEs) is of paramount
importance as PDEs mathematically describe an enormous range of interesting phenomena in the
sciences and engineering. Machine learning techniques, particularly deep learning, are playing
an increasingly important role in this context. For instance, given their universal approximation
properties, deep neural networks serve as ansatz spaces for supervised learning of a variety of
(parametric) PDEs [19, 70, 40, 53, 54] and references therein. In this setting, large amounts of training
data might be required. However, this data is often acquired from expensive computer simulations
or physical measurements [53], necessitating the design of learning frameworks that work with
limited data. Physics-informed neural networks (PINNs), proposed by [18, 42, 41] and popularized
by [67, 68], are a prominent example of such a learning framework as the residual of the underlying
PDE is minimized within the class of neural networks and in principle, little (or even no) training
data is required. PINNs and their variants have proven to be a very powerful and computationally
efficient framework for approximating solutions to PDEs, [69, 51, 55, 65, 76, 34, 35, 61, 59, 60, 2]
and references therein.

Often in the context of PDEs, one needs to approximate the underlying solution operator that maps
one infinite-dimensional function space into another [27, 39]. As neural networks can only map
between finite dimensional spaces, a new field of operator learning is emerging wherein novel
learning frameworks need to be designed in order to approximate operators. These include deep
operator networks (DeepONets) [9, 49] and their variants as well as neural operators [39], which
generalize neural networks to this setting. A variety of neural operators have been proposed, see
[45, 46] but arguably, the most efficient form of neural operators is provided by the so-called Fourier

neural operators (FNOs) [44]. Both DeepONets and FNOs have been very successfully deployed in
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scientific computing [50, 56, 8, 48, 47, 66] and references therein. Finally, one can combine PINNs
and operator learning to design physics-informed DeepONets/FNOs [74, 47, 73, 22].

From a theoretical perspective, one needs to provide a rigorous guarantee that the learning framework
can approximate the underlying PDE solution (operator) to desired accuracy. More precisely, given
an error tolerance " > 0, we need to rigorously prove that the approximation error of the neural
network (operator) can be made smaller than ". For efficient approximation, one has to further
ensure that the computational complexity (measured in terms of the size) of the learning architecture
grows at most polynomially in "�1. In particular, exponential growth has to be ruled out. As neural
networks, DeepONets and FNOs are all universal approximators [13, 9, 49, 43, 38] of the underlying
functions or operators, it is possible to show that the approximation error can be made as small as
desired. However, these results do not guarantee efficient approximation as the underlying network
size could still grow exponentially with decreasing error, see [77] for neural networks in very high
spatial dimensions, [43] for DeepONets and [38] for FNOs. Hence, the real theoretical challenge
in this context lies in proving efficient approximation results for the different learning architectures
in scientific computing. Such efficient approximation results have mostly been obtained for neural
networks in the supervised learning setting e.g. [23, 36, 32, 4, 63] and references therein. In contrast,
there is a relative scarcity of such efficient approximation results for PINNs and operator learning
with notable exceptions being [25, 15, 16] (for PINNs), [43] (for DeepONets) and [38] (for FNOs).
Moreover, the underlying proofs in these works are often on a case-by-case basis and the overall
abstract structure is not clearly identified. Finally, no similar rigorous approximation results for
physics informed operator learning are available till date.

This paucity of generic efficient approximation results for PINNs and operator learning for PDEs sets
the stage for the current paper where our main contribution is to propose a very general framework

(Section 3) for proving bounds on the approximation error for space-time neural networks, PINNs,
DeepONets, FNOs and physics-informed DeepONets and FNOs for very general PDEs. Consequently,
we obtain the first rigorous bounds for physics-informed operator learning in literature. Our framework
is based on the observation that error estimates for different types of neural network architectures
can all be obtained from one another. As error estimates for neural network approximations of PDE
solutions at a fixed time are the easiest to obtain, and hence constitute the largest proportion of
currently available estimates, we devote particular attention to demonstrating how these available
estimates can be used to obtain novel bounds on the approximation error for space-time networks,
PINNs and (physics-informed) operator learning. Our results provide a roadmap for deriving
mathematical guarantees for deep learning methods in scientific computing by simplifying the proofs,
as the needed work essentially reduces to verifying a small number of assumptions. We demonstrate
how the generic error bounds from Section 3 can be applied in practice in Section 4, among others
by giving short alternative proofs for known results and also proving a number of novel results.
In particular, we show in Section 4.1 that PINNs can overcome the curse of dimensionality for
nonlinear parabolic PDEs such as the Allen-Cahn equation i.e., that the network size does not grow
exponentially with increasing spatial dimension. Moreover, dimension-independent convergence
rates are also obtained for (physics-informed) DeepONets and FNOs, provided that the PDE solutions
are sufficiently smooth. These are the first results of their kind. We note that many of the proofs and
some examples are deferred to the supplementary material (SM).

2 Preliminaries

2.1 Setting

Given T > 0 and D ⇢ Rd compact, consider the function u : [0, T ] ⇥D ! Rm, for m � 1, that
belongs to a function space H and solves the following (time-dependent) PDE,

La(u)(t, x) = 0 and u(x, 0) = u0 8(t, x) 2 [0, T ]⇥D, (2.1)

where u0 2 Y ⇢ L2(D) is the initial condition and La: H ! L2([0, T ]⇥D) is a differential
operator that can depend on a parameter (function) a 2 Z ⇢ L2(D). In our notation, we will often
suppress the dependence of L := La on a for simplicity. Depending on the context, one might
want to recover one of the following mathematical objects: for fixed a and u0, one might want to
approximate u(T, ·) or u(·, ·) with a neural network; a more challenging task would be to learn
the solution operator G : X ! L2(⌦) : v 7! u, where v 2 {u0, a}, X 2 {Y,Z} and ⌦ = D or
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⌦ = [0, T ] ⇥ D. We will use this notation consistently throughout the paper, see SM A.1 for an
overview.

2.2 Approximating PDEs with neural networks

Neural networks A (feedforward) neural network u✓ : Rd0 ! RdL is defined as a concatenation
of affine maps Al : Rdl�1 ! Rdl : z 7! Wlz + bl and an activation function � : R ! R that is
applied component-wise, resulting in,

u✓(y) = AL � � �AL�1 . . . . . . . . . � � �A2 � � �A1(y). (2.2)
The weights and biases of the affine maps ✓ = {Wl, bl}1lL are the trainable parameters. We will
quantify the size of a neural network by its depth(u✓) := L and its width(u✓) := maxl dl. In order
to obtain a neural network that approximates the solution u of PDE (2.1) at time t = T , one chooses
the parameters of u✓ : D ! R such that a discretization (quadrature) of J (✓) = ku(T )� u✓kL2(D)
is minimized. The training data is acquired from either measurements or potentially expensive
simulations.

PINNs Physics-informed neural networks (PINNs) are neural networks that are trained with a
different, residual-based loss function. As the PDE solution u satisfies L(u) = 0, the goal of
physics-informed learning is to find a neural network u✓ : [0, T ] ⇥ D ! R for which the PDE
residual is approximately zero, L(u✓) ⇡ 0. To ensure uniqueness, one also needs to require that the
initial condition is satisfied i.e., u✓(0, x) ⇡ u0(x), and similarly for boundary conditions. In practice
one minimizes a quadrature approximation of J (✓) = kL(u✓)k2L2([0,T ]⇥D) + ku✓(0, ·)� u0k2L2(D),
where additional terms can be added to (approximately) impose boundary conditions and augment
the loss function using data. A desirable property of PINNs is that only very little or even no training
data is needed to construct the loss function.

Operator learning In order to approximate operators, one needs to allow the input and output of
the learning architecture to be infinite-dimensional. A possible approach is to use deep operator

networks (DeepONets), as proposed in [9, 49]. Given m, fixed sensor locations {xj}mj=1 ⇢ D
and the corresponding sensor values {v(xj)}mj=1 as input, a DeepONet can be formulated in terms
of two (deep) neural networks: a branch net � : Rm ! Rp and a trunk net ⌧ : D ! Rp+1.
The branch and trunk nets are then combined to approximate the underlying nonlinear operator
as the following DeepONet G✓ : X ! L2(D), with G✓(v)(y) = ⌧0(y) +

P
p

k=1 �k(v)⌧k(y). A
second approach is that of neural operators, which generalize hidden layers by including a non-local
integral operator [45], of which particularly Fourier neural operators (FNOs) [44] are already well-
established. The practical implementation (i.e. discretization) of an FNO maps from and to the space
of trigonometric polynomials of degree at most N 2 N, denoted by L2

N
, and can be identified with

a finite-dimensional mapping that is a composition of affine maps and nonlinear layers of the form
Ll(z)j = �(Wlvj + bl,jF�1

N
(Pl(k) · FN (z)(k)j)), where the Pl(k) are coefficients that define a

non-local convolution operator via the discrete Fourier transform FN , see [38].

Physics-informed operator learning Both DeepONets and FNOs are trained by choosing a suitable
probability measure µ on X and minimizing a quadrature approximation of J (✓) = kG✓(v) �
G(v)kL2

µ⇥dx(X⇥⌦). Generating training sets might require many calls to an expensive PDE solver,
leading to an enormous computational cost. In order to reduce or even fully eliminate the need
for training data, physics-informed operator learning has been proposed in [74] for DeepONets
and in [47] for FNOs. Similar to PINNs, the training procedure aims to minimize a quadrature
approximation of J (✓) = kL(G✓)kL2

µ⇥dx(X⇥⌦).

3 General results

We propose a framework to obtain bounds on the approximation error for the various neural network
architectures introduced in Section 2.2. Figure 1 visualizes how different types of error estimates can
be obtained from one another. Every box shows the name of the network architecture, the form of the
relevant loss and the theorem which proves the corresponding estimate for the approximation error.
Every arrow in the flowchart represents a proof technique that allows one to transfer an error estimate
from one type of method to another (see caption of Figure 1 for an overview of those techniques).
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Neural network (fixed time)��u(T )� u✓(T )
��
Lq(D)

< "

Assumed to be known

FNO

kG � G✓kL2(X⇥D) < "
Theorem 3.7

DeepONet

kG � G✓kL2(X⇥D) < "
Corollary 3.8

Neural network (space-time)
ku� u✓kLq([0,T ]⇥D) < "

Theorem 3.5

PINN��L(u✓)
��
Lq([0,T ]⇥D)

< "

Theorem 3.5

Physics-informed FNO��L(G✓)
��
L2(X⇥⌦)

< "

Theorem 3.9

Physics-informed DeepONet��L(G✓)
��
L2(X⇥⌦)

< "

Theorem 3.9 & 3.10

A

B

B B

C

C

D

D

Figure 1: Flowchart of the structure of the results in this paper, with q 2 {2,1}. The letters reflect
the techniques used in the proofs: A uses Taylor approximations (Section 3.1), B is based on finite
difference approximations (Section 3.1), C uses trigonometric polynomial interpolation (Section 3.2)
and D uses the connection between FNOs and DeepONets (Section 3.2).

We give particular attention to the case where it is known that a neural network can efficiently
approximate the solution to a time-dependent PDE at a fixed time. Such neural networks are usually
obtained by emulating a classical numerical method. Examples include finite difference schemes,
finite volume schemes, finite element methods, iterative methods and Monte Carlo methods, e.g.
[36, 63, 10, 57]. More precisely, for " > 0, we assume to have access to an operator U" : X⇥[0, T ] !
H that for any t 2 [0, T ] maps any initial condition/parameter function v 2 X to a neural network
U"(v, t) that approximates the PDE solution G(v)(·, t) = u(·, t)2 Lq(D), q 2 {2,1}, at time t, as
specified below. Moreover, we will assume that we know how its size depends on the accuracy ".
Explicit examples of the operator U" will be given in Section 4 and SM C.
Assumption 3.1. Let q 2 {2,1}. For any B, " > 0, ` 2 N, t 2 [0, T ] and any v 2 X with

kvk
C`  B there exist a neural network U"(v, t) : D ! R and a constant CB

",`
> 0 s.t.

��U"(v, t)� G(v)(·, t)
��
Lq(D)

 " and max
t2[0,T ]

��U"(v, t)
��
W `,q(D)

 CB

",`
. (3.1)

Remark 3.2. For vanilla neural networks and PINNs one can set X := {v}, G(v) := u and v := u0

or v := a in Assumption 3.1 above and Assumption 3.4 below.

Under this assumption, we prove the existence of space-time neural networks and PINNs that
efficiently approximate the PDE solution (Section 3.1), as well as FNOs and DeepONets (Section
3.2) and physics-informed FNOs and DeepONets (Section 3.3). Finally, we also prove a general
result on the generalization error (Section 3.4).

3.1 Estimates for (physics-informed) neural networks

We will construct a space-time neural network u✓ for which both ku✓ � ukLq([0,T ]⇥D) and the PINN
loss kL(u✓)kLq([0,T ]⇥D) are small. To accurately approximate the time derivatives of u we emulate
Taylor expansions, whereas for the spatial derivatives we employ finite difference (FD) operators
in our proofs. Depending on whether forward, backward or central differences are used, a FD
operator might not be defined on the whole domain D, e.g. for f 2 C([0, 1]) the (forward) operator
�+

h
[f ] := f(x+ h)� f(x) is not well-defined for x 2 (1� h, 1]. This can be solved by resorting

to piecewise-defined FD operators, e.g. a forward operator on [0, 0.5] and a backward operator on
(0.5, 1]. In a general domain ⌦ one can find a well-defined piecewise FD operator if ⌦ satisfies the
following assumption, which is satisfied by many domains (e.g. rectangular, smooth).
Assumption 3.3. There exists a finite partition P of ⌦ such that for all P 2 P there exists "P > 0 and

vP 2 B1
1 = {x 2 Rdim(⌦) : kxk1  1} such that for all x 2 P it holds that x+"P (vP +B1

1) ⇢ ⌦.

Additionally, we need to assume that the PINN error can be bounded in terms of the errors related to
all relevant partial derivatives, denoted by D(k,↵) := Dk

t
D↵

x
:= @k

t
@↵1
x1

. . . @↵d
xd

, for (k,↵) 2 Nd+1
0 .
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This assumption is valid for many classical solutions of PDEs. A few worked out examples can be
found in SM D.5 (gravity pendulum) and SM D.6 (Darcy flow).
Assumption 3.4. Let k, ` 2 N, q 2 {2,1}, C > 0 be independent from d. For all v 2 X it holds,

��L(G✓(v))
��
Lq([0,T ]⇥D)

 C · poly(d) ·
X

(k0
,↵)2Nd+1

0

k
0k,k↵k1`

���D(k0
,↵)(G � G✓)

���
Lq([0,T ]⇥D)

. (3.2)

In this setting, we prove the following approximation result for space-time networks and PINNs.
Theorem 3.5. Let s, r 2 N, let u 2 C(s,r)([0, T ] ⇥ D) be the solution of the PDE (2.1) and let

Assumption 3.1 be satisfied. There exists a constant C(s, r) > 0 such that for every M 2 N and

", h > 0 there exists a tanh neural network u✓ : [0, T ]⇥D ! R for which it holds that,

ku✓ � uk
Lq([0,T ]⇥D)  C(kuk

C(s,0)M�s + "). (3.3)

and if additionally Assumption 3.3 and Assumption 3.4 hold then,

��L(u✓)
��
L2([0,T ]⇥D)

+ ku✓ � uk
L2(@([0,T ]⇥D))

 C · poly(d) · lnk(M)(kuk
C(s,`)Mk�s +M2k("h�` + CB

",`
hr�`)).

(3.4)

Moreover, depth(u✓)  C · depth(U") and width(u✓)  CM · width(U").

Proof. We only provide a sketch of the full proof (SM B.2). The main idea is to divide [0, T ] into M
uniform subintervals and construct a neural network that approximates a Taylor approximation in time
of u in each subinterval. In the obtained formula, we approximate the monomials and multiplications
by neural networks (SM A.7) and approximate the derivatives of u by finite differences and use
(A.2) of SM A.2 to find an error estimate in Ck([0, T ], Lq(D))-norm. We use again finite difference
operators to prove that spatial derivatives of u are accurately approximated as well. The neural
network will also approximately satisfy the initial/boundary conditions as ku✓ � ukL2(@([0,T ]⇥D)) .
Cpoly(d)ku✓ � ukH1([0,T ]⇥D), which follows from a Sobolev trace inequality.

We note that the bounds (3.3) and (3.4) together imply that there exists a neural network for which
the total error as well as the PINN loss can be made as small as possible, providing a solid theoretical
foundation to PINNs for approximating the PDE (2.1).

3.2 Estimates for operator learning

In this section, we use Assumption 3.1 to prove estimates for DeepONets and FNOs. First, we prove
a generic error estimate for FNOs. Using the known connection between FNOs and DeepONets
(SM Lemma B.6) this result can then easily be applied to DeepONets (Corollary 3.8). In order to
prove these error estimates, we need to assume that the operator U" from Assumption 3.1 is stable
with respect to its input function, as specified in Assumption 3.6 below. Moreover, we will take the
d-dimensional torus as domain D = Td = [0, 2⇡)d and assume periodic boundary conditions for
simplicity in what follows. This is not a restriction, as for every Lipschitz subset of Td there exists a
(linear and continuous) Td-periodic extension operator of which also the derivatives are Td-periodic
[38, Lemma 41].
Assumption 3.6. Assumption 3.1 is satisfied and let p 2 {2,1}. For every " > 0 there exists a

constant C"

stab > 0 such that for all v, v0 2 X it holds that,

��U"(v, T )� U"(v0, T )
��
L2  C"

stab

��v � v0
��
Lp . (3.5)

In this setting, we prove a generic approximation result for FNOs.
Theorem 3.7. Let r 2 N, T > 0, let G : Cr(Td) ! Cr(Td) be an operator that maps a function

u0 to the solution u(·, T ) of the PDE (2.1) with initial condition u0, let Assumption 3.6 be satisfied

and let p⇤ 2 {2,1} \ {p}. Then there exists a constant C > 0 such that for every " > 0, N 2 N
there is an FNO G✓ : L2

N
(Td) ! L2

N
(Td) of depth O(depth(U")) and width O(Ndwidth(U"))

with accuracy,

kG � G✓kL2  C("+ C"

stabBN�r+d/p
⇤
+ CCB

",r
N�r). (3.6)
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Proof. We give a sketch of the proof, details can be found in SM B.3. Given function values of v
on a uniform grid with grid size 1/N , we use trigonometric polynomial interpolation (SM A.6) to
reconstruct v and use this together with Assumption 3.1 to construct a neural network. The resulting
approximation is then projected onto the space L2

N
, of trigonometric polynomials of degree at most

N 2 N, again through trigonometric polynomial interpolation.

A recent result, [38, Theorem 36] (SM Lemma B.6), shows that any error bound for FNOs also
implies an error bound for DeepONets, by choosing the trunk nets as neural network approximations
of the Fourier basis. We apply this result with " ⇠ poly(1/N) to Theorem 3.7 to obtain the following
generic error bound for DeepONets.
Corollary 3.8. Assume the setting of Theorem 3.7. Then for every " > 0, N 2 N and ev-

ery corresponding FNO G✓ from Theorem 3.7 there exists a DeepONet G⇤
✓
: X ! L2(D) with

width(�) = O(Nd), depth(�) = O(depth(G✓)), width(⌧ ) = O(Nd+1) and depth(⌧ )  3 that

satisfies (3.6).

3.3 Estimates for physics-informed operator learning

Using the techniques from previous sections, we now present the very first theoretical result for
physics-informed operator learning. We demonstrate that if an error estimate for a DeepONet/FNO
and the growth of its derivatives are known (see SM D.1 on how to obtain these), then one can
prove an error estimate for the corresponding physics-informed DeepONet/FNO. For simplicity,
the following result focuses only on operators mapping to Cr(D) but the generalization to e.g.
Cr([0, T ]⇥D) is immediate by considering D0 := [0, T ]⇥D.
Theorem 3.9. Consider an operator G : X ! Cr(D), r 2 N, that satisfies Assumption 3.3 and

Assumption 3.4 with ` 2 N . Let �⇤ 2 (0,1], let �, C(�) > 0 with �  �⇤
and let � : N ! R be a

function such that for all p 2 N there is a DeepONet/FNO G✓ such that��G(v)� G✓(v)
��
L2(D)

 Cp��
and

��G✓(v)
��
Cr(D)

 Cp�(r) 8r 2 N, v 2 X . (3.7)

Then for all � 2 R with 0 < �  (r�`)�⇤�`�(r)
r

there exists a constant C⇤ > 0 such that for all

v 2 X and p 2 N it holds that ��L(G✓(v))
��
L2(D)

 C⇤p�� . (3.8)

Proof. For suitable D↵, use SM Lemma B.1 with q = 2, f1 = G(v) and f2 = G✓(v) together with
(3.7) to find ��D↵(G(v)� G✓(v))

��
L2(D)

 C(r,�)(p��h�` + p�(r)hr�`). (3.9)

Let � 2 R with 0 < �  (r�`)�⇤�`�(r)
r

. We carefully balance terms by setting h = p�
�(r)+�

r�` and
� = `

r�`
�(r) + r

r�`
� to find (3.8). Conclude using Assumption 3.4.

Finally, we use Theorem 3.5 to present an alternative error estimate for a physics-informed DeepONet
in the case that Assumption 3.1 is satisfied. As this assumption is different from assuming access
to an error bound for the corresponding DeepONet, it is interesting to use the techniques from the
previous sections rather than directly apply Theorem 3.9. The proof of the following theorem can be
found in SM B.4.
Theorem 3.10. Let s, r 2 N, T > 0, let G : Cr(Td) ! C(s,r)([0, T ] ⇥ Td) be an operator that

maps a function u0 to the solution u of the PDE (2.1) with initial condition u0, let Assumption 3.1

and Assumption 3.6 be satisfied and let p⇤ 2 {2,1} \ {p}. There exists a constant C > 0 such that

for every Z,N,M 2 N, ", ⇢ > 0 there is an DeepONet G✓ : Cr(Td) ! L2([0, T ] ⇥ Td) with Zd

sensors with accuracy,��G(v)� G✓(v)
��
L2([0,T ]⇥Td)

 CM⇢(kuk
C(s,0)M�s +Ms�1("+ C"

stabZ
�r+d/p

⇤
+ CCB

",r
N�r))

(3.10)
and if additionally Assumption 3.3 and Assumption 3.4 hold then,��L(G✓(v))

��
L2([0,T ]⇥Td)

 CMk+⇢(kuk
C(s,`)M�s+Ms�1N `("+C"

stabZ
�r+d/p

⇤
+CCB

",r
N�r)),

(3.11)
for all v. Moreover, it holds that, depth(�) = depth(U"), width(�) = O(M(Zd+Ndwidth(U"))),
depth(⌧ ) = 3 and width(⌧ ) = O(MNd(N + ln(N))).
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3.4 A posteriori bound on the generalization error

Although the main focus of this paper is on the approximation error for different neural network
architectures, we now demonstrate that it is possible to provide similar bounds for other sources of
error, such as the generalization error. We therefore prove a general a posteriori upper bound on
the generalization error of the all the considered neural network architectures. Consider f : D ! R
(an operator or function) and the neural network architecture f✓ : D ! R, ✓ 2 ⇥, which includes
all architectures of Section 2.2: neural networks (D = ⌦, f = u and f✓ = u✓), PINNs (D = ⌦,
f = 0 and f✓ = L(u✓)), operator learning (D = ⌦⇥ X , f = G and f✓ = G✓) and physics-informed
operator learning (D = ⌦ ⇥ X , f = 0 and f✓ = L(G✓)). Given a training set S = {X1, . . . Xn},
where {Xi}ni=1 are iid random variables on D (according to a measure µ), the training error ET and
generalization error EG are,

ET (✓,S)2 =
1

n

nX

i=1

��f(zi)� f✓(zi)
��2, EG(✓)2 =

ˆ
D

��f✓(z)� f(z)
��2dµ(z), (3.12)

where µ is a probability measure on D. The following theorem provides a computable a posteriori
error bound on the expectation of the generalization error for a general class of approximators. We
refer to e.g. [6, 16] for bounds on d⇥, c and L.
Theorem 3.11. For R > 0 and d⇥ 2 N, let ⇥ = [�R,R]d⇥ be the set of trainable parameters, and

for every training set S, let ✓⇤(S) 2 ⇥ be an (approximate) minimizer of ✓ 7! ET (✓,S)2, assume

that ✓ 7! EG(✓,S)2 and ✓ 7! ET (✓)2 are bounded by c > 0 and Lipschitz continuous with Lipschitz

constant L > 0. If n � 2c2e8/(2RL)d⇥/2
then it holds that

E
h
EG(✓⇤(S))2

i
 E

h
ET (✓⇤(S),S)2

i
+

r
2c2(d⇥ + 1)

n
ln
�
RL

p
n
�
. (3.13)

Proof. The proof (SM B.5) combines standard techniques, based on covering numbers and Hoeffd-
ing’s inequality, with an error composition from [16].

For any type of neural network architecture of depth L, width W and weights bounded by R, one
finds that d⇥ ⇠ LW (W + d). For tanh neural networks and operator learning architectures, one
has that ln(L) ⇠ L ln(dRW ), whereas for physics-informed neural networks and DeepONets one
finds that ln(L) ⇠ (k + `)L ln(dRW ) with k and ` as in Assumption 3.4 [43, 16]. Taking this into
account, one also finds that the imposed lower bound on n is not very restrictive. Moreover, the RHS
of (3.13) depends at most polynomially on L,W,R, d, k, ` and c. For physics-informed architectures,
however, upper bounds on c often depend exponentially on L [16, 14].
Remark 3.12. As Theorem 3.11 is an a posteriori error estimate, one can use the network sizes of

the trained networks for L, W and R. The sizes stemming from the approximation error estimates

of the previous sections can be disregarded for this result. Moreover, instead of considering the

expected values of EG and ET in (3.13), one can also prove that such an inequality holds with a

certain probability (see SM B.5).

4 Applications

We demonstrate the power and generality of the framework proposed in Section 3 by applying the
presented theory to the following case studies. First, we demonstrate how these generic bounds can
be used to overcome the curse of dimensionality (CoD) for linear Kolmogorov PDEs and nonlinear
parabolic PDEs (Section 4.1). These are the first available results that overcome the CoD for nonlinear
parabolic PDEs for PINNs and (physics-informed) operator learning. Next, we apply the results of
Section 3.3 to both linear and nonlinear operators and provide bounds on the approximation error for
physics-informed operator learning.

4.1 Overcoming the curse of dimensionality

For high-dimensional PDEs, it is not possible to obtain efficient approximation results using standard
neural network approximation theory [77, 15] as they will lead to convergence rates that suffer
from the CoD, meaning that the neural network size scales exponentially in the input dimension.
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In literature, one has shown for some PDEs that their solution at a fixed time can be approximated
to accuracy " > 0 with a network that has size O(poly(d)"��), with � > 0 independent of d, and
therefore overcomes the CoD.

Linear Kolmogorov PDEs We consider linear time-dependent PDEs of the following form.
Setting 4.1. Let s, r 2 N, u0 2 C2

0 (Rd) and let u 2 C(s,r)([0, T ]⇥ Rd) be the solution of

L(u)(x, t) = @tu(x, t)�
1

2
Tr(�(x)�(x)T�x[u](x, t))� µ(x)Trx[u](x, t) = 0, u(0, x) = u0(x)

(4.1)
for all (x, t) 2 D ⇥ [0, T ], where � : Rd ! Rd⇥d

and µ : Rd ! Rd
are affine functions and for

which kuk
C(s,2) grows at most polynomially in d. For every " > 0, there is a neural network bu0 of

width O(poly(d)"��) such that ku0 � bu0kL1(Rd) < ".

Prototypical examples of such linear Kolmogorov PDEs include the heat equation and the Black-
Scholes equation. In [23, 7, 36] the authors construct a neural network that approximates u(T ) and
overcomes the CoD by emulating Monte-Carlo methods based on the Feynman-Kac formula. In
[16] one has proven that PINNs overcome the CoD as well, in the sense that the network size grows
as O(poly(d⇢d)"��), with ⇢d as defined in SM (C.10). For a subclass of Kolmogorov PDEs it is
known that ⇢d = poly(d), such that the CoD is fully overcome.

We demonstrate that the generic bounds of Section 3 (Theorem 3.5) can be used to provide a much
shorter proof for this result. SM Lemma C.6 verifies that Assumption 3.1 is indeed satisfied. The full
proof can be found in SM C.2.
Theorem 4.2. Assume that Setting 4.1 holds. For every �, " > 0 and d 2 N, there is a tanh neural

network u✓ of depth O(depth(bu0)) and width O(poly(d⇢d)"
�(2+�) r+�

r�2
s+1
s�1�

1+�
s�1 ) such that,

��L(u✓)
��
L2([0,T ]⇥[0,1]d)

+ ku✓ � uk
L2(@([0,T ]⇥[0,1]d))  ". (4.2)

Nonlinear parabolic PDEs Next, we consider nonlinear parabolic PDEs as in Section 4.3, which
typically arise in the context of nonlinear diffusion-reaction equations that describe the change in
space and time of some quantities, such as in the well-known Allen-Cahn equation [1].
Setting 4.3. Let s, r 2 N and for u0 2 X ⇢ Cr(Td) let u 2 C(s,r)([0, T ]⇥ Td) be the solution of

L(u)(x, t) = @tu(t, x)��xu(t, x)� F (u(t, x)) = 0, u(0, x) = u0(x), (4.3)
for all (t, x) 2 [0, T ]⇥D, with period boundary conditions, where F : R ! R is a polynomial and

for which kuk
C(s,2) grows at most polynomially in d. For every " > 0, there is a neural network bu0 of

width O(poly(d)"��) such that ku0 � bu0kL1(Td) < ". Let µ, resp. µ⇤
, be the normalized Lebesgue

measure on [0, T ]⇥ Td
, resp. @([0, T ]⇥ Td).

In [32] the authors have proven that ReLU neural networks overcome the CoD in the approximation
of u(T ). We have reproven this result in SM Lemma C.14 for tanh neural networks to show that
Assumption 3.1 is satisfied. Using Theorem 3.5 we can now prove that PINNs overcome the CoD for
nonlinear parabolic PDEs. The proof is analogous to that of Theorem 4.2.
Theorem 4.4. Assume Setting 4.3. For every �, " > 0 and d 2 N there is a tanh neural network u✓

of depth O(depth(bu0) + poly(d) ln
�
1/"

�
) and width O(poly(d)"�(2+�) r+�

r�2
s+1
s�1�

1+�
s�1 ) such that,

��L(u✓)
��
L2([0,T ]⇥Td,µ)

+ ku� u✓kL2(@([0,T ]⇥Td,µ⇤))  ". (4.4)

Similarly, one can use the results from Section 3.2 to obtain estimates for (physics-informed)
DeepONets for nonlinear parabolic PDEs (4.3) such as the Allen-Cahn equation. In particular, a
dimension-independent convergence rate can be obtained if the solution is smooth enough, which
improves upon the result of [43], which incurred the CoD. For simplicity, we present results for C(2,r)

functions, rather than C(s,r) functions, as we found that assuming more regularity did not necessarily
further improve the convergence rate. The proof is given in SM B.4.
Theorem 4.5. Assume Setting 4.3 and let G : X ! Cr(Td) : u0 7! u(T ) and G⇤ : X !
C(2,r)([0, T ]⇥ Td) : u0 7! u. For every �, " > 0, there exists a DeepONets G✓ and G⇤

✓
such that

kG � G✓kL2(Td⇥X )  ",
��L(G⇤

✓
)
��
L2([0,T ]⇥Td⇥X )

 ". (4.5)
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Moreover, for G✓ we have O("�
d+�
r ) sensors and,

width(�) = O("�
(d+�)(2+�)

r ), depth(�) = O(ln
�
1/"

�
),

width(⌧ ) = O("�
d+1+�

r ), depth(⌧ ) = 3,
(4.6)

whereas for G⇤
✓

we have O("�
(3+�)d
r�2 ) sensors and,

width(�) = O("�1� (3+�)(d+r(2+�))
r�2 ), depth(�) = O(ln

�
1/"

�
),

width(⌧ ) = O("�1� (3+�)(d+1)
r�2 ), depth(⌧ ) = 3.

(4.7)

4.2 Error bounds for physics-informed operator learning

We demonstrate how Theorem 3.9 can be used to generalize available error estimates for DeepONets
and FNOs, e.g. [43, 38] and SM D.1, to estimates for their physics-informed counterparts.

Linear operators In the simplest case, the operator G of interest is linear. In [43, Theorem D.2], a
general error bound for ReLU DeepONets for linear operators has been established, which still holds
for tanh DeepONets. Using Theorem 3.9 it is then straightforward to prove convergence rates for
physics-informed DeepONets for solution operators of linear PDEs (2.1).

Consider an operator G : X ! L2(Td) : v 7! u as in Section 2.1, where v is the parameter/initial
condition and u the solution of the PDE (2.1). Following [43], we fix the measure µ on L2(Td) as
a Gaussian random field, such that v allows the Karhunen-Loève expansion v =

P
k2Zd ↵kXkek,

where |↵k|  exp
�
�`|k|

�
with ` > 0, the Xk ⇠ N (0, 1) are iid Gaussian random variables

and {ek}k2Zd is the standard Fourier basis (SM A.5). In this setting, we can prove the following
approximation result, the proof of which can be found in SM D.3. The result can be generalized to
other data distributions µ for which a convergence result for DeepONets can be proven, as in [43].
Theorem 4.6. Assume the setting above and that of Assumption 3.4, and assume that G(v) 2
C`+1(Td) for all v 2 X . For all � > 0 there exists a constant C > 0 such that for any p 2 N there

exists a DeepONet G✓ with p sensors and branch and trunk nets such that

��L(G✓))
��
L2(L2(Td),µ)

 Cp�� . (4.8)

Moreover, size(⌧ )  Cp
d+1
d , depth(⌧ ) = 3, size(�)  p and depth(�) = 1.

Nonlinear operators For nonlinear PDEs a general result like Theorem 4.6 can not be obtained
from the currently available tools. Instead one needs to use Theorem 3.9 for every PDE of interest on
a case-by-case basis. In the SM, we demonstrate this for a nonlinear ODE (gravity pendulum with
external force, SM D.5) and an elliptic PDE (Darcy flow, SM D.6).

5 Related work and discussion

This is the first paper to rigorously expose the connections between the different deep learning
frameworks from Section 2.2 for generic PDEs. Until now, most available results focus on providing
generic results for one specific method. In [31] and [24] one uses neural networks that approxi-
mate solutions to a generic ODE/PDE at a fixed time to construct space-time neural networks. A
generalization to PINNs is not immediate as the proof involves the emulation of the forward Euler
method. We have overcome this difficulty by constructing space-time neural networks using Taylor
expansions instead (Theorem 3.5). To bound the approximation error of PINNs one can use the
generic error bounds in Sobolev norms of e.g. [25, 26] for very general activation functions or the
more concrete bounds [15] for tanh neural networks. In both approaches, the only assumption is that
the solution of the PDE has sufficient Sobolev regularity. As a consequence, these results incur the
curse of dimensionality and are not applicable to high-dimensional PDEs. The authors of [15] analyze
PINNs based on three theoretical questions related to approximation, stability and generalization.
Other theoretical analyses of PINNs include e.g. [71, 72, 30]. For DeepONets, convergence rates for
advection-diffusion equations are presented in [17] and a clear workflow for obtaining generic error
estimates as well as worked out examples can be found in [43]. Similar results are obtained for FNOs
in [38]. A comprehensive comparison of DeepONets and FNOs is the topic of [50]. To the best of
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the authors’ knowledge, no theoretical results for physics-informed operator learning are currently
available. Unrelated to the approximation error, we also report generic bounds on the expected value
of the generalization error of all the aforementioned deep learning architectures, in the form of an a
posteriori error estimate on the generalization error.

A second goal of the paper is to prove that deep learning-based frameworks can overcome the curse
of dimensionality (CoD). PDEs for which the curse of dimensionality has been overcome include
linear Kolmogorov PDEs e.g. [23, 36], nonlinear parabolic PDEs [32] and elliptic PDEs [4, 10, 57].
By assuming that the initial data lies in a Barron class, the authors of [52] proved for elliptic PDEs
that the Deep Ritz Method [20] can overcome the CoD. Since the Barron class is a Banach algebra
[10] it is possible that our results, which mostly only involve multiplications and additions of neural
networks, can be extended to Barron functions. For PINNs, it is proven that they can overcome
the CoD for linear Kolmogorov PDEs [16]. We give an alternative proof of this result, improve
the convergence rate (Theorem 4.2) and additionally prove that PINNs can also overcome the CoD
for nonlinear parabolic PDEs (Theorem 4.4). DeepONets and FNOs can overcome the CoD in
many cases [43, 38] but we note that this does not yet include nonlinear parabolic PDEs such as the
Allen-Cahn equation. In Theorem 4.5 we prove that dimension-independent convergence rates can be
obtained if the solution is sufficiently regular. Similar results are expected to hold for e.g. elliptic
PDEs by using the results from [4, 10, 57].

It is evident that the generic bounds presented here can only be obtained under suitable assumptions.
These should always be checked to prevent misleading claims about mathematical guarantees for
the considered deep learning methods. We briefly discuss how restrictive these are and whether
they can be relaxed. Assuming the existence of a neural network that approximates the solution
of PDE at a fixed time (Assumption 3.1) is of course essential, but such a result can usually be
obtained by emulating an existing numerical method. Proving a bound on the Sobolev norm of
that network is always possible as we only consider smooth networks. Assumption 3.3 holds for
many domains, including rectangular and smooth ones. Assumption 3.4 and Assumption 3.6 also
hold for a very broad class of PDEs, much like the assumption on the size of the neural network
approximation in Setting 4.1 and 4.3 holds for most functions of interest. Therefore, the assumption
that the PDE solution is C(s,r)-regular seems to be the most restrictive. However, results like Theorem
3.5 could be extended to e.g. Sobolev regular functions by using the Bramble-Hilbert lemma instead
of Taylor expansions. Another restriction is that we exclusively focused on neural networks with the
tanh activation function. This was only for simplicity of exposition. All results still hold for other
sigmoidal activation functions, as well as more general smooth activation functions, which might
give rise to slightly different convergence rates. A last restriction is that the obtained rates are not
optimal, but this is not the goal of our framework. In particular, for PINNs for low-dimensional PDEs
it is beneficial to use e.g. [26, 15].

Optimizing the obtained convergence rates and comparing with optimal ones is one direction for
future research. Previously mentioned possibilities include extending to more general activation
functions and less regular functions. Another direction is to make the connection between our results
and that of [10] where they prove that Barron spaces are Banach algebras and use this to obtain
dimension-independent convergence rates for PDEs with initial data in a Barron class by emulating
numerical methods.

Here, we have considered the approximation and generalization errors in the present analysis. It is
clear that the bounds on the generalization error may not be sharp, as in traditional deep learning.
Obtaining sharper bounds will be an interesting topic for further investigation. Finally, there is no
explicit bound on the training (optimization) errors. Obtaining such bounds will be considered in the
future.
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