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Abstract

The logit outputs of a feedforward neural network at initialization are condition-
ally Gaussian, given a random covariance matrix defined by the penultimate layer.
In this work, we study the distribution of this random matrix. Recent work has
shown that shaping the activation function as network depth grows large is neces-
sary for this covariance matrix to be non-degenerate. However, the current infinite-
width-style understanding of this shaping method is unsatisfactory for large depth:
infinite-width analyses ignore the microscopic fluctuations from layer to layer, but
these fluctuations accumulate over many layers.
To overcome this shortcoming, we study the random covariance matrix in the
shaped infinite-depth-and-width limit. We identify the precise scaling of the acti-
vation function necessary to arrive at a non-trivial limit, and show that the random
covariance matrix is governed by a stochastic differential equation (SDE) that we
call the Neural Covariance SDE. Using simulations, we show that the SDE closely
matches the distribution of the random covariance matrix of finite networks. Addi-
tionally, we recover an if-and-only-if condition for exploding and vanishing norms
of large shaped networks based on the activation function.

1 Introduction

Of the many milestones in deep learning theory, the precise characterization of the infinite-width
limit of neural networks at initialization as a Gaussian process with a non-random covariance ma-
trix [1, 2] was a turning point. The so-called Neural Network Gaussian process (NNGP) theory
laid the mathematical foundation to study various limiting training dynamics under gradient descent
[3–12]. The Neural Tangent Kernel (NTK) limit formed the foundation for a rush of theoretical
work, including advances in our understanding of generalization for wide networks [13–15]. Be-
sides the NTK limit, the infinite-width mean-field limit was developed [16–19], where the different
parameterization demonstrates benefits for feature learning and hyperparameter tuning [20–22].

Fundamentally, the infinite-width paradigm derives results from the assumption that the depth of the
network is held fixed while the widths of all layers grow to infinity. Unfortunately, this assumption
can be problematic for modeling real-world networks, as the microscopic fluctuations from layer to
layer are neglected in this limit (see Figure 1). In particular, infinite-width predictions are shown to
be poor approximations of real networks unless the depth is much less than the width [23, 24].

Impressive achievements of deep networks with billions of parameters crystallize the importance of
understanding extremely large, deep neural networks (DNNs). An alternative to the infinite-width
paradigm is the infinite-depth-and-width paradigm. In this setting, both the network depth d and the
width n of each layer are simultaneously scaled to infinity, while their relative ratio d/n remains
fixed [23, 25–29]. Recent work also explores using d/n as an effective perturbation parameter [30–
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(Left Column) Unshaped ReLU DNNs, see (2.1)
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(Right Column) Shaped ReLU DNNs, see Definition 3.1
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Figure 1: Simulations of correlation ραβℓ =
⟨φα

ℓ ,φβ
ℓ ⟩

|φα
ℓ ||φβ

ℓ |
between post-activation vectors in ReLU net-

works, comparing finite NNs vs. our theoretical predictions vs. infinite-width paradigm. Left Col-
umn: ραβℓ vs. our Markov chain (2.10) vs. infinite-width update ρℓ+1 = cK1(ρℓ) (see (2.10) and
note the log scale and 1− ρ here). Right Column: ραβ⌊tn⌋ vs. our Neural Covariance SDE vs. ODE
dρt = ν(ρt) dt (see Theorem 3.3). Top Row: Median ρ as a function of layer. Bottom Row: Full
distribution at final layer ℓ = d. Simulation details: n = d = 150, ρ0 = 0.3, 213 samples for each.
In right column: c+ = 0, c− = −1, DE step size 1e−2. Densities from kernel density estimation.

33] or to study concentration bounds in terms of d/n [5, 34]. This limit has the distinct advantage of
being incredibly accurate at predicting the output distribution for finite size networks at initialization
[27] — a significant improvement over the NNGP theory. Furthermore, it has also been shown that
there is feature learning in this limit [23], in contrast to the linear regime of infinite-width limits [8].
Considering the mathematical success of the NNGP techniques, the infinite-depth-and-width limit
hints at the possibility of developing an accurate theory for training and generalization.

An immediate issue of the infinite-depth limit is that this limit predicts that network output becomes
degenerate as depth increases: on initialization the network becomes a constant function sending all
inputs to the same (random) output [35, 36, 33]. While degenerate outputs are not necessarily an
issue in theory, it poses a more serious problem in practice: degenerate correlations imply a “sharp”
input–output Jacobian, and therefore exploding gradients [37, 25]. Intuitively, the output is not very
sensitive to changes in the input, hence the gradient must be very large in the earlier layers.

A promising new attack on this problem is to modify the activation function (“shaping”) to reduce
to the effect of degeneracy [38, 39]. In this prior work, extensive experiments show that shaping
the activation significantly improves training speed without the need for normalization layers. This
method has been proven effective for problems as large as standard ResNets on ImageNet data. The
authors designed several criteria including reducing estimated output correlation, and numerically
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Notation Description Notation Description
nin ∈ N Input dimension nout ∈ N Output dimension
n ∈ N Hidden layer width d ∈ N Number of hidden layers (depth)
φ(·) Base activation φs(·) Shaped activation
xα ∈ Rnin Input for 1 ≤ α ≤ m W0 ∈ Rnin×n Weight matrix at layer 0
zαout ∈ Rnout Network output Wout ∈ Rn×nout Weight matrix at final layer
zαℓ ∈ Rn Neurons (pre-activation)

for layer 1 ≤ ℓ ≤ d
Wℓ ∈ Rn×n Weight matrix at layer 1 ≤ ℓ ≤ d

All weights initialized iid ∼ N (0, 1)
φα

ℓ ∈ Rn Neurons (post-activation)
for layer 1 ≤ ℓ ≤ d

c ∈ R Normalizing constant
c :=

(
Eφ(g)2

)−1 for g ∼ N (0, 1)

Table 1: Notation

optimized the shape of activation functions for improved training results. However, their determin-
istic estimation of output correlation using the infinite-width limit leads to a poor approximation of
real networks, as the additional randomness has both non-zero mean and heavy skew (see Figure 1
right column). Furthermore, numerically searching for the activation shape obscures the picture on
how shaping should depend on the network depth and width.

In this paper, we address these problems by providing a precise theory of shaped infinite-depth-
and-width networks, extending both the NNGP theories and the activation shaping techniques. In
particular, we prescribe an exact scaling of the activation function shape as a function of network
width n that leads to a non-trivial nonlinear limit. By keeping track of microscopic O(n−1/2) ran-
dom fluctuations in each layer of the network, we show that the cumulative effect is described by a
stochastic differential equation (SDE) in the limit. In contrast to existing infinite-width theory, we
are able to characterize the random distribution of the output covariance, which matches closely to
simulations of real networks. In a similar spirit to how the NNGP theory laid the foundation for
studying training and generalization in the infinite-width limit, we also see this work as building the
mathematical tools for an infinite-depth-and-width theory of training and generalization.

1.1 Contributions

Similar to the NNGP approach, we use the fact that the output is Gaussian conditional on the penul-
timate layer. However, unlike in the infinite-width paradigm, the covariance matrix is no longer
deterministic in the infinite-depth-and-width limit. Our focus in this paper is to study this random
covariance matrix. Our main contributions are as follows:

1. We introduce the tool of stochastic
√
n-expansions and convergence to SDEs for analyzing the

distribution of covariances in DNNs.
2. For unshaped ReLU-like activations, we show that the norm of each layer evolves according to

geometric Brownian motion and correlations evolve according to a discrete Markov process. See
left column of Figure 1 and Section 2.

3. For both ReLU-like and a large class of smooth activation functions, we derive the Neural Covari-
ance SDE characterizing the distribution of the shaped infinite-depth-and-width limit. See right
column of Figure 1 and Section 3.

4. We show our prescribed shape scaling is exact, as other rates of scaling leads to either degenerate
or linear network limits. See Proposition 3.4 and Proposition 3.10.

5. For smooth activations, we derive an if-and-only-if condition for exploding/vanishing norms based
on properties of the activation function. See Proposition 3.7 and Section 4.

6. We provide simulations to verify theoretical predictions and help interpret properties of real DNNs.
See Figures 1 and 2 and supplemental simulations in Appendix F.

2 Limits for Unshaped ReLU-Like Activations

Using the notation in Table 1, the output of a fully connected feedforward network with d hidden
layers of width n on input xα is defined by vectors of pre-activations zαℓ and post-activations φα

ℓ :

zα1 :=
1

√
nin

W0x
α, φα

ℓ := φ(zαℓ ), zαℓ+1 :=

√
c

n
Wℓφ

α
ℓ , zαout :=

√
c

n
Woutφ

α
d . (2.1)
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Note that factors of
√
cn−1 are equivalent to intializing according to the so-called He initialization

[40]. We use Greek indices α, β, . . . to denote multiple different inputs. Note that while our results
are all stated for fixed width n in each layer, they can be generalized to layer width nℓ in the limit
where all nℓ → ∞ with

∑d
ℓ=1 nℓ

−1 replacing the role of the depth-to-width ratio d/n [25].

In this section, we analyze ReLU-like activations by which we mean activations which are linear on
the negative and positive numbers given respectively by two slopes s+ and s−:

φ(x) := s+ max(x, 0) + s− min(x, 0) = s+φReLU(x)− s−φReLU(−x) . (2.2)

These are precisely the positive homogeneous functions: φ(ax) = |a|φ(x) ∀x, a ∈ R.

2.1 SDE Limits of Markov Chains

We briefly review the main type of SDE convergence principle used in our main results (see Propo-
sition A.6 for a more precise version). Let Xt, t ∈ R+, be a continuous time diffusion process
obeying an SDE with drift b and variance σ2 as given in (2.3). Suppose that for each n ∈ N, Y n

ℓ is a
discrete time Markov chain ℓ ∈ N whose increments obey (2.3) in terms of the same functions b, σ2:

dXt = b(Xt) dt+ σ(Xt) dBt , Y n
ℓ+1 − Y n

ℓ = b(Y n
ℓ )

1

n
+ σ(Y n

ℓ )
ξℓ√
n
+O(n−3/2), (2.3)

where ξℓ are independent variables with E(ξℓ) = 0,Var(ξℓ) = 1. With this setup, under technical
conditions described precisely in Appendix A, we have convergence of Yℓ at ℓ = ⌊tn⌋ to Xt, or
more precisely: with Xn

t := Y n
⌊tn⌋ we have Xn → X as n → ∞ in the Skorohod topology. In

our applications, n is always the width (i.e., number of neurons in each layer) which may appear
implicitly and ℓ is always the layer number.

2.2 A Simple SDE: Geometric Brownian Motion Describes |φα
ℓ |

2

To motivate our approach of SDE limits, we illustrate the method using the example of the squared
norm of the ℓ-th layer, |φα

ℓ |2, where we recall φα
ℓ = φ(zαℓ ). For a single fixed input xα and a ReLU-

like activation φ, the norm of the post-activation neurons |φα
ℓ |

2 forms a Markov chain in the layer
number ℓ. We use the fact that a matrix with iid Gaussian entries applied to any unit vector gives a
Gaussian vector of iid N (0, 1) entries. Hence, in each layer, we can define the Gaussian vector gα
as follows, and use (2.1) with the positive homogeneity of φ to write the Markov chain update rule:∣∣φα

ℓ+1

∣∣2 = |φα
ℓ |

2 1

n

n∑
i=1

cφ(gαi )
2, where gα := Wℓ

φα
ℓ

|φα
ℓ |

d
= N (0, In) . (2.4)

At this point, the infinite-width approach applies the law of large numbers (LLN) to conclude
lim
n→∞

∣∣φα
ℓ+1

∣∣2 = |φα
ℓ |

2 E[cφ2(g)] = |φα
ℓ |

2 · 1 a.s. by definition of c. However, the LLN cannot
be applied when depth d is diverging with n, as the cumulative effect of the fluctuations over d lay-
ers does not vanish! Instead, we keep track of the O(1/

√
n) fluctuations in each layer by introducing

the zero mean finite variance random variable Rαα
ℓ := 1√

n

∑n
i=1

(
cφ(gαi )

2 − 1
)
. This allows us to

rewrite this Markov chain update rule as∣∣φα
ℓ+1

∣∣2 = |φα
ℓ |

2

(
1 +

1√
n
Rαα

ℓ

)
, (2.5)

which allows us to see that the Markov chain Y n
ℓ = c

n |φ
α
ℓ |2 is now in the form of (2.3) with

Y n
0 = 1

nin
|xα|2, b(Y ) ≡ 0, σ2(Y ) = Var(Rαα

ℓ )Y 2 = Var(cφ(g)2)Y 2. Consequently, we have
that the squared norm Markov chain converges to a geometric Brownian motion dXt = σXtdBt, or
more precisely

lim
n→∞

c

n

∣∣∣φα
⌊tn⌋

∣∣∣2 = Xt
d
= eN (−σ2

2 t,σ2t) , (2.6)

where the convergence is in the Skorohod topology (see Appendix A). When φ is the ReLU function
(s+ = 1, s− = 0), we have c = 2 and σ2 = 5, which recovers known results in [25, 27–29].
We remark again this simple Markov chain example illustrates the main technique we use in later
sections to establish SDE convergence for shaped networks in Section 3.
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2.3 Non-SDE Markov Chains: the Gram Matrix
〈
φα
ℓ , φ

β
ℓ

〉
and Correlation ραβℓ

We can generalize Section 2.2 to a collection of m inputs {xα}mα=1 by looking at the entire Gram
matrix [⟨φα

ℓ , φ
β
ℓ ⟩]mα,β=1, where we again recall φα

ℓ = φ(zαℓ ). We note that the convergence of
Markov chains to SDEs in (2.3) can be generalized to Y n

ℓ ∈ RN by considering Cov(ξℓ) = IN ,
b : RN → RN , and σ : RN → RN×N . The Gram matrix is of particular interest because the
neurons in any layer are conditionally Gaussian when conditioned on the previous layer, with
covariance matrix proportional to the Gram matrix:

[zαℓ+1]
m
α=1

∣∣Fℓ
d
= N

(
0,

c

n
[⟨φα

ℓ , φ
β
ℓ ⟩]

m
α,β=1 ⊗ In

)
,

[zαout]
m
α=1| Fd

d
= N

(
0,

c

n
[⟨φα

d , φ
β
d ⟩]

m
α,β=1 ⊗ Inout

)
,

(2.7)

where Fℓ denotes the sigma-algebra generated by the ℓ-th layer [zαℓ ]
m
α=1, and ⊗ denotes the Kro-

necker product (here indicating conditionally independent entries in each vector). With this prop-
erty in mind, we will introduce Eℓ[ · ] := E[ · |Fℓ] to denote the conditional expectation, and
Varℓ( · ) ,Covℓ( · ) similarly to denote the conditional variance and covariance. If we define gα

as in (2.4), we see that the gα are all marginally N (0, In). Similar to (2.4), we can write the update
rule for the α, β-entry of the Gram matrix:

⟨φα
ℓ+1, φ

β
ℓ+1⟩ = |φα

ℓ ||φ
β
ℓ |
1

n

n∑
i=1

cφ(gαi )φ(g
β
i ) , (2.8)

Just as we did in (2.5), we can define Rαβ
ℓ := 1√

n

∑n
i=1 cφ(g

α
i )φ(g

β
i )−Eℓ[cφ(g

α
i )φ(g

β
i )] and write

⟨φα
ℓ+1, φ

β
ℓ+1⟩ = |φα

ℓ ||φ
β
ℓ |
(
Eℓ

[
cφ(gαi )φ(g

β
i )
]
+

1√
n
Rαβ

ℓ

)
, (2.9)

where Rαβ
ℓ are mean zero with covariance Covℓ[R

αβ
ℓ , Rγδ

ℓ ] = Covℓ[cφ(g
α)φ(gβ), cφ(gγ)φ(gδ)].

(By the Central Limit Theorem, Rαβ
ℓ will be approximately Gaussian for large n.)

However, unlike the simple single-data-point case from Section 2.2, we do not have convergence to
a continuous time SDE. This is because the differences ⟨φα

ℓ+1, φ
β
ℓ+1⟩ − ⟨φα

ℓ , φ
β
ℓ ⟩ ↛ 0 as n → ∞.

Instead, (2.9) is a discrete recursion update with additive noise of the form Y n
ℓ+1 = f(Y n

ℓ ) + 1√
n
ξ

for some function f , and consequently Y n
ℓ+1 − Y n

ℓ does not vanish as n → ∞.

For a clarifying example, we can consider the one-dimensional Markov chain of hidden layer correla-
tions. More precisely, we can define ραβℓ = ⟨φα

ℓ , φ
β
ℓ ⟩/|φα

ℓ ||φ
β
ℓ |, which we observe can be extracted

from the entries of the Gram matrix. In fact, we can write down an approximate recursion update
for ραβℓ (see Appendix B and Proposition B.8 for details):

ραβℓ+1 ≈ cK1(ρ
αβ
ℓ ) +

1

n
µReLU(ρ

αβ
ℓ ) +

ξℓ√
n
σReLU(ρ

αβ
ℓ ) , ραβ0 =

⟨xα, xβ⟩
nin

, (2.10)

where K1(ρ) := E [φ(g)φ(gρ + w
√
1− ρ2)] for g, w iid N (0, 1) random variables, and ξℓ are iid

N(0, 1). For the ReLU case, c = 2 and cK1(ρ) = (
√

1− ρ2+ρ arccos(−ρ))/π was first calculated
in [41]. In fact, we can observe that as n → ∞, ραβ⌊tn⌋ converges to the fixed point of cK1(·) at ρ = 1

for all t > 0. We note this limiting behaviour cannot be described by an SDE, as the solution
must jump from the initial condition to the fixed point at t = 0.

Despite not having an SDE limit, we observe that the approximate Markov chain (2.10) already
provides a much better approximation to finite size networks compared to the infinite-width theory
(see left column of Figure 1). This is because the infinite-width approach discards the terms in
(2.10) that vanish as n → ∞ and consider only the update ραβℓ+1 = cK1(ρ

αβ
ℓ ). Analysis of this

deterministic equation leads to the prediction that ραβℓ = 1 − O(ℓ−2) for ℓ ≫ 1 (see (4.8) in [33]
and a new bound in Appendix E).

Furthermore, we observe that in this case, the microscopic O(n−1) and O(n−1/2) terms in (2.10)
accumulate to macroscopic differences! For the examples in Figure 1, we see their net effect is that
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ραβℓ → 1 faster than the infinite-width prediction. Heuristically, the reason for this discrepancy is
due to σReLU(ρ) → 0 as ρ → 1. This means that the randomness can push ραβℓ closer to 1, but
becomes “trapped” when ραβℓ is close to 1 because σReLU is so small here. In the next section, we
will see that we are just one step away from achieving limiting SDEs.

3 Neural Covariance SDEs: Shaped Infinite-Depth-and-Width Limit

In this section, we follow the ideas of [38, 39] to reshape the activation function φ. Reshaping means
to replace the base activation function φ in (2.1) with φs that depends on width n. We will also
replace the normalizing constant c =

(
Eφs(g)

2
)−1

for g ∼ N (0, 1). Specifically, we will choose
φs to depend on n such that in the limit as n → ∞, we have that φ is approximately an identity
function, φs → Id. Recalling from (2.7) that the output is conditionally Gaussian with covariance
determined by the Gram matrix [⟨φα

ℓ , φ
β
ℓ ⟩]mα,β=1, therefore we recover a complete characterization

by describing the random covariance matrix.

3.1 Neural Covariance SDE for Shaped ReLU-Like Activations

Definition 3.1. We shape the ReLU-like activation φs(x) := s+ max(x, 0) + s− min(x, 0), by
setting the slopes to depend on n according to s± := 1 + c±√

n
for some given constants c+, c− ∈ R.

We will also set c =
(
Eφs(g)

2
)−1

for g ∼ N (0, 1).

We will show that with shaping of Definition 3.1, one gets non-trivial SDEs that describe the covari-
ance (Theorem 3.2) and correlations (Theorem 3.3) of the network. The precise scaling is shown to
be the critical scaling for a non-trivial limit in Proposition 3.4. All proofs for results in this section
appear in Appendix C.

Remark. Note that in the statement of our theorems, we abuse notation and use the same letter to
denote the pre-limit Markov chain and the limiting SDE. For example, in Theorem 3.2 we use Vℓ

for the covariance at layer ℓ and Vt to denote the limiting SDE at time t.

Theorem 3.2 (Covariance SDE, ReLU). Let V αβ
ℓ := c

n ⟨φ
α
ℓ , φ

β
ℓ ⟩, and define Vℓ := [V αβ

ℓ ]1≤α≤β=m

to be the upper triangular entries thought of as a vector in Rm(m+1)/2. Then, with s± = 1 + c±√
n

as in Definition 3.1, in the limit as n → ∞, d
n → T , the interpolated process V⌊tn⌋ converges in

distribution in the Skorohod topology of DR+,Rm(m+1)/2 to the solution of the SDE

dVt = b(Vt) dt+Σ(Vt)
1/2 dBt , V0 =

[
1

nin
⟨xα, xβ⟩

]
1≤α≤β≤m

, (3.1)

where ν(ρ) := (c+−c−)2

2π

(√
1− ρ2 − ρ arccos ρ

)
, ραβt :=

V αβ
t√

V αα
t V ββ

t

b(Vt) =

[
ν
(
ραβt

)√
V αα
t V ββ

t

]
1≤α≤β≤m

, and Σ(Vt) =
[
V αγ
t V βδ

t + V αδ
t V βγ

t

]
α≤β,γ≤δ

.

(3.2)
Furthermore, the output distribution can be described conditional on VT evaluated at final time T

[zαout]
m
α=1 |VT

d
= N

(
0, [V αβ

T ]mα,β=1

)
. (3.3)

Here we remark that ν(1) = 0, and therefore the drift component of diagonal entries (V αα
t ) are

zero, as they are geometric Brownian motion. However, we emphasize that the m-point joint out-
put distribution is not characterized by the marginal for each of the pairs, as the output zαout is not
Gaussian. In particular, we observe the diffusion matrix entry corresponding to V αβ

t , V γδ
t involves

other processes V αγ
t , V βδ

t , V αδ
t , V βγ

t ! This implies that the Neural Covariance SDE limit cannot be
described by a kernel, unlike stacking random features or NNGP.

That being said, it is still instructive to study the marginal for a pair of data points. More specifically,
it turns out in the generalized ReLU case, we can derive the marginal SDE for the correlation process.
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Theorem 3.3 (Correlation SDE, ReLU). Let ραβℓ :=
⟨φα

ℓ ,φβ
ℓ ⟩

|φα
ℓ | |φβ

ℓ |
, where φα

ℓ := φs(z
α
ℓ ). In the limit as

n → ∞ and s± = 1 + c±√
n

, the interpolated process ραβ⌊tn⌋ converges in distribution to the solution
of the following SDE in the Skorohod topology of DR+,R

dραβt =
[
ν(ραβt ) + µ(ραβt )

]
dt+ σ(ραβt ) dBt , ραβ0 =

⟨xα, xβ⟩
|xα| |xβ |

, (3.4)

where

ν(ρ) =
(c+ − c−)

2

2π

[√
1− ρ2 − arccos(ρ)ρ

]
, µ(ρ) = −1

2
ρ(1− ρ2) , σ(ρ) = 1− ρ2 . (3.5)

To help interpret the SDE, we observe that µ and σ are entirely independent of the activation function.
In other words, these terms will be present in this limit even for linear networks. At the same time,
ν describes the influence of the shaped activation function in this limit. [39] has derived a related
ordinary differential equation (ODE) of dρt = ν(ρt) dt in the sequential limit of n → ∞ then
d → ∞, where the activation is shaped depending on depth. Here we also note that ν(ρ) is closely
related to the J1 function derived in [41]. See Appendix C.3 for the m-point joint version of the
correlation SDE, and Appendix F for an empirical measure of convergence in the Kolmogorov–
Smirnov distance.

One immediate consequence of the correlation SDE is that we can show the n−1/2 scaling in Defi-
nition 3.1 is the only case where the limit is neither degenerate nor a linear network.

Proposition 3.4 (Critical Exponent, ReLU). Let ραβℓ :=
⟨φα

ℓ ,φβ
ℓ ⟩

|φα
ℓ | |φβ

ℓ |
, where φα

ℓ := φs(z
α
ℓ ). Consider

the limit n → ∞ and s± = 1 + c±
np for some p ≥ 0. Then depending on the value of p, the

interpolated process ραβ⌊tn⌋ converges in distribution w.r.t. the Skorohod topology of DR+,R to

(i) the degenerate limit: ραβt = 1 for all t > 0, if 0 ≤ p < 1
2 , and c+ ̸= c−,

(ii) the critical limit: the SDE from Theorem 3.3, if p = 1
2 ,

(iii) the linear network limit: if p > 1
2 , the following SDE, with µ, σ as defined in (3.5),

dραβt = µ(ραβt ) dt+ σ(ραβt ) dBt , ραβ0 =
⟨xα, xβ⟩
|xα| |xβ |

. (3.6)

Here we remark that the unshaped network case (p = 0) is contained by the above in case (i). At
the same time, we observe that case (iii) is equivalent to the correlation SDE in Theorem 3.3 except
with ν = 0. In particular, we observe this limit is also reached when c+ = c−, which implies
φs(x) = s+x is linear, which is the reason we call this the linear network limit. Furthermore,
without much additional work, the same argument also implies the joint covariance SDE also loses
the drift component, i.e., dVt = Σ(Vt)

1/2 dBt.

3.2 Neural Covariance SDE for Shaped Smooth Activations

In this section, we consider smooth activation functions and derive a similar covariance SDE. All
the proofs for results in this section can be found in Appendix D.

Assumption 3.5. φ ∈ C4(R), φ(0) = 0, φ′(0) = 1, and |φ(4)(x)| ≤ C(1+|x|p) for some C, p > 0.

We note that for any non-constant function σ ∈ C1(R) and x0 ∈ R such that σ′(x0) ̸= 0, we can
always define φ(x) := σ(x+x0)−σ(x0)

σ′(x0)
such that it satisfies φ(0) = 0, φ′(0) = 1. The choice of x0

will be discussed further in Section 4. The fourth derivative growth condition is used to control the
Taylor remainder term in expectation, but any control over the remainder will suffice.

Following the ideas of [38], we consider the following shaping of a smooth activation function φ.
Definition 3.6. For some constant a > 0, we set φs(x) := sφ

(
x
s

)
with s = a

√
n, and c =(

Eφs(g)
2
)−1

for g ∼ N (0, 1).
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Observe that in the limit n → ∞, we will achieve that φs → Id as desired. We also observe
that the shaping factor s outside the activation cancels out with the next layer’s 1

s factor, therefore
it is equivalent shape the entire network. More precisely, if we view zout as an input-output map
f : Rnin → Rnout of an unshaped network, then shaping the smooth activation functions is equivalent
to the modification sf

(
x
s

)
.1

In this regime, we can similarly characterize the joint output distribution, however the limiting SDEs
are not always well behaved. In particular, they can have finite time explosions as described by the
Feller test for explosions [42, Theorem 5.5.29]. Here the SDE in Proposition 3.7 is exactly the V αα

t
marginal of the Neural Covariance SDE, with the parameter b determined by the activation function
φ and controls whether or not finite time explosions happen (see (4.1)).
Proposition 3.7 (Finite Time Explosion). Let Xt ∈ R+ be a solution to the following SDE

dXt = bXt(Xt − 1) dt+
√
2Xt dBt , X0 = x0 > 0 , b ∈ R . (3.7)

Let τ∗ = supM>0 inf{t : Xt ≥ M or Xt ≤ M−1} be the explosion time, and we say Xt has a
finite time explosion if τ∗ < ∞. For this equation, P[τ∗ = ∞] = 1 if and only if b ≤ 0.

Technically speaking, the main culprit behind finite time explosions is the non-Lipschitzness of the
drift coefficient. This issue requires us to weaken the sense of convergence in this section; the
ordinary convergence in the Skorohod topology is in general not true when the diffusion has finite
time explosions. A weakened type of convergence is the best we can hope for. To this goal, we
introduce the following definition.
Definition 3.8. We say a sequence of processes Xn converge locally to X in the Skorohod topology
if for any r > 0, we define the following stopping times

τn := {t ≥ 0 : |Xn
t | ≥ r} , τ := {t ≥ 0 : |Xt| ≥ r} , (3.8)

and we have that Xn
t∧τn converge to Xt∧τ in the Skorohod topology.

This weakened sense of convergence essentially constrains the processes Xn, X in a bounded set
by adding an absorbing boundary condition. Not only do these stopping times rule out explosions,
the drift coefficient is now also Lipschitz on a compact set. With this notion of convergence, we can
now state a precise Neural Covariance SDE result for general smooth activation functions.

Theorem 3.9 (Covariance SDE, Smooth). Let φ satisfy Assumption 3.5, V αβ
ℓ := c

n ⟨φ
α
ℓ , φ

β
ℓ ⟩ where

φα
ℓ = φs(z

α
ℓ ), and define Vℓ := [V αβ

ℓ ]1≤α≤β=m to be the upper triangular entries thought of as a
vector in Rm(m+1)/2. Then, with s = a

√
n as in Definition 3.6, in the limit as n → ∞, d

n → T , the
interpolated process V⌊tn⌋ converges locally in distribution to the solution of the following SDE in
the Skorohod topology of DR+,Rm(m+1)/2

dVt = b(Vt) dt+Σ(Vt)
1/2 dBt , V0 =

[
1

nin
⟨xα, xβ⟩

]
1≤α≤β≤m

, (3.9)

where Σ(Vt) is the same as Theorem 3.2 and

bαβ(Vt) =
φ′′(0)2

4a2

(
V αα
t V ββ

t + V αβ
t (2V αβ

t − 3)
)
+

φ′′′(0)

2a2
V αβ
t (V αα

t + V ββ
t − 2) . (3.10)

Furthermore, if VT is finite, then the output distribution can be described conditional on VT as

[zαout]
m
α=1 |VT

d
= N

(
0, [V αβ

T ]mα,β=1

)
, (3.11)

and otherwise the distribution of [zαout]
m
α=1 is undefined.

We also have a similar critical scaling result for general smooth activations.

Proposition 3.10 (Critical Exponent, Smooth). Let φ satisfy Assumption 3.5, V αβ
ℓ := c

n ⟨φ
α
ℓ , φ

β
ℓ ⟩

where φα
ℓ = φs(z

α
ℓ ) with s = anp for some p > 0, and define Vℓ := [V αβ

ℓ ]1≤α≤β=m to be the upper
triangular entries thought of as a vector. Then in the limit as n → ∞, d

n → T , the interpolated
process V⌊tn⌋ converges locally in distribution w.r.t. the Skorohod topology of DR+,Rm(m+1)/2 to V ,
which depending on the value of p is

1We want to thank Boris Hanin for observing this equivalent parameterization.
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Figure 2: Simulation of 10 shaped softplus networks as in Example 4.2 with n = d = 100, a =
1, V αα

0 = 1
nin

|xα|2 = 1 centred at two different values. “Stable” here means the Neural Covariance
SDE is guaranteed not to have finite time explosions; unstable networks can explode on initializa-
tion!

(i) the degenerate limit: if 0 < p < 1
2{

V αα
t = 0 or ∞, if 3

4φ
′′(0)2 + φ′′′(0) > 0 and V αα

0 ̸= 0 ,

V αβ
t = const. , if 3

4φ
′′(0)2 + φ′′′(0) ≤ 0 ,

(3.12)

for all t > 0 and 1 ≤ α ≤ β ≤ m,

(ii) the critical limit: the solution of the SDE from Theorem 3.9, if p = 1
2 ,

(iii) the linear network limit: the stopped solution to the SDE dVt = Σ(Vt) dBt with coefficient
Σ defined in Theorem 3.3, if p > 1

2 .

Here we observe that in case (i) when 3
4φ

′′(0)2 + φ′′′(0) ≤ 0, we also have a constant (in time) cor-
relation ραβt similar to the ReLU case in Proposition 3.4, however in this case ραβt is not necessarily
equal to 1. At the same time, the linear network limit in case (iii) also has the same covariance SDE
as Proposition 3.4.

4 Consequences, Discussion, and Future Directions

So far, we have derived the Neural Covariance SDE. Analysis of this SDE reveals important be-
haviour of the network on initialization. Here we lay out one concrete example and provide some
discussion and future directions.

Exploding and Vanishing Norms. Here we consider the behaviour of shaping smooth activation
functions, as it is done in the experiments of [38]. While the authors here avoided exploding and
vanishing norms by numerically optimizing shaping parameters, we can actually describe the precise
behaviour a priori with the Neural Covariance SDE. Recall the shaping parameter a from Defini-
tion 3.6. Let Vt be the solution to the SDE in (3.9). We can write down the marginal SDE for V αα

t
as

dV αα
t =

(
3

4
φ′′(0)2 + φ′′′(0)

)
V αα
t

a2
(V αα

t − 1) dt+
√
2V αα

t dBt , (4.1)

which implies by Proposition 3.7 that Vt has a finite time explosion (with non-zero probability)
if and only if 3

4φ
′′(0)2 + φ′′′(0) > 0. This criterion can be used to help choose how activation

functions should be centered for shaping; below are two examples.
Example 4.1 (Sigmoid and tanh at x0 = 0). We start with the sigmoid activation σ(x) = 1

1+e−x ,
then we can define φ(x) := 4σ(x)−2 to satisfy Assumption 3.5, which leads to φ′′(0) = 0, φ′′′(0) =
− 1

2 , and therefore leads to a stable network. It turns out φ(x) := tanh(x) already satisfies Assump-
tion 3.5, which leads to φ′′(0) = 0, φ′′′(0) = −2, and therefore is also stable.
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More generally, if σ behaves like a cumulative distribution function for a symmetric unimodal den-
sity, we will have that φ′′(0) = 0 and φ′′′(0) < 0 as desired.
Example 4.2 (Soft Plus at General x0 ∈ R). Let us consider x0 ∈ R and σ(x) = log(1 + ex+x0),
which implies φ(x) := (1 + e−x0) log 1+ex+x0

1+ex0
satisfies Assumption 3.5. This gives us φ′′(0) =

1
1+ex0

, φ′′′(0) = 1−ex0

(1+ex0 )2 , and therefore 3
4φ

′′(0)2 + φ′′′(0) = 1
(1+ex0 )2

(
5
4 − ex0

)
. In other words,

the shaped network is stable if and only if x0 ≥ log 5
4 (see Figure 2). We note that the authors of

[38] numerically found a shift of x0 ≈ 0.41, which is in the stable regime of x0 ≥ log 5
4 ≈ 0.097.

Relationship to Edge of Chaos. The finite time explosion example above resembles the Edge of
Chaos (EOC) analysis of gradient stability [43, 35, 44, 45], where the weight and bias variance at
initialization determines a stability criterion. However, we note that the EOC regime is sufficiently
different that the results are not directly comparable. More precisely, the EOC analysis is in the
sequential limit of infinite-width and then infinite-depth, which also leaves the activation function
unchanged. Under very weak assumptions, the variance (diagonal of Vt) will not explode in this
regime; instead, the gradient can explode due to the covariance (off diagonals). On the other hand,
our finite explosion result is in the joint limit of depth and width, where the variance (diagonal of
Vt) can explode instead.

Posterior Inference. Similar to the NNGP setting, we can use the Neural Covariance SDE to gener-
ate a prior over functions f : Rnin → Rnout . Consequently, an interesting future direction would be
to study the posterior distribution, i.e. the output zm+1

out conditioned on xm+1 and a training dataset
(xα, zαout)

m
α=1. However, to our best knowledge, it is not straightforward to explicitly compute or

sample from the conditional distributions for this SDE structure. It would be desirable to extend
existing approaches in the perturbative regime [30, 31] to our setting.

Extension to Other Architectures. The key step to deriving the covariance SDE is the conditional
Gaussian distribution in (2.7), which directly leads to a Markov chain. It follows immediately that
ResNets [46] admit a similar conditional structure. With a bit more work for convolutional networks,
we can obtain zαℓ+1|Fℓ ∼ N (0,A(Vℓ) ⊗ In) where A is an affine transformation and Vℓ is the
previous layer’s Gram matrix [47]. We note that recurrent networks will not lead to a Markov chain
or SDE limit, as the weight matrix is reused from layer to layer.

Simulating SDEs. Both the Markov chains and SDEs predict neural networks at initialization very
well (see Figure 1), but the SDE is significantly faster to simulate. In particular, we can view the
Markov chain as an approximate Euler discretization of the SDE, but with a very small step size
n−1. In contrast, to simulate the SDE we should only need a step size that is small on the scale of
depth-to-width ratio T = d/n, which is independent of width n. Therefore, practitioners using the
shaping techniques of [38, 39] can now simulate the covariance SDEs at a low computational cost
to significantly improve estimates of the output correlation (see Figure 1 and additional simulations
in Appendix F).

Analytical Tractability of SDEs. Besides numerical tractability, the SDEs are also far more
tractable to analyze. For example, in the one input case, we arrive at geometric Brownian mo-
tion (2.6), which is known to have a log-normal distribution at fixed times. Similarly, our finite time
explosions hinge on the fact we identified an SDE limit. In the same way that NNGP theory played
a major role in the infinite-width regime, the Neural Covariance SDEs and the techniques developed
here also serve as a mathematical foundation for studying training and generalization.
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enough that it did not require GPUs.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
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(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

A Background on Markov Chain Convergence to SDEs

In this section we briefly review the background and technical results required to characterize the
convergence of a Markov chain to an SDE. Majority of the content in this section are based on [48–
50].

To start we first introduce the Skorohod J1-topology [48, Appendix 5]. Let S be a complete sepa-
rable metric space, and DR+,S be the space of càdlàg functions (right continuous with left limits)

from R+ → S. Here we write xn
ul−→ x to denote locally uniform convergence (i.e., uniform on

compact subsets of R+). We also consider bijections λ on R+ so that λ is strictly increasing with
λ0 = 0. We can now define Skorohod convergence xn

s−→ x on DR+,S if there exists a sequence of
bijections λn satisfying the above conditions and

λn
ul−→ Id , xn ◦ λn

ul−→ x . (A.1)

The most important result is that DR+,S equipped with the above sense of convergence is indeed a
well behaved probability space, which we state below.
Theorem A.1 (Theorem A5.3, [48]). For any separable complete metric space S, there exists a
topology T on DR+,S such that

(i) T induces the Skorohod convergence xn
s−→ x,

(ii) DR+,S is Polish (separable completely metrizable topological space) under T ,

(iii) T generates the Borel σ-field generated by the evaluation maps πt, t ≥ 0, where πt(x) =
xt.

We also need to define Feller semi-groups. To start we let S be a locally compact separable metric
space and C0 := C0(S) be the space of continuous functions that vanishes at infinity, and we equip
C0 with the sup norm to make it a Banach space. T : C0 → C0 is a positive contraction operator
if for all 0 ≤ f ≤ 1 we have 0 ≤ Tf ≤ 1. A semi-group of such operators (Tt) on C0 is called a
Feller semi-group if it additionally satisfies

TtC0 ⊂ C0 , t ≥ 0 ,

Ttf(x) → x as t → 0 , f ∈ C0, x ∈ S .
(A.2)

Let D ⊂ C0 and A : D → C0, and we say that (A,D) is a generator of (Tt) if D is the maximal set
such that for all f ∈ D, we have that

lim
t→0

Ttf − f

t
= Af . (A.3)

An operator A with domain D on a Banach space B is said to be closed, if its graph G =
{(f,Af)|f ∈ D} is a closed subset of B × B. If the closure of G is the graph of an operator
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Ā, we say Ā is the closure of A. Finally, we will define a linear subspace D ⊂ D as a core of
A if the closure of A|D is A. If (A,D) is a generator of a Feller semigroup, every dense invariant
subspace D ⊂ D is a core of A [48, Proposition 17.9]. In particular, we will work with the core C∞

0
of smooth functions vanishing at infinity.

We will state a sufficient condition required for an semi-group to be Feller based on its generator.
Theorem A.2 (Section 8, Theorem 2.5, [49]). Let aij ∈ C2(Rd) with ∂k∂ℓa

ij be bounded for all
i, j, k, ℓ ∈ [d]. Further let b : Rd → Rd be Lipschitz. Then the generator defined by

Af =
1

2

d∑
i,j=1

aij∂i∂jf +

d∑
i=1

bi∂if , (A.4)

generates a Feller semi-group on C0.

We will next state a set of equivalent criterion for convergence of Feller processes.
Theorem A.3 (Theorem 17.25, [48]). Let X,X1, X2, X3, · · · be Feller processes in S with semi-
groups (Tt), (Tn,t) and generators (A,D), (An,Dn), respectively, and fix a core D for A. Then
these conditions are equivalent:

(i) for any f ∈ D, there exists some fn ∈ Dn with fn → f and Anfn → Af ,

(ii) Tn,t → Tt strongly for each t > 0,

(iii) Tn,tf → Ttf for every f ∈ C0, uniformly for bounded t > 0,

(iv) Xn
0

d−→ X0 in S ⇒ Xn d−→ X in the Skohorod topology of DR+,S .

Once again, we note that it is common to choose the core D = C∞
0 , and that checking condition

(i) is sufficient for convergence in the Skorohod topology. This is translated to the Markov chain
setting by the next theorem.
Theorem A.4 (Theorem 17.28, [48]). Let Y 1, Y 2, Y 3, · · · be discrete time Markov chains in S
with transition operators U1, U2, U3, · · · , and let X be a Feller process with semi-group (Tt) and
generator A. Fix a core D for A, and let 0 < hn → 0. Then conditions (i) − (iv) of Theorem A.3
remain equivalent for the operators and processes

An = h−1
n (Un − I) , Tn,t = U⌊t/hn⌋

n , Xn
t = Y n

⌊t/hn⌋ . (A.5)

It remains to check that the generators An converges to A with respect to the core D = C∞
0 , and

we will use a criterion from [50]. Here we will first let Πn(x, dy) be the Markov transition kernel of
Y n, and define

aijn (x) =
1

hn

∫
|y−x|≤1

(yi − xi)(yj − xj)Πn(x, dy) ,

bin(x) =
1

hn

∫
|y−x|≤1

(yi − xi)Πn(x, dy) ,

∆ϵ
n(x) =

1

hn
Πn(x,Rd \B(x, ϵ)) .

(A.6)

Lemma A.5 (Lemma 11.2.1, [50]). The following two conditions are equivalent:

(i) For any R > 0, ϵ > 0 we have that

lim
n→∞

sup
|x|≤R

∥an(x)− a(x)∥op + |bn(x)− b(x)|+∆ϵ
n(x) = 0 , (A.7)

(ii) For each f ∈ C∞
0 (Rd), we have that

1

hn
Anf → Af , (A.8)

uniformly on compact sets of Rd, where A is defined as (A.4).
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Finally, we summarize the above results in a user friendly form for our applications.

Proposition A.6 (Convergence of Markov Chains to SDE). Let Y n be a discrete time Markov chain
on RN defined by the following update for p, δ > 0

Y n
ℓ+1 = Y n

ℓ +
b̂n(Y

n
ℓ , ωn

ℓ )

n2p
+

σn(Y
n
ℓ )

np
ξnℓ +O(n−2p−δ) , (A.9)

where ξnℓ ∈ RN are iid random variables with zero mean, identity covariance, and moments uni-
formly bounded in n. Furthermore, ωn

ℓ are also iid random variables such that E[̂bn(Y n
ℓ , ωn

ℓ )|Y n
ℓ =

y] = bn(y) and b̂n(y, ω
n
ℓ ) has uniformly bounded moments in n. Finally, σn is a deterministic func-

tion, and the remainder terms in O(n−2p−δ) have uniformly bounded moments in n.

Suppose bn, σn are uniformly Lipschitz functions in n and converges to b, σ uniformly on compact
sets, then in the limit as n → ∞, the process Xn

t = Y n
⌊tn2p⌋ converges in distribution to the solution

of the following SDE in the Skorohod topology of DR+,RN

dXt = b(Xt) dt+ σ(Xt) dBt , X0 = lim
n→∞

Y n
0 . (A.10)

Suppose otherwise bn, σn are only locally Lipschitz (but still uniform in n), then Xn converges
locally to X in the same topology (see Definition 3.8). More precisely, for any fixed r > 0, we
consider the stopping times

τn := inf {t ≥ 0 : |Xn
t | ≥ r} , τ := inf {t ≥ 0 : |Xt| ≥ r} , (A.11)

then the stopped process Xn
t∧τn converges in distribution to the stopped solution Xt∧τ of the above

SDE in the same topology.

Proof. We will essentially check the criterion of Theorem A.4 directly for the metric space S = RN

if b, σ is globally Lipschitz, and S = B(0, r) otherwise. In both of these cases, b, σ are Lipschitz on
S, therefore the limiting process (either Xt or Xt∧τ ) is Feller in S by Theorem A.2.

In the equivalent criteria of Theorem A.3, we will use the implication of (i) ⇒ (iv) to get convergence
of Xn to X in the Skorohod topology of DR+,S . More precisely, it is sufficient to choose hn = 1

n2p

as the natural time scale, and check 1
hn

Anf → Af for any f ∈ C∞
0 . Given Lemma A.5, it is

sufficient to check the convergence of the coefficients and ∆ϵ
n.

We start with ∆ϵ
n(x). Given that the randomness in the Markov chain have bounded moments

(uniform in n), then by a Markov inequality we have that for any q > 0

Πn(x,Rd \B(x, ϵ)) = P

∣∣∣∣∣ b̂(x, ωn
ℓ )

n2p
+

σ

np
ξnℓ +O(n−2p−δ)

∣∣∣∣∣
2q

≥ ϵ2q

 ≤ O
(
ϵ−2qn−2pq

)
,

(A.12)
therefore choosing q > 1 we have sup|x|≤R ∆ϵ

n(x) = O(n−2p(q−1)) → 0 for any fixed ϵ.

We can rewrite bn(x) as

bn(x) = n2pE[Y n
ℓ+1 − Y n

ℓ |Y n
ℓ = x] +O(n−δ) → b(x) , (A.13)

since ξnℓ has zero mean and the remainder terms have bounded moments (uniform in n), which also
gives the desired convergence of supx≤|R| |bn(x)− b(x)| → 0.

Similarly we can rewrite an(x) as

an(x) = n2pE[(Y n
ℓ+1 − Y n

ℓ )(Y n
ℓ+1 − Y n

ℓ )⊤|Y n
ℓ = x] +O(n−2δ + n−2p) → σ(x)σ(x)⊤ , (A.14)

where we note the drift’s randomness contributes the higher order n−2p term and therefore also
vanishes in the limit. This implies supx≤|R| ∥an(x) − a(x)∥op → 0, which gives us the desired
result.
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B Unshaped ReLU Markov Chain

In this section, we will derive the Markov chain update (2.10) with explicit coefficients. For the rest
of this section, we will adopt the following notation. Let φ(x) := max(x, 0) be the ReLU activation
function. Let f(x) = 1√

2π
e−x2/2 be the density of a standard Gaussian, and let F (x) =

∫ x

−∞ f(t) dt

be the cumulative distribution function (CDF).
Lemma B.1 (Gaussian Integration-by-Parts with Indicator Function). For g ∼ N (0, 1) and h is
weakly differentiable, we have that

E g1{g>−a}h(g) = h(−a)f(a) + E1{g>−a}h
′(g) , (B.1)

where f is the standard Gaussian density.

Proof. We start by writing the expectation as an integral

E g1{g>−a}h(g) =

∫ ∞

−a

xh(x)f(x) dx . (B.2)

Here by observing that f ′(x) = −xf(x), we can use integration by parts for u = h(x), dv =
xf(x) dx to get du = h′(x) dx, v = −f(x), and therefore∫ ∞

−a

xh(x)f(x) dx = [−h(x)f(x)]
∞
−a +

∫ ∞

−a

h′(x)f(x) dx = h(−a)f(−a) + E1{g>−a}h
′(g) .

(B.3)

Finally we recover the desired result using symmetry of f(−a) = f(a).

We will note the special case of a = 0 to get

E g1{g>0}h(g) =
h(0)√
2π

+ E1{g>0}h
′(g) . (B.4)

Lemma B.2 (Gaussian Density Substitution). Let g ∼ N (0, 1), ρ ∈ [0, 1], q =
√
1− ρ2, then we

have that

Eh(g)f

(
ρg + a

q

)
= qf(a)Eh(qg − ρa) . (B.5)

Proof. We will again write the expectation as an integral

Eh(g)f

(
ρg + a

q

)
=

∫
h(x)f

(
ρx+ a

q

)
f(x) dx . (B.6)

Here observe that

f

(
ρx+ a

q

)
f(x) =

1

2π
exp

[
− (ρx+ a)2

2q2
− x2

2

]
=

1

2π
exp

[
−ρ2x2 + a2 + 2aρx+ q2x2

2q2

]
,

(B.7)
at this point, we can complete the square to write

ρ2x2 + a2 + 2aρx+ q2x2 = (x+ aρ)2 − a2ρ2 + a = (x+ aρ)2 − a2q2 . (B.8)

This implies that we have

f

(
ρx+ a

q

)
f(x) =

1

2π
exp

[
− (x+ aρ)2

2q2
− a2

2

]
= f

(
x+ aρ

q

)
f(a) . (B.9)

Finally, we can use the substitution y = x+aρ
q , dy = 1

qdx to get∫
h(x)f

(
ρx+ a

q

)
f(x) dx =

∫
h(qy − ρa)f(y)f(a)q dy = qf(a)Eh(qg − ρa) , (B.10)

which is the desired result.
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We will start by calculating simpler quantities.
Lemma B.3 (Moments). Let g ∼ N (0, 1), then

Eφ(g) =
1√
2π

, Eφ(g)2 =
1

2
, Eφ(g)4 =

3

2
. (B.11)

Proof. For the second and fourth moments, we simply observe that g2 is symmetric and φ is exactly
half of of the integral. For the first integral we will use Gaussian integration-by-parts with h(g) = 1
to get

Eφ(g) = E g1{g>0} =
1√
2π

, (B.12)

which is the desire result.

We will also recall the following result from [41]

Lemma B.4 (J̄0, J̄1, J̄2). Let ρ ∈ [0, 1], q =
√
1− ρ2 and let ρ,w ∼ N (0, 1) be independent. Then

we have that

J̄0(ρ) = E1{g>0}1{ρg+qw>0} =
arccos(−ρ)

2π
,

J̄1(ρ) = Eφ(g)φ(ρg + qw) =
q + ρ arccos(−ρ)

2π
,

J̄2(ρ) = Eφ(g)2φ(ρg + qw)2 =
3ρq + arccos(−ρ)(1 + 2ρ2)

2π
.

(B.13)

We will need to compute the following quantity.

Lemma B.5 (J̄3,1). Let ρ ∈ [0, 1], q =
√
1− ρ2 and let ρ,w ∼ N (0, 1) be independent. Then we

have that

J̄3,1(ρ) = Eφ(g)3φ(ρg + qw) =
q(2 + ρ2) + 3 arccos(−ρ)ρ

2π
. (B.14)

Proof. We start by using Gaussian integration-by-parts with h(g) = Eg g
2φ(ρg + qw) where we

use Eg[ · ] := E [ · |g] to denote conditional expectation

Eφ(g)3φ(ρg + qw) = E g1{g>0}h(g)

= E1{g>0}
[
2gEg φ(ρg + qw) + g2Egρ1{ρg+qw>0}

]
= 2J̄1(ρ) + ρE g1{g>0}Egg1{ρq+qw>0} .

(B.15)

Here we observe that Egg1ρq+qw>0 = gF (ρg/q), and we can again set this to the new h(g) and use
integration-by-parts to write

E g1{g>0}Egg1{ρq+qw>0} = E1{g>0}1{ρg+qw>0} + E1{g>0}
ρg

q
f

(
ρg

q

)
. (B.16)

At this point we can use the substitution formula from Lemma B.2 to write

E1{g>0}
ρg

q
f

(
ρg

q

)
=

ρ

q
f(0)Eφ(qg) =

ρq

2π
. (B.17)

Putting this together, we have

J̄3,1(ρ) = 2J̄1(ρ) + ρJ̄0(ρ) +
ρ2q

2π
, (B.18)

which is the desired result after simplifying.
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We will now recall the ReLU-like activations for s = (s+, s−) ∈ R2

φs(x) := s+ max(x, 0) + s− min(x, 0) = s+φ(x)− s−φ(−x) , (B.19)

where φ(x) := max(x, 0) is the usual ReLU activation.

We will compute several basic moments first.

Lemma B.6 (Moments, c,M2). Let g ∼ N(0, 1), we have that

Eφs(g) =
s+ − s−√

2π
, Eφs(g)

2 =
s2+ + s2−

2
, Eφs(g)

4 =
3

2
(s4+ + s4−) . (B.20)

Furthermore, this implies the normalizing constant is c = 2
s2++s2−

and

M2 := E [cφs(g)
2 − 1]2 = 6

s4+ + s4−
(s2+ + s2−)

2
− 1 . (B.21)

Proof. To start we first recall the Gaussian integration by parts calculation

Eφ(g) = f(0) =
1√
2π

, (B.22)

then the first moment follows immediately from rewriting in terms of φ

Eφs(g) = s+Eφ(g)− s−Eφ(−g) =
s+ − s−√

2π
. (B.23)

For the second moment, we will also rewrite in terms of φ

Eφs(g)
2 = E s2+φ(g)

2 + s2−φ(−g)2 − 2s+s−φ(g)φ(−g) = (s2+ + s2−)Eφ(g)2 , (B.24)

where we used that φ(g)φ(−g) = 0 almost surely and g
d
= −g, and the desire result follows from

Gaussian integration by parts

Eφ(g)2 = 0f(0) + E1{g>0} =
1

2
. (B.25)

For the fourth moment, we will similarly observe that all mixed moments φ(g)pφ(−g)r = 0 almost
surely whenever p, r > 0, which allows us to write

Eφs(g)
4 = E s4+φ(g)

4 + s4−φ(−g)4 = (s4+ + s4−)Eφ(g)4 , (B.26)

and the desire result follows from the Gaussian integration by parts calculation

Eφ(g)4 = 03f(0) + E 3g21{g>0} = 3(03f(0) + E1{g>0}) =
3

2
. (B.27)

We will also convert the J̄k,ℓ formulas to Kk,ℓ formulas, i.e. the following quantities

Kp,r(ρ) := Eφs(g)
pφs(ĝ)

r , (B.28)

where g, w ∼ N(0, 1) and we define ĝ = ρg + qw with q =
√
1− ρ2. We will also use the short

hand notation to write J̄p := J̄p,p,Kp := Kp,p.

Lemma B.7 (K1,K2,K3,1). Let ρ ∈ [−1, 1], q =
√
1− ρ2, g, w ∼ N (0, 1), and ĝ = ρg + qw.

Then we have the following formulas

K1(ρ) = (s2+ + s2−)J̄1(ρ)− 2s+s−J̄1(−ρ) ,

K2(ρ) = (s4+ + s4−)J̄2(ρ) + 2s2+s
2
−J̄2(−ρ) ,

K3,1(ρ) = (s4+ + s4−)J̄3,1(ρ)− s+s−(s
2
+ + s2−)J̄3,1(−ρ) .

(B.29)
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Proof. Before we start, we will make several observations. Using the fact that (g, w) d
= (±g,±w),

we have the following equality in distribution relations

(g, ρg + qw)
d
= (−g,−ρg − qw) = (−g,−ĝ) ,

(g,−ĝ)
d
= (g,−ρg + qw)

d
= (−g, ρg + qw) = (−g, ĝ) .

(B.30)

In particular, we note that the two Gaussian random variable (g,−ĝ) have correlation −ρ.

This allows us to simplify K1

K1(ρ) = Eφs(g)φs(ĝ)

= E s2+φ(g)φ(ĝ) + s2−φ(−g)φ(−ĝ)− s+s−φ(g)φ(−ĝ)− s+s−φ(−g)φ(ĝ)

= (s2+ + s2−)J̄1(ρ)− 2s+s−J̄1(−ρ) ,

(B.31)

which is the desired result.

With K2, we will additionally make use of the fact that φ(g)φ(−g) = 0 almost surely to write

K2(ρ) = E (s2+φ(g)
2 + s2−φ(−g)2)(s2+φ(ĝ)

2 + s2−φ(−ĝ)2)

= E s4+φ(g)
2φ(ĝ)2 + s4−φ(−g)2φ(−ĝ)2 + s2+s

2
−φ(g)

2φ(−ĝ)2 + s2+s
2
−φ(−g)2φ(ĝ)2

= (s4+ + s4−)J̄2(ρ) + 2s2+s
2
−J̄2(−ρ) .

(B.32)

K3,1 follows from a similar calculation

K3,1(ρ) = E (s3+φ(g)
3 − s3−φ(−g)3)(s+φ(ĝ)− s−φ(−ĝ))

= E s4+φ(g)
3φ(ĝ)s4−φ(−g)3φ(−ĝ)− s3+s−φ(g)

3φ(−ĝ)− s+s
3
−φ(−g)3φ(ĝ)

= (s4+ + s4−)J̄3,1(ρ)− s+s−(s
2
+ + s2−)J̄3,1(−ρ) .

(B.33)

Finally, we to get to state the desired formulas for the approximate Markov chain. Here we will
make introduce several definitions first. In the event that |φα

ℓ | = 0 or |φβ
ℓ | = 0, the formula

ραβℓ :=
⟨φα

ℓ ,φβ
ℓ ⟩

|φα
ℓ | |φα

ℓ | is undefined. We will remedy this by introducing an additional point e in the state

space R ∪ {e}, and set ραβℓ = e in this event. We note that once ραβℓ = e, then the next step
ραβℓ+1 = e as well since either zαℓ+1, z

β
ℓ+1 = 0. For all x ∈ R we will define the distance |x−e| = ∞.

Consequently, R∪ {e} is a Polish space (complete separable metric space), and therefore it’s a well
behaved probability space (e.g. admits conditional densities). For a random variable X , we write
X = O(np) if all moments of n−pX are bounded by a constant independent of n.

We will also define the bounded Lipschitz function norm as

∥h∥BL := ∥h∥∞ + sup
x ̸=y

|h(x)− h(y)|
|x− y|

, (B.34)

which induces the bounded Lipschitz distance for probability measures

dBL(µ, ν) := sup
∥h∥BL≤1

∫
h dµ−

∫
h dν . (B.35)

Proposition B.8 (Unshaped ReLU Correlation). Let ραβℓ :=
⟨φα

ℓ ,φβ
ℓ ⟩

|φα
ℓ | |φα

ℓ | when defined, and e when
either |φα

ℓ | , |φα
ℓ | = 0. Let us also define the approximate Markov chain

pℓ+1 = cK1(pℓ) +
µReLU(pℓ)

n
+ σReLU(pℓ)

zℓ√
n
, (B.36)

where zℓ are iid N (0, 1) and

µReLU(ρ
αβ
ℓ ) =

c

4

[
K1(c

2K2 + 3M2 + 3)− 4cK3,1

]
,

σ2
ReLU(ρ

αβ
ℓ ) =

c2

2

[
K2

1 (c
2K2 +M2 + 1)− 4cK1K3,1 + 2K2

]
,

(B.37)
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where we write K· = K·(ρ
αβ
ℓ ), and the formulas for K1,K2,K3,1, c,M2 are calculated in

Lemma B.6 and Lemma B.7.

Let Π(x, dy), P (x, dy) be the Markov transition kernels of ραβℓ and pℓ respectively, then

dBL(Π(x, ·), P (x, ·)) = O(n−1) , for all x ∈ R ∪ {e} . (B.38)

Remark B.9. The infinite-width (n → ∞) approximation of the Markov chain corresponds to the
update qℓ+1 = cK1(qℓ), and this is an O(n−1/2) approximation to the chain {ραβℓ }. On the other
hand, the {pℓ} chain we propose is an improved approximation up to the zero mean terms up to
O(n−1/2), and the expected value of non-zero mean terms up to O(n−1). In the SDE limit of
Proposition A.6, these are exactly the terms that do not vanish, which leads us to speculate that this
approximation is sufficiently close when studying the infinite-depth-and-width limit.

We will also note that O(n−1) error in the result arise from replacing the O(n−1/2) with a Gaussian
due to Berry–Esseen, and the O(n−1) term with its expectation, as these are the dominant error
terms in the approximation.

Proof. We start by defining the notations

gαℓ := Wℓ
φα
ℓ

|φα
ℓ |

, Rαβ
ℓ :=

1√
n

n∑
i=1

cφs(g
α
ℓ,i)φs(g

β
ℓ,i)− cK1(ρ

αβ
ℓ ) , (B.39)

and using positive homogeneity we can write φs(
√

c
nWℓφ

α
ℓ ) =

√
c
n |φ

α
ℓ |φs(g

α
ℓ ), which gives us

⟨φα
ℓ+1, φ

β
ℓ+1⟩ = |φα

ℓ | |φ
β
ℓ |

c

n

n∑
i=1

φs(g
α
ℓ,i)φs(g

β
ℓ,i) = |φα

ℓ | |φ
β
ℓ |
(
cK1(ρ

αβ
ℓ ) +

1√
n
Rαβ

ℓ

)
. (B.40)

Now consider the same case for Rαα
ℓ and Rββ

ℓ with K1(1) = c−1, we also get

ραβℓ+1 =


⟨φα

ℓ+1,φ
β
ℓ+1⟩

|φα
ℓ+1| |φ

α
ℓ+1|

=
cK1(ρ

αβ
ℓ )+ 1√

n
Rαβ

ℓ√
(1+ 1√

n
Rαα

ℓ )(1+ 1√
n
Rββ

ℓ )
, if |φα

ℓ+1| , |φ
β
ℓ+1| > 0 ,

e , otherwise.
(B.41)

We observe that whenever |φℓ
α| > 0, we have that 1 + 1√

n
Rαα

ℓ =
|φα

ℓ+1|
2

|φα
ℓ |2 ≥ 0. Therefore the event

E := {Rαα
ℓ , Rββ

ℓ ≤ −
√
n} is the same as {ραβℓ+1 = e}, which is equivalent to when zαℓ+1 or zβℓ+1 has

only non-positive entries. When conditioned on the previous layer, all the entries are independent,
this event has probability Π(x, {e}) = O(2−n). We will see later that modifying this Markov chain
to remove this event will incur only a "minor cost" of O(2−n).

Let us fix any realization of Rαα, Rββ , Rαβ outside of the event E (i.e. by viewing it as a map
Rαα : Ω → R from the probability space for some fixed ω ∈ Ω), we can compute the Taylor
expansion with respect to 1/

√
n about 0 (Taylor expansion done using SymPy [51] Python package)

ραβℓ+1 = cK1(ρ
αβ
ℓ ) +

1√
n

[
Rαβ

ℓ −
cK1(ρ

αβ
ℓ )

2
(Rαα

ℓ +Rββ
ℓ )

]

+
1

n

[
cK1(ρ

αβ
ℓ )

8
(3(Rαα

ℓ +Rββ
ℓ )2 − 4Rαα

ℓ Rββ
ℓ )− 1

2
Rαβ

ℓ (Rαα
ℓ +Rββ

ℓ )

]
+O(n−3/2) ,

(B.42)
where we recall the X = O(n−3/2) notation denotes a random variable (the Taylor remainder term)
where all moments of n3/2X are bounded by a constant independent of n.

We can simplify these terms further by computing the mean and variance of the expansion (without
conditioning on Ec). More specifically, each of the Rαα

ℓ , Rββ
ℓ , Rαβ

ℓ have zero mean and covariance

Covℓ

Rαα
ℓ

Rββ
ℓ

Rαβ
ℓ

 =

 M2 c2K2 − 1 c2K3,1 − cK1

c2K2 − 1 M2 c2K3,1 − cK1

c2K3,1 − cK1 c2K3,1 − cK1 c2(K2 −K2
1 )

 , (B.43)
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where we recall Covℓ is the conditional covariance given the sigma-algebra Fℓ generated by the
ℓ-th layer [zαℓ ]

m
α=1. We can now recover the desired result by calculating the drift and variance

coefficients using SymPy [51] again

σ2
ReLU(ρ

αβ
ℓ ) := Eℓ

[
Rαβ

ℓ − cK1

2
(Rαα

ℓ +Rββ
ℓ )

]2
=

c2

2

[
K2

1 (c
2K2 +M2 + 1)− 4cK1K3,1 + 2K2

]
,

µReLU(ρ
αβ
ℓ ) := Eℓ

[
cK1

8
(3(Rαα

ℓ +Rββ
ℓ )2 − 4Rαα

ℓ Rββ
ℓ )− 1

2
Rαβ

ℓ (Rαα
ℓ +Rββ

ℓ )

]
=

c

4

[
K1(c

2K2 + 3M2 + 3)− 4cK3,1

]
,

(B.44)

where we recall Eℓ[ · ] = E[ · |Fℓ] is the conditional expectation given the sigma-algebra Fℓ gener-
ated by the ℓ-th layer [zαℓ ]

m
α=1.

This allows us to write (considering the well defined case)

ραβℓ+1 = cK1(ρ
αβ
ℓ ) +

σReLU(ρ
αβ
ℓ )√

n
ξℓ +

µReLU(ρ
αβ
ℓ ) + η(ραβℓ )

n
+O(n−3/2) , (B.45)

where ξℓ is has zero mean and unit variance (when not conditioned on ραβℓ+1 = e), and η(ραβℓ ) has
zero mean. Observe that there are three differences between {ραβℓ } and the approximate chain {pℓ}:

1. ραβℓ+1 = e with probability O(2−n),

2. ξℓ is replaced by zℓ ∼ N (0, 1),

3. η(ραβℓ ) and the higher order O(n−3/2) terms in the Taylor expansion are removed.

To complete the proof, we will need to control these differences in terms of the bounded Lipschitz
distance on the Markov transition kernels. To this goal, we let h be such that ∥h∥BL ≤ 1, hence
it must be both bounded by 1 and at worst 1-Lipschitz. We will first condition on Ec to write the
Taylor expansion, and then “uncondition” to recover the original distribution, both at a cost of an
O(2−n) error term. More precisely, we will write

Eℓ h(ρ
αβ
ℓ+1)

= Eℓ[h(ρ
αβ
ℓ+1)|E

c]Pℓ(E
c) + Eℓ[h(e)|E]Pℓ(E)

= Eℓ[h(ρ
αβ
ℓ+1)|E

c]Pℓ(E
c) +O(1)O(2−n)

= Eℓ

[
h

(
cK1(ρ

αβ
ℓ ) +

σReLU(ρ
αβ
ℓ )√

n
ξℓ +

µReLU(ρ
αβ
ℓ ) + η(ραβℓ )

n
+O(n−3/2)

)∣∣∣∣∣Ec

]
Pℓ(E

c) +O(2−n) ,

(B.46)
where we recall Eℓ[ · ] = E[ · |Fℓ], and we define Pℓ(E) := Eℓ1E .

At this point we observe that we can now “uncondition” the Taylor expansion by essentially doing
the same trick, or more precisely observe that

Eℓ

[
h

(
cK1(ρ

αβ
ℓ ) +

σReLU(ρ
αβ
ℓ )√

n
ξℓ +

µReLU(ρ
αβ
ℓ ) + η(ραβℓ )

n
+O(n−3/2)

)∣∣∣∣∣E
]
Pℓ(E) = O(2−n) ,

(B.47)
therefore we can write

Eℓ h(ρ
αβ
ℓ+1)

= Eℓ [h (· · · )|Ec] Pℓ(E
c) + Eℓ [h (· · · )|E] Pℓ(E) +O(2−n)

= Eℓ h

(
cK1(ρ

αβ
ℓ ) +

σReLU(ρ
αβ
ℓ )√

n
ξℓ +

µReLU(ρ
αβ
ℓ ) + η(ραβℓ )

n
+O(n−3/2)

)
+O(2−n) .

(B.48)
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Since h is 1-Lipschitz, we have that h(x+ y) ≤ h(x) + |y|, and therefore we can write

Eℓ h(ρ
αβ
ℓ+1) ≤ Eℓ h

(
cK1(ρ

αβ
ℓ ) +

σReLU(ρ
αβ
ℓ )√

n
zℓ +

µReLU(ρ
αβ
ℓ )

n

)

+ Eℓ
σReLU(ρ

αβ
ℓ )√

n
|ξℓ − zℓ|+ Eℓ

|η(ραβℓ )|
n

+O(n−3/2 + 2−n) .

(B.49)

Observe that the first term is exactly the transition kernel of pℓ applied to h, i.e. Eℓ h(pℓ+1) =∫
h(y)P (pℓ, dy), which means it’s sufficient to control the leftover terms at order O(n−1) for a

chosen coupling of ξℓ and zℓ. Since clearly Eℓ η(ρ
αβ
ℓ ) = O(1) as it does not depend on n, we just

need to show Eℓ |ξℓ − zℓ| = O(n−1/2). Observe that by definition, we have

ξℓ =
1√
n

n∑
i=1

1

σReLU(ρ
αβ
ℓ )

[
cφs(g

α
ℓ,i)φs(g

β
ℓ,i)− cK1(ρ

αβ
ℓ )−

cK1(ρ
αβ
ℓ )

2

(
cφs(g

α
ℓ,i)

2 + cφs(g
β
ℓ,i)

2 − 2
)]

,

(B.50)
where the terms of the sum are iid with zero mean and unit variance (since each neuron is inde-
pendent conditioned on the previous layer). Therefore, we can invoke a standard L1 Berry–Esseen
bound, e.g. Theorem 4.2 of [chen2011normal]. In this case, we let F be the CDF of ξℓ and G be
the CDF of zℓ, and by duality of L1 (equation 4.6 of [chen2011normal]) we have that

inf E |ξℓ − zℓ| = ∥F −G∥L1 ≤ O(n−1/2) , (B.51)

where the inf is over all couplings of ξℓ, zℓ.

Finally since the above results do not depend on the choice of the test function h, so we have that

dBL(Π(x, ·), P (x, ·)) = sup
∥h∥BL≤1

Eℓ

(
h(ραβℓ+1)− h(pℓ+1)

)
≤ O(n−1) , (B.52)

which is the desired result.

C Proofs for ReLU Shaping Results

In this section, we first recall the ReLU-like activation function for s = (s+, s−) ∈ R2 defined as

φs(x) := s+ max(x, 0) + s− min(x, 0) = s+φ(x)− s−φ(−x) , (C.1)

where φ(x) := max(x, 0) is the usual ReLU activation.

We will also recall the definitions

J̄p,r(ρ) := Eφ(g)pφ(ĝ)r , Kp,r(ρ) := Eφs(g)
pφs(ĝ)

r , (C.2)

where g, w are iid N (0, 1) and we define ĝ = ρg + qw with q =
√

1− ρ2. We will also use the
short hand notation to write J̄p := J̄p,p,Kp := Kp,p.

Here we recall from [41]

J̄1(ρ) =

√
1− ρ2 + (π − arccos ρ)ρ

2π
. (C.3)

We will also recall from Lemma B.6 the following moment calculations

c−1 = Eφs(g)
2 =

s2+ + s2−
2

,

K1(ρ) = Eφs(g)φs(ĝ) = (s2+ + s2−)J̄1(ρ)− 2s+s−J̄1(−ρ) .

(C.4)

In the shaped case, we will calculate a Taylor expansion for the function cK1(ρ).
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Lemma C.1 (Shaping Correlation Function Expansion). Let s± = 1 + c±√
n

, then

cK1(ρ) = ρ+
ν(ρ)

n
+O(n−3/2) , (C.5)

where ν(ρ) = (c+−c−)2

2π

(√
1− ρ2 + ρ arccos ρ

)
.

Proof. We start by consider plugging in the formula from (C.4) to get

cK1(ρ) =
2

s2+ + s2−

(
(s2+ + s2−)J̄1(ρ)− 2s+s−J̄1(−ρ)

)
=

2

s2+ + s2−

1

2π

(
(s2+ + s2−)

(√
1− ρ2 + (π − arccos ρ)ρ

)
− 2s+s−

(√
1− ρ2 − (π − arccos(−ρ))ρ

))
=

2

s2+ + s2−

1

2π

(
(s2+ + s2−)

(√
1− ρ2 + (π − arccos ρ)ρ

)
− 2s+s−

(√
1− ρ2 − (arccos ρ)ρ

))
.

(C.6)
where we used the fact that arccos(−ρ) = π − arccos(ρ).

After substituting s± = 1+ c±√
n

, we can use SymPy [51] to Taylor expand with respect to the variable

x = n−1/2 about x0 = 0 and get

cK1(ρ) =
ρ arccos (ρ)

π
+

ρ (π − arccos (ρ))

π

+
(
n−1/2

)2(−ρc2+ arccos (ρ) + 2ρc+c− arccos (ρ)− ρc2− arccos (ρ)

2π

+
c2+
√

1− ρ2 − 2c+c−
√
1− ρ2 + c2−

√
1− ρ2

2π

)

+O

((
n−1/2

)3)
,

(C.7)

where we used the simplify function on the coefficients to reduce the size of the expression.

We can further simplify to get

cK1(ρ) = ρ+
1

n

(c+ − c−)
2

2π

(√
1− ρ2 − ρ arccos ρ

)
+O(n−3/2) , (C.8)

which is the desired result.

We will also need an approximation result for fourth moments.
Lemma C.2 (Fourth Moment Approximation). Let gα, gβ , gγ , gδ ∈ R be jointly Gaussian such that[

gα

gβ

]
∼ N

(
0 ,

[
1 ραβ

ραβ 1

])
, (C.9)

and similarly for other pairs of α, β, γ, δ. Then

Eφs(g
α)φs(g

β)φs(g
γ)φs(g

δ) = E gαgβgγgδ+O(n−1/2) = ραβργδ+ραγρβδ+ραδρβγ+O(n−1/2) ,
(C.10)

where the constant in the O(·) notation is universal.

Proof. We start by writing

φs(x) = x+
1√
n
(c+φ(x)− c−φ(−x)) , (C.11)

and this allows us to write

Eφs(g
α)φs(g

β)φs(g
γ)φs(g

δ) = E gαgβgγgδ +O(n−1/2) . (C.12)
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Then by Isserlis’ Theorem, we can write

E gαgβgγgδ = E gαgβE gγgδ + E gαgγE gβgδ + E gαgδE gβgγ , (C.13)

which gives us the desired result.

We will also calculate a useful covariance.
Lemma C.3 (Covariance of Rαβ). Let gα, gβ , gγ , gδ ∈ Rn be jointly Gaussian vectors such that[

gα

gβ

]
∼ N

(
0 ,

[
1 ραβ

ραβ 1

]
⊗ In

)
, (C.14)

and similarly for other pairs of α, β, γ, δ. If we also define

Rαβ :=
1√
n

n∑
i=1

[
cφs(g

α
i )φs(g

β
i )− cK1(ρ

αβ)
]
, (C.15)

then we have the following covariance formula:

ERαβRγδ = ραγρβδ + ραδρβγ +O(n−1/2) . (C.16)

Proof. We first observe that since each entry of the sum in Rαβ are iid and zero mean, it is sufficient
to just compute the covariance a single term. In other words

ERαβRγδ = E c2
(
φs(g

α
i )φs(g

β
i )−K1(ρ

αβ)
) (

φs(g
γ
i )φs(g

δ
i )−K1(ρ

γδ)
)
. (C.17)

Since c = 1 +O(n−1/2) and K1(ρ) = ρ+O(n−1) from Lemma C.1, we can further write this as

ERαβRγδ = E
(
φs(g

α
i )φs(g

β
i )− ραβ

) (
φs(g

γ
i )φs(g

δ
i )− ργδ

)
+O(n−1/2) , (C.18)

and we can use the fourth moment approximation Lemma C.2 to get

ERαβRγδ = ραβργδ + ραγρβδ + ραδρβγ − ραβργδ − ραβργδ + ραβργδ +O(n−1/2)

= ραγρβδ + ραδρβγ +O(n−1/2) ,
(C.19)

which is the desired result.

C.1 Proof of Theorem 3.2 (Covariance SDE, ReLU)

We start by restating the theorem.

Theorem C.4 (Covariance SDE, ReLU). Let V αβ
ℓ := c

n ⟨φ
α
ℓ , φ

β
ℓ ⟩, and define Vℓ := [V αβ

ℓ ]1≤α≤β=m

to be the upper triangular entries thought of as a vector in Rm(m+1)/2. Then, with s± = 1 + c±√
n

as in Definition 3.1, in the limit as n → ∞, d
n → T , the interpolated process V⌊tn⌋ converges in

distribution to the solution of the following SDE in the Skorohod topology of DR+,Rm(m+1)/2

dVt = b(Vt) dt+Σ(Vt)
1/2 dBt , V0 =

[
1

nin
⟨xα, xβ⟩

]
1≤α≤β≤m

, (C.20)

where we denote ν(ρ) := (c+−c−)2

2π

(√
1− ρ2 − ρ arccos ρ

)
, ραβt :=

V αβ
t√

V αα
t V ββ

t

and write

b(Vt) =

[
ν
(
ραβt

)√
V αα
t V ββ

t

]
1≤α≤β≤m

, Σ(Vt) =
[
V αγ
t V βδ

t + V αδ
t V βγ

t

]
α≤β,γ≤δ

. (C.21)

Furthermore, the output distribution can be described conditional on VT evaluated at final time T

[zαout]
m
α=1 |VT

d
= N

(
0, [V αβ

T ]mα,β=1

)
. (C.22)
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Proof. We start by recalling the definitions

V αβ
ℓ+1 :=

c

n
⟨φα

ℓ+1, φ
β
ℓ+1⟩ =

c

n

〈
φs

(√
c

n
Wℓφ

α
ℓ

)
, φs

(√
c

n
Wℓφ

β
ℓ

)〉
. (C.23)

At this point, we can define

gαℓ := Wℓ
φα
ℓ

|φα
ℓ |

, (C.24)

and observe that [
gαℓ
gβℓ

]∣∣∣∣Fℓ
d
= N

(
0 ,

[
1 ραβℓ

ραβℓ 1

]
⊗ In

)
, (C.25)

where Fℓ is the sigma-algebra generated by [zαℓ ]
m
α=1, ραβℓ :=

⟨φα
ℓ ,φβ

ℓ ⟩
|φα

ℓ | |φβ
ℓ |

, and ⊗ denotes the Kronecker

product. Then we can use positive homogeneity (i.e. φs(cx) = |c|φs(x)) to write

V αβ
ℓ+1 =

c

n
|φα

ℓ | |φ
β
ℓ |

c

n
⟨φs(g

α
ℓ ), φs(g

β
ℓ )⟩

=

√
V αα
ℓ V ββ

ℓ

(
cK1(ρ

αβ
ℓ ) +

1√
n

1√
n

n∑
i=1

[
cφs(g

α
ℓ,i)φs(g

β
ℓ,i)− cK1(ρ

αβ
ℓ )
])

=:

√
V αα
ℓ V ββ

ℓ

(
cK1(ρ

αβ
ℓ ) +

1√
n
Rαβ

ℓ

)
,

(C.26)

where we defined Rαβ
ℓ := 1√

n

∑n
i=1

[
cφs(g

α
ℓ,i)φs(g

β
ℓ,i)− cK1(ρ

αβ
ℓ )
]
.

Next we use the expansion of cK1(ρ
αβ
ℓ ) from Lemma C.1 to write

V αβ
ℓ+1 =

√
V αα
ℓ V ββ

ℓ

(
ραβℓ +

ν(ραβℓ )

n
+

1√
n
Rαβ

ℓ

)
+O(n−3/2)

= V αβ
ℓ +

1

n
ν(ραβℓ )

√
V αα
ℓ V ββ

ℓ +
1√
n

√
V αα
ℓ V ββ

ℓ Rαβ
ℓ +O(n−3/2) ,

(C.27)

which essentially recovers the Markov chain form we want from Proposition A.6, where the drift is

b(V ) = ν
(
ραβℓ

)√
V αα
ℓ V ββ

ℓ , (C.28)

as desired.

It remains to simply compute the covariance conditioned on previous layer. To this end, we will use
Lemma C.3 to write

Σ(Vℓ)αβ,γδ = Eℓ

[√
V αα
ℓ V ββ

ℓ Rαβ
ℓ

√
V γγ
ℓ V δδ

ℓ Rγδ
ℓ

]
=

√
V αα
ℓ V ββ

ℓ V γγ
ℓ V δδ

ℓ

(
ραγℓ ρβδℓ + ραδℓ ρβγℓ +O(n−1/2)

)
= V αγ

ℓ V βδ
ℓ + V αδ

ℓ V βγ
ℓ +O(n−1/2) ,

(C.29)

where we recall Eℓ[ · ] = E[ · |Fℓ] is the conditional expectation given the sigma-algebra generated
by {zαℓ }mα=1. By setting σ = Σ1/2, we then recover the desired SDE via Proposition A.6 on the
Markov chain of V αβ

ℓ .

C.2 Proof of Theorem 3.3 (Correlation SDE, ReLU)

We start by restating the theorem.
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Theorem C.5 (Correlation SDE, ReLU). Let ραβℓ :=
⟨φα

ℓ ,φβ
ℓ ⟩

|φα
ℓ | |φβ

ℓ |
, where φα

ℓ := φs(z
α
ℓ ). In the limit as

n → ∞ and s± = 1 + c±√
n

, the interpolated process ραβ⌊tn⌋ converges in distribution to the solution
of the following SDE in the Skorohod topology of DR+,R

dραβt =
[
ν(ραβt ) + µ(ραβt )

]
dt+ σ(ραβt ) dBt , ραβ0 =

⟨xα, xβ⟩
|xα| |xβ |

, (C.30)

where

ν(ρ) =
(c+ − c−)

2

2π

[√
1− ρ2 − arccos(ρ)ρ

]
, µ(ρ) = −1

2
ρ(1− ρ2) , σ(ρ) = 1− ρ2 .

(C.31)

Proof. While it is possible to obtain this result as a consequence of Theorem 3.2 via Itô’s Lemma,
we will show an alternative derivation by extending the steps of Proposition B.8, where we can
directly compute the Taylor expansion in the event E := {|φα

ℓ+1|, |φ
β
ℓ+1| > 0}

ραβℓ+1 =
⟨φα

ℓ+1, φ
β
ℓ+1⟩

|φα
ℓ+1| |φ

β
ℓ+1|

= cK1(ρ
αβ
ℓ ) +

µ̃(ραβℓ )

n
+ σ(ραβℓ )

ξℓ√
n
+O(n−3/2) , (C.32)

where (unconditioned on E) ξℓ are iid with mean zero variance one and

µ(ραβℓ ) := Eℓ µ̃(ρ
αβ
ℓ ) =

c

4

[
K1(c

2K2 + 3M2 + 3)− 4cK3,1

]
,

σ2(ραβℓ ) :=
c2

2

[
K2

1 (c
2K2 +M2 + 1)− 4cK1K3,1 + 2K2

]
,

(C.33)

where we replaced µReLU, σReLU with µ, σ as we will be shaping the activation function, and we recall
Eℓ[ · ] = E[ · |Fℓ] is the conditional expectation given the sigma-algebra generated by {zαℓ }mα=1.

We note that the undefined event E occurs only when zαℓ+1 or zβℓ+1 has all negative entries, which
occurs with probability O(2−n). Since all the terms of interest have finite moments, we can proceed
by removing this event E in a similar fashion as Proposition B.8.

Using the expansion of cK1(ρ) from Lemma C.1, we can now write

ραβℓ+1 = ραβℓ +
ν(ραβℓ ) + µ̃(ραβℓ )

n
+ σ(ραβℓ )

ξℓ√
n
+O(n−3/2) . (C.34)

Furthermore, we also have that by Lemma C.1 and Lemma C.2

K1 = ραβℓ +O(n−1) , K2 = 2(ραβℓ )2 + 1 +O(n−1/2) ,

K3,1 = 3ραβℓ +O(n−1/2) , M2 = 2 +O(n−1/2) ,
(C.35)

which gives us the desired formula of

µ(ρ) = −1

2
ρ(1− ρ2) , σ(ρ) = 1− ρ2 . (C.36)

Finally, we can recover the desired SDE via Proposition A.6.

C.3 Joint Correlation SDE

In this section, we will extend Theorem 3.3 to a general joint process over all the possible pairs of
correlations.

Theorem C.6 (Joint Correlation SDE). Let ραβℓ :=
⟨φα

ℓ ,φβ
ℓ ⟩

|φα
ℓ | |φβ

ℓ |
, and define ρℓ := [ραβℓ ]1≤α≤β=m to

be the upper triangular entries thought of as a vector in Rm(m+1)/2. Then, with s± = 1 + c±√
n
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as in Definition 3.1, in the limit as n → ∞, d
n → T , the interpolated process ρ⌊tn⌋ converges in

distribution to the solution of the following SDE in the Skorohod topology of DR+,Rm(m+1)/2

dρt = b(ρt) dt+Σ(ρt)
1/2 dBt , ρ0 =

[
⟨xα, xβ⟩
|xα| |xβ |

]
1≤α≤β≤m

, (C.37)

where the coefficients are defined by

b(ρt) =
[
ν(ραβt ) + µ(ραβt )

]
1≤α≤β≤m

,

Σ(ρt) =

[
ραγρβδ + ραδρβγ +

1

2
ραβργδ

(
(ραγ)2 + (ρβγ)2 + (ραδ)2 + (ρβδ)2

)
− ραβ

(
ραγραδ + ρβγρβδ

)
− ργδ

(
ραγρβγ + ραδρβδ

) ]
α≤β,γ≤δ

,

(C.38)
with ν, µ defined as in Theorem 3.3.

Proof. It’s sufficient to just compute the covariance matrix Σ for the random terms of the Markov
chain (B.42), which reduces down to

Σ(ρℓ)αβ,γδ = Eℓ

(
Rαβ

ℓ − c

2
Kαβ

1 (Rαα
ℓ +Rββ

ℓ )
)(

Rγδ
ℓ − c

2
Kγδ

1 (Rγγ
ℓ +Rδδ

ℓ )
)
, (C.39)

where we recall Eℓ[ · ] = E[ · |Fℓ] is the conditional expectation given the sigma-algebra generated
by {zαℓ }mα=1, and we write Kαβ

1 := K1(ρ
αβ
ℓ ).

Using Lemma C.1 and Lemma C.3, we can calculate this explicitly as

Σ(ρℓ)αβ,γδ = Eℓ RαβRγδ +
c2

4
Kαβ

1 Kγδ
1 Eℓ (Rαα +Rββ)(Rγγ +Rδδ)

− c

2
KαβEℓ Rγδ(Rαα +Rββ)−

c

2
KγδEℓ Rαβ(Rγγ +Rδδ)

= ραγρβδ + ραδρβγ +
1

2
ραβργδ

(
(ραγ)2 + (ρβγ)2 + (ραδ)2 + (ρβδ)2

)
− ραβ

(
ραγραδ + ρβγρβδ

)
− ργδ

(
ραγρβγ + ραδρβδ

)
+O(n−1/2) ,

(C.40)

which is the desired result.

C.4 Proof for Proposition 3.4 (Critical Exponent, ReLU)

We start by restating the proposition.

Proposition C.7 (Critical Exponent, ReLU). Let ραβℓ :=
⟨φα

ℓ ,φβ
ℓ ⟩

|φα
ℓ | |φβ

ℓ |
, where φα

ℓ := φs(z
α
ℓ ). Consider

the limit n → ∞ and s± = 1 + c±
np for some p ≥ 0. Then depending on the value of p, the

interpolated process ραβ⌊tn⌋ converges in distribution w.r.t. the Skorohod topology of DR+,R to

(i) the degenerate limit: ραβt = 1 for all t > 0, if 0 ≤ p < 1
2 , and c+ ̸= c−,

(ii) the critical limit: the SDE from Theorem 3.3, if p = 1
2 ,

(iii) the linear network limit: if p > 1
2 , the following SDE, with µ, σ as defined in (3.5),

dραβt = µ(ραβt ) dt+ σ(ραβt ) dBt , ραβ0 =
⟨xα, xβ⟩
|xα| |xβ |

, (C.41)

Proof. Case (ii) follows from Theorem 3.3, therefore it is sufficient to only consider cases (i) and
(iii). In the case that p = 0, we can recover the following recursion in the limit as n → ∞

ραβℓ+1 = cK1(ρ
αβ
ℓ ) , (C.42)
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which matches the infinite-width limit, and it is known that ραβℓ → 1 as ℓ → 1 (see also Appendix E
for an upper bound).

Next we will recall the result of Lemma C.1 and observe that we can simply replace
√
n with np to

recover the expansion

cK1(ρ) = ρ+
ν(ρ)

n2p
+O(n−3p) . (C.43)

This gives us the following Markov chain from the proof of Theorem 3.3

ραβℓ+1 = ραβℓ +
ν(ραβℓ )

n2p
+

µ(ραβℓ )

n
+ σ(ραβℓ )

ξℓ√
n
+O(n−3p + n−3/2) . (C.44)

In the case that 0 < p < 1/2, we can consider the time step size hn = n−2p instead of n−1 and
apply Proposition A.6, where we recover the ODE

∂sρ̂
αβ
s = ν(ρ̂αβs ) , (C.45)

but on the time scale of ρ̂αβ,ns = ρ̂αβ⌊sn2p⌋. Converting it back to the time scale of ραβ,nt = ραβ⌊tn⌋
implies that we have

ραβt = ρ̂αβ∞ , for all t > 0 . (C.46)

And since ν(ρ) > 0 for all ρ < 1 and that ν(ρ) = C(1− ρ)3/2 +O((1− ρ)5/2) as ρ → 1, we have
that ρ̂αβ∞ = 1 as desired.

In the case p > 1
2 , we have that since ν is deterministic, we observe the drift term used in Proposi-

tion A.6 in the limit as n → ∞ is

bn(ρ) = ν(ρ)n1−2p + µ(ρ) → b(ρ) = µ(ρ) , (C.47)

which would simply recover the desired SDE with drift µ only.

D Proofs for Smooth Shaping Results

In this section, we consider smooth activation functions φ satisfying Assumption 3.5, that is φ ∈
C4, φ(0) = 0, φ′(0) = 1, and that |φ(4)(x)| ≤ C(1 + |x|p) for some C, p > 0. We recall the
shaping we consider for activations of this type is via the following definition for s > 0

φs(x) := sφ
(x
s

)
, (D.1)

so that lims→∞ φs(x) = x.

Before we start, we will calculate the behaviour of the normalizing constant c up an error order of
s3.
Lemma D.1. Let φs be defined as above with φ satisfying Assumption 3.5. Then if g ∼ N(0, 1), we
have that

c = 1 +
1

s2

(
3

4
φ′′(0)2 + φ′′′(0)

)
+O(s−3) . (D.2)

Proof. We will first Taylor expand φs(g) about g = 0

φs(g) = 0 + g +
φ′′(0)

2s
g2 +

φ′′′(0)

6s2
g3 +O(s−3) , (D.3)

where we note by Assumption 3.5 the remainder term is at most polynomial in g.

Therefore the second moment satisfies

Eφs(g)
2 = E g2 +

φ′′(0)

s
g3 +

1

s2

(
1

4
φ′′(0)2 +

2

6
φ′′′(0)

)
g4 +O(s−3)

= 1 +
1

s2

(
3

4
φ′′(0)2 + φ′′′(0)

)
+O(s−3) ,

(D.4)
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where O(s−3) is bounded due to Gaussians have all bounded moments.

Therefore, for s > 0 sufficiently small, we have the following expansion

c =
1

Eφs(g)2
=

1

1− (−bs−2 +O(s−3))
= 1− b

s2
+O(s−3) , (D.5)

where b = 3
4φ

′′(0)2 + φ′′′(0), which is the desired result.

D.1 Proof of Theorem 3.9 (Covariance SDE, Smooth)

We start by restating the theorem.

Theorem D.2 (Covariance SDE, Smooth). Let φ satisfy Assumption 3.5, V αβ
ℓ := c

n ⟨φ
α
ℓ , φ

β
ℓ ⟩ where

φα
ℓ = φs(z

α
ℓ ), and define Vℓ := [V αβ

ℓ ]1≤α≤β=m to be the upper triangular entries thought of as a
vector in Rm(m+1)/2. Then, with s = a

√
n as in Definition 3.6, in the limit as n → ∞, d

n → T , the
interpolated process V⌊tn⌋ converges locally in distribution to the solution of the following SDE in
the Skorohod topology of DR+,Rm(m+1)/2

dVt = b(Vt) dt+Σ(Vt)
1/2 dBt , V0 =

[
1

nin
⟨xα, xβ⟩

]
1≤α≤β≤m

, (D.6)

where Σ(Vt) is the same as Theorem 3.2 and

bαβ(Vt) =
φ′′(0)2

4a2

(
V αα
t V ββ

t + V αβ
t (2V αβ

t − 3)
)
+

φ′′′(0)

2a2
V αβ
t (V αα

t + V ββ
t − 2) . (D.7)

Furthermore, if VT is finite, then the output distribution can be described conditional on VT as

[zαout]
m
α=1 |VT

d
= N

(
0, [V αβ

T ]mα,β=1

)
, (D.8)

and otherwise the distribution of [zαout]
m
α=1 is undefined.

Proof. We start by defining gαℓ := Wℓ
φα

ℓ

|φα
ℓ | , and observe that[

gαℓ
gβℓ

]∣∣∣∣Fℓ
d
= N

(
0 ,

[
1 ραβℓ

ραβℓ 1

]
⊗ In

)
, (D.9)

where Fℓ is the sigma-algebra generated by the ℓ-th layer [zαℓ ]
m
α=1, ραβℓ :=

⟨φα
ℓ ,φβ

ℓ ⟩
|φα

ℓ | |φβ
ℓ |

, and ⊗ denotes

the Kronecker product. We can then write the Taylor expansion for φs about 0 as

φα
ℓ+1,i = φs

(√
c

n
|φα

ℓ |gαℓ,i
)

= φs(0) + φ′
s(0)

√
c

n
|φα

ℓ |gαℓ,i +
φ′′
s (0)

2

(√
c

n
|φα

ℓ |gαℓ,i
)2

+
φ′′′
s (0)

6

(√
c

n
|φα

ℓ |gαℓ,i
)3

+R3

(√
c

n
|φα

ℓ |gαℓ,i
)

,

(D.10)
where R3(·) is the Taylor remainder term, which has polynomial growth by Assumption 3.5.

By using the fact that φ(0) = 0, φ′(0) = 1 and observing that the derivatives of φs satisfies

φ
(k)
s (0) = φ(k)(0)

sk−1 , we can further write

φα
ℓ+1,i =

√
c

n
|φα

ℓ |gαℓ,i +
φ′′(0)

2s

(√
c

n
|φα

ℓ |gαℓ,i
)2

+
φ′′′(0)

6s2

(√
c

n
|φα

ℓ |gαℓ,i
)3

+O(s−3) , (D.11)

where the remainder term is at most polynomial in gαℓ,i.
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Then we can compute the inner product with the same expansion as
c

n
⟨φα

ℓ+1, φ
β
ℓ+1⟩

=
c

n

n∑
i=1

(√
c

n
|φα

ℓ |gαℓ,i +
φ′′(0)

2s

c

n
|φα

ℓ |2(gαℓ,i)2 +
φ′′′(0)

6s2

( c
n
|φα

ℓ |2
)3/2

(gαℓ,i)
3 +O(s−3)

)
(√

c

n
|φβ

ℓ |g
β
ℓ,i +

φ′′(0)

2s

c

n
|φβ

ℓ |
2(gβℓ,i)

2 +
φ′′′(0)

6s2

( c
n
|φβ

ℓ |
2
)3/2

(gβℓ,i)
3 +O(s−3)

)
,

(D.12)
and we will proceed by analyzing the product terms separately. We start with the terms of order
O(s0) first, which are

c

n

n∑
i=1

c

n
|φα

ℓ ||φ
β
ℓ |g

α
ℓ,ig

β
ℓ,i =

c

n
|φα

ℓ ||φ
β
ℓ |c

(
ραβℓ +

1√
n

1√
n

n∑
i=1

gαℓ,ig
β
ℓ,i − ραβℓ

)

=

√
V αα
ℓ V ββ

ℓ c

(
ραβℓ +

1√
n
Rαβ

ℓ

)
= cV αβ

ℓ + c

√
V αα
ℓ V ββ

ℓ

Rαβ
ℓ√
n

,

(D.13)

where we used the definitions V αβ
ℓ := c

n ⟨φ
α
ℓ , φ

β
ℓ ⟩ and Rαβ

ℓ := 1√
n

∑n
i=1 g

α
ℓ,ig

β
ℓ,i − ραβℓ .

For the first order terms, i.e., terms of order O(s−1), we have the terms

c

n

n∑
i=1

√
c

n
|φα

ℓ |gαℓ,i
φ′′(0)

2s

c

n
|φβ

ℓ |
2(gβℓ,i)

2 +

√
c

n
|φβ

ℓ |g
β
ℓ,i

φ′′(0)

2s

c

n
|φα

ℓ |2(gαℓ,i)2

=
φ′′(0)

2s

√
V αα
ℓ V ββ

ℓ

c

n

n∑
i=1

gαℓ,ig
β
ℓ,i

(√
V αα
ℓ gαℓ,i +

√
V ββ
ℓ gβℓ,i

)
=

φ′′(0)

2s

√
V αα
ℓ V ββ

ℓ

c√
n
R̂αβ

ℓ ,

(D.14)

where we define R̂αβ
ℓ := 1√

n

∑n
i=1 g

α
ℓ,ig

β
ℓ,i

(√
V αα
ℓ gαℓ,i +

√
V ββ
ℓ gβℓ,i

)
and observe this random

variable has zero mean and a finite variance. Therefore in view of Proposition A.6, this term cannot
contribute to the drift due to having zero mean, nor can this term contribute to the diffusion term due
to s = a

√
n leading to the term being order 1

n . In other words, the effect of this term will vanish in
the limit as n → ∞.

We then turn our attention to the second order terms, i.e., terms of order O(s−2)

c

n

n∑
i=1

φ′′(0)2

4s2
c

n
|φα

ℓ |2
c

n
|φβ

ℓ |
2(gαℓ,i)

2(gβℓ,i)
2

+
φ′′′(0)

6s2

(√
c

n
|φα

ℓ |
(√

c

n
|φβ

ℓ |
)3

gαℓ,i(g
β
ℓ,i)

3 +

(√
c

n
|φα

ℓ |
)3√

c

n
|φβ

ℓ |(g
α
ℓ,i)

3gβℓ,i

)
.

(D.15)

Since this term is order s−2 = 1
a2n , it can only contribute to the drift term, and in view of Proposi-

tion A.6, we only need to compute its mean. To this goal, we will simply invoke Isserlis’ Theorem
and calculate

Eℓ (g
α
ℓ,i)

2(gβℓ,i)
2 = 1 + 2(ραβℓ )2 , Eℓ g

α
ℓ,i(g

β
ℓ,i)

3 = Eℓ (g
α
ℓ,i)

3gβℓ,i = 3ραβℓ , (D.16)

where we recall Eℓ[ · ] = E[ · |Fℓ] is the conditional expectation given the sigma-algebra generated
by {zαℓ }mα=1. This allows us to compute the conditional expectation Eℓ for the terms of order s−2 as

c

[
φ′′(0)2

4s2
c

n
|φℓ

α|2
c

n
|φℓ

β |2(1 + 2(ραβℓ )2) +
φ′′′(0)

6s2
3ραβ

√
c

n
|φℓ

α|
√

c

n
|φℓ

β |
( c
n
|φℓ

α|2 +
c

n
|φℓ

β |2
)]

= c

[
φ′′(0)2

4s2
(V αα

ℓ V ββ
ℓ 2(V αβ

ℓ )2) +
φ′′′(0)

2s2
V αβ
ℓ (V αα

ℓ + V ββ
ℓ )

]
,

(D.17)
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Putting these terms together with the fact that c = 1 − b
s2 + O(s−3) with b = 3

4φ
′′(0)2 + φ′′′(0),

we can write the update rule for V αβ
ℓ as

V αβ
ℓ+1 = V αβ

ℓ +
1

n

[
φ′′(0)2

4a2

(
V αα
ℓ V ββ

ℓ + V αβ
ℓ (2V αβ

ℓ − 3)
)
+

φ′′′(0)

2a2
V αβ
ℓ (V αα

ℓ + V ββ
ℓ − 2)

]
+ c

√
V αα
ℓ V ββ

ℓ

Rαβ
ℓ√
n

+O(n−3/2) .

(D.18)

At this point, we have fully recovered the drift term, and we observe the covariance structure is the
same as Lemma C.3 in the limit as n → ∞. Therefore we can invoke Proposition A.6 to recover the
desired SDE.

D.2 Proof of Proposition 3.10 (Critical Exponent, Smooth)

We will restate and prove the proposition.

Proposition D.3 (Critical Exponent, Smooth). Let φ satisfy Assumption 3.5, V αβ
ℓ := c

n ⟨φ
α
ℓ , φ

β
ℓ ⟩

where φα
ℓ = φs(z

α
ℓ ) with s = anp for some p > 0, and define Vℓ := [V αβ

ℓ ]1≤α≤β=m to be the
upper triangular entries thought of as a vector. Then in the limit as n → ∞, d

n → T , the interpolated
process V⌊tn⌋ converges locally in distribution w.r.t. the Skorohod topology of DR+,Rm(m+1)/2 to V ,
which depending on the value of p is

(i) the degenerate limit: if 0 < p < 1
2{

V αα
t = 0 or ∞, if 3

4φ
′′(0)2 + φ′′′(0) > 0 and V αα

0 ̸= 0 ,

V αβ
t = const. , if 3

4φ
′′(0)2 + φ′′′(0) ≤ 0 ,

(D.19)

for all t > 0 and 1 ≤ α ≤ β ≤ m,

(ii) the critical limit: the solution of the SDE from Theorem 3.9, if p = 1
2 ,

(iii) the linear network limit: the stopped solution to the SDE dVt = Σ(Vt) dBt with coefficient
Σ defined in Theorem 3.3, if p > 1

2 .

Proof. Similar to the proof of Theorem 3.9, we will borrow the same notation and write down the
Markov chain update and consider the time scale depending on the value of p. In case (i) where
0 < p < 1

2 , we will consider the time scale hn = 1
s2 = 1

a2n2p and observe that based on the Taylor
expansion of φs about 0, we can write

V αα
ℓ+1 =

c

n

n∑
i=1

(√
V αα
ℓ gαℓ,i +

φ′′(0)

2s
V αα
ℓ (gαℓ,i)

2 +
φ′′′(0)

6s2
(V αα

ℓ )3/2(gαℓ,i)
3 +O(s−3)

)2

= cV αα
ℓ

1

n

n∑
i=1

(gαℓ,i)
2 + (V αα

ℓ )3/2
φ′′(0)

2s

c

n

n∑
i=1

2(gαℓ,i)
3

+ (V αα
ℓ )2

(
φ′′′(0)

3s2
+

φ′′(0)2

4s2

)
c

n

n∑
i=1

(gαℓ,i)
4 +O(s−3)

= cV αα
ℓ + cV αα

ℓ

1√
n
Rαα

ℓ + c(V αα
ℓ )3/2

φ′′(0)

s

1√
n
R̂αα

ℓ + c(V αα
ℓ )2

(
φ′′′(0)

s2
+

3φ′′(0)2

4s2

)
+ c(V αα

ℓ )2
(
φ′′′(0)

3s2
+

φ′′(0)2

4s2

)
1√
n
R̃αα

ℓ +O(s−3) ,

(D.20)
where we define Rαα

ℓ := 1√
n

∑n
i=1(g

α
ℓ,i)

2−1, R̂αα
ℓ := 1√

n

∑n
i=1(g

α
ℓ,i)

3, R̃αα
ℓ := 1√

n

∑n
i=1(g

α
ℓ,i)

4−
3 and observe they all have zero mean and finite variance.
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In view of the time scale s−2 for Proposition A.6, it is then only important to keep track of the
expected value of the s−2 terms and the covariance of the s−1 terms. However, since there is no
terms on the order of s−1, we essentially have

V αα
ℓ+1 = V αα

ℓ +
1

s2

(
φ′′′(0) +

3

4
φ′′(0)2

)
V αα
ℓ (V αα

ℓ − 1) +O(s−3 + n−1) , (D.21)

where we used the fact that c = 1− b
s2 +O(s−3) for b = φ′′′(0) + 3

4φ
′′(0)2 from Lemma D.1.

Hence, we have that Uαα,n
t := V αα

⌊ts2⌋ converging to the ODE via Proposition A.6

∂tU
αα
t = bUαα

t (Uαα
t − 1) , (D.22)

where we observe if b > 0 this ODE is “mean avoiding” as it will drift towards 0 or ∞. And since
the Vt time scale is on the order of 1

n , for all t > 0 we have that

V αα
t = Uαα

∞ , (D.23)

therefore if b > 0 we have that V αα
t = 0 or ∞ as desired in the first case of (i). When b = 0 we

observe that V αα
t = V αα

0 since the time derivative is zero. Furthermore if b < 0 we also have that
V αα
t = 1 in the second case of (i).

When b ≤ 0, we can also write down the ODE for Uαβ
t using a similar argument and keeping only

the s−2 terms. More precisely, we can modify (D.18) to get

V αβ
ℓ+1 = V αβ

ℓ +
1

s2

[
φ′′(0)2

4

(
V αα
ℓ V ββ

ℓ + V αβ
ℓ (2V αβ

ℓ − 3)
)
+

φ′′′(0)

2
V αβ
ℓ (V αα

ℓ + V ββ
ℓ − 2)

]
+ c

√
V αα
ℓ V ββ

ℓ

Rαβ
ℓ√
n

+O(n−3/2) ,

(D.24)
which leads to the following ODE

∂tU
αβ
t =

φ′′(0)2

4

(
Uαα
t Uββ

t + Uαβ
t

(
2Uαβ

t − 3
))

+
φ′′′(0)

2
Uαβ
t

(
Uαα
t + Uββ

t − 2
)
. (D.25)

Since Uαα
t , Uββ

t converge to constants as t → ∞, |Uαβ
t | ≤

√
Uαα
t Uββ

t by definition and Cauchy–

Schwarz inequality, and that Uαβ
t satisfies a first order ODE (so it cannot have a periodic solution),

we must also have that limt→∞ Uαβ
t = const. This completes the proof for case (i).

Case (ii) follows directly from Theorem 3.9, therefore we can then consider case (iii) with the
same Taylor expansion, however this time on the time scale of n−1 instead. We will again follow
Proposition A.6 to only track the mean of the order n−1 term and the variance of the n−1/2 term.
Since p > 1

2 , the only term that remains is the diffusion on the order of n−1/2

V αβ
ℓ+1 = V αβ

ℓ + V αβ
ℓ

1√
n
Rαβ

ℓ , (D.26)

which gives us the desired SDE from calculating the covariance from Theorem 3.9.

D.3 Proof of Proposition 3.7 (Finite Time Explosion Criterion)

We will start by recalling several definitions from [42, Section 5.5]. Firstly, we consider the one
dimensional Itô diffusion on I := (0,∞)

dXt = b(Xt) dt+ σ(Xt) dBt , (D.27)

where the drift and diffusion coefficients satisfy the following conditions

σ2(x) > 0 , ∀x ∈ I ,

∀x ∈ I , ∃ϵ > 0 :

∫ x+ϵ

x−ϵ

|b(y)|
σ2(y)

dy < ∞ .
(D.28)
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We will also define the following functions for some fixed c ∈ I

p(x) :=

∫ x

c

exp

(
−
∫ ξ

c

2b(z)

σ2(z)
dz

)
dξ ,

m(dx) :=
2 dx

p′(x)σ2(x)
,

v(x) :=

∫ x

c

p′(x)

∫ y

c

2 dz

p′(z)σ2(z)
dy =

∫ x

c

p(x)− p(y)m(dx) .

(D.29)

We will also define the following sequence of stopping times for M > 0

τM := inf
{
t ≥ 0 : Xt ≥ M or Xt ≤ M−1

}
, (D.30)

and let τ∗ := supM>0 τM . Now we will state the main results we need for finite time explosions.
Lemma D.4 ([42, Problem 5.5.27]). We have the following implications

lim
x→0

p(x) = −∞ =⇒ lim
x→0

v(x) = ∞ ,

lim
x→∞

p(x) = ∞ =⇒ lim
x→∞

v(x) = ∞ .
(D.31)

Theorem D.5 (Feller’s Test for Explosions [42, Theorem 5.5.29]). Assume the conditions in (D.28)
are satisfied. Then P[τ∗ = ∞] = 1 if and only if

lim
x→0

v(x) = lim
x→∞

v(x) = ∞ . (D.32)

We will begin our derivations for the SDE (D.27).
Lemma D.6 (Geometric Brownian Motion, the b = 0 Case). Let Xt be a solution to the following
SDE

dXt =
√
2Xt dBt , X0 = x0 > 0 , (D.33)

then we have that τ∗ = ∞ a.s.

Proof. Here we observe that

p′(x) = exp(0) = 1 =⇒ p(x) = x− 1 . (D.34)

Then we have that
m(dx) =

2 dx

p′(x)σ2(x)
=

dx

x2
, (D.35)

which implies

v(x) = (x− 1)

∫ x

1

dy

y2
−
∫ x

1

y − 1

y2
dy = x− log x− 1 , (D.36)

and therefore
lim
x→0

v(x) = lim
x→∞

v(x) = ∞ . (D.37)

By Feller’s test for explosions Theorem D.5, we have the desired result.

Proposition D.7 (Calculate p(x),m(dx) and the b ≤ −1 Case). Suppose Xt is a solution of the
following equation

dXt = bXt(Xt − 1) dt+
√
2Xt dBt , X0 = x0 > 0 , (D.38)

then for all b ̸= 0 we have that

p(x) = eb
∫ x

1

e−byybdy , m(dx) =
dx

ebe−bxxb+2
. (D.39)

This implies that

lim
x→0

p(x) =

{
−∞ , b ≤ −1 ,

finite , b > −1 ,
lim
x→∞

p(x) =

{
∞ , b ≤ 0 ,

finite , b > 0 .
(D.40)

In particular, when b ≤ −1, we have that limx→0 v(x) = limx→∞ v(x) = ∞.
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Proof. We start by writing

p′(x) = exp

(
−
∫ x

1

2b(y)

σ2(y)
dy

)
= exp (−b(x− 1) + b log x) = ebe−bxxb . (D.41)

Then we can also calculate the integral via a substitution of y = bx to get the desired result.

At this time, we observe that when b > 0

p(x) =

∫ x

1

p′(y) dy

= eb
∫ x

1

e−byyb dy

= ebb−b−1

∫ bx

b

e−zzb dz

= ebb−b−1 (γ(b+ 1, bx)− γ(b+ 1, b)) ,

(D.42)

where γ is the lower incomplete gamma function, and therefore finite for all values of x including
the limits x → 0,∞.

The b = 0 case follows from Lemma D.6. Finally when b < 0 we can write

p(x) = e−|b|
∫ x

1

e|b|y

y|b|
dy , (D.43)

which clearly diverges to ∞ as x → ∞.

On the other hand, we can observe as that as x → 0, we have that y ∈ [0, 1] and therefore 1 ≤
e|b|y ≤ e|b|. This implies we only need to consider the integral −

∫ 1

x
y−|b| dy, which diverges to

−∞ if and only if |b| ≥ 1. In other words we have

lim
x→0

p(x) =

{
−∞ , b ≤ −1 ,

finite , b > −1 .
(D.44)

The limits on v(x) follows from Lemma D.4.

Proposition D.8 (The b > −1 Case). Suppose Xt is a solution of the following equation

dXt = bXt(Xt − 1) dt+
√
2Xt dBt , X0 = x0 > 0 , (D.45)

then when b > −1, we have that

lim
x→0

v(x) = ∞ , lim
x→∞

v(x) =

{
∞ , b ∈ (−1, 0] ,

< ∞ , b > 0 .
(D.46)

Proof. We will start by calculating the following integral using the exponential series expansion∫ y

1

2 dz

p′(z)σ2(z)
= e−b

∫ y

1

ebzz−(b+2) dz

= e−b

∫ y

1

∑
k≥0

(bz)k

k!
z−(b+2) dz

= e−b
∑

k≥0,k ̸=b+1

bk

k!

yk−b−1 − 1

k − b− 1
+

bb+1

(b+ 1)!
log(y)1{k=b+1} .

(D.47)

Now we can compute v(x)

v(x) =

∫ x

1

e−byyb

 ∑
k≥0,k ̸=b+1

bk

k!

yk−b−1 − 1

k − b− 1
+

bb+1

(b+ 1)!
log(y)1{k=b+1}

 dy

=
∑

k≥0,k ̸=b+1

bk

k!(k − b− 1)

∫ x

1

e−by(yk−1 − yb)dy +
bb+1

(b+ 1)!
1{k=b+1}

∫ x

1

e−byyb log y dy .

(D.48)
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We first consider the case when x → 0, in which case we have e−|b| ≤ e−by ≤ e|b| and therefore
will not affect convergence or divergence, so we can safely ignore the factor e−by and write (for
k > 0, x → 0)∫ x

1

e−by(yk−1 − yb) dy ≈
[
yk

k
− yb+1

b+ 1

]x
1

=
xk − 1

k
− xb+1 − 1

b+ 1
→ −1

k
+

1

b+ 1
. (D.49)

Since the exponential series
∑

k>0
bk

k! = eb − 1 converges, and we have terms strictly smaller than
the exponential series, we have convergence of these terms when k > 0. We now return to handle a
couple of edge case terms, firstly when k = 0

1

−b− 1

∫ x

1

e−byy−1 dy ≈ − log x

|1 + b|
→ ∞ , as x → ∞ , (D.50)

which is a desired behaviour. Secondly we consider when k = b+ 1∫ x

1

yb log y dy =
xb+1 [(b+ 1) log x− 1] + 1

(b+ 1)2
→ (b+ 1)−2 , as x → ∞ , (D.51)

from which we can conclude limx→0 v(x) = ∞.

Next we consider the case when x → ∞. Firstly, since we already have that p(x) → ∞ when b ≤ 0,
therefore Lemma D.4 implies v(x) → ∞. Therefore we only need to consider when b > 0.

Since b > 0 we will have that e−bx will dominate, and therefore we can safely ignore all the edge
case terms and consider the series

v(x) ≈
∑

k>0,k ̸=b+1

bk

k!(k − b− 1)

∫ x

1

e−by(yk−1 − yb) dy . (D.52)

Observe that as x → ∞ we actually recover the gamma integral in the terms i.e.∫ ∞

1

e−by(yk−1 − yb) dy = −b−kΓ(k) + b−b−1Γ(b+ 1) , (D.53)

where we observe the second term is independent of k, and therefore the series converges due to
comparison with the exponential Taylor series. This implies we only need to focus on the first term,
which is

v(x) ≈
∑

k>0,k ̸=b+1

bk

k!(k − b− 1)
(−b−k)(k − 1)! =

∑
k>0,k ̸=b+1

−1

k(k − b− 1)
< ∞ , (D.54)

where the series converges since it’s a sum of k−2 type. This allows us to conclude that
limx→∞ v(x) < ∞ as desired.

We can now prove the desired result of Proposition 3.7, which we restate below.
Proposition D.9 (Finite Time Explosion). Let Xt ∈ R+ be a solution to the following SDE

dXt = bXt(Xt − 1) dt+
√
2Xt dBt , X0 = x0 > 0 , b ∈ R . (D.55)

Let τ∗ = supM>0 inf{t : Xt ≥ M or Xt ≤ M−1} be the explosion time, and we say Xt has a
finite time explosion if τ∗ < ∞. For this equation, P[τ∗ = ∞] = 1 if and only if b ≤ 0.

Proof. Putting the results of Proposition D.7 and Proposition D.8 together, we have the following
table

limx→0 v(x) limx→∞ v(x) limx→0 p(x) limx→∞ p(x)
b ≤ −1 ∞ ∞ −∞ ∞

−1 < b ≤ 0 ∞ ∞ finite ∞
b > 0 ∞ finite finite finite

Therefore, invoking Feller’s test for explosions from Theorem D.5, we have that P[τ∗ = ∞] if and
only if b ≤ 0.
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E Lower Bound for the Recursion ρℓ+1 = cK1(ρℓ)

In this section, we consider a Taylor expansion of cK1(ρ) around ρ → 1 from the left hand side to
get

ρℓ+1 = cK1(ρℓ) = ρℓ +
2
√
2

3π
(1− ρℓ)

3/2 +O((1− ρℓ)
5/2) , (E.1)

which we can rewrite using rℓ = 1− ρℓ as

rℓ+1 = rℓ −
2
√
2

3π
r
3/2
ℓ +O(r

3/2
ℓ ) . (E.2)

We will compute an upper bound on rℓ inspired by the following result.
Lemma E.1 (Lemma A.6, [52]). The logistic recursion

xn+1 ≤ αxn(1− xn) , (E.3)

for x0, α ∈ [0, 1] satisfies
xn ≤ x0

α−n + x0n
. (E.4)

We will extend the above Lemma to a slightly modified update as well.
Lemma E.2. Suppose the recursive map satisfies

xn+1 ≤ xn(1− x1/2
n ) , (E.5)

for x0 ∈ [0, 1], then we also have that

xn ≤ x0(
1 + 1

3nx
1/2
0

)2 . (E.6)

Proof. We will start the induction proof at n = 1

x1 ≤ x0(1− x
1/2
0 ) ≤ x0

1 + x
1/2
0

. (E.7)

When x0 ≤ 9 we have that

1 + x
1/2
0 ≥ 1 +

1

9
x0 +

2

3
x
1/2
0 =

(
1 +

1

3
x
1/2
0

)2

, (E.8)

and hence
x1 ≤ x0(

1 + 1
3x

1/2
0

) , (E.9)

which proves the case for n = 1.

Then we assume the inequality holds for xn, we will similarly write

xn+1 ≤ xn(1− x1/2
n ) ≤ xn

1 + x
1/2
n

, (E.10)

and plugging in the inequality for xn we get

xn+1 ≤

x0(
1+ 1

3nx
1/2
0

)2

1 +
x
1/2
0

1+ 1
3nx

1/2
0

=
x0(

1 +
(
n
3 + 1

)
x
1/2
0

)(
1 +

(
n
3

)
x
1/2
0

) , (E.11)

To complete the proof it’s sufficient to show(
1 +

(n
3
+ 1
)
x
1/2
0

)(
1 +

(n
3

)
x
1/2
0

)
≥
(
1 +

(
n+ 1

3

)
x
1/2
0

)2

, (E.12)
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which is equivalent to(n
3
+ 1
) n

3
x0 +

(
2n

3
+ 1

)
x
1/2
0 ≥ (n+ 1)2

9
x0 +

2(n+ 1)

3
x
1/2
0 . (E.13)

Since 2n
3 + 1 ≥ 2(n+1)

3 , we only need to compare the first coefficient, which is

n2 + 3n

9
≥ n2 + 2n+ 1

9
, (E.14)

and this is equivalent to n ≥ 1, and therefore satisfied by the induction. This completes the proof.

At the same time, we also conjecture the following bound.
Conjecture E.3. Suppose the recursive map satisfies

xn+1 = xn(1− x1/2
n ) , (E.15)

for x0 ∈ [0, 1], then
xn ≈ x0(

1 + 1
2nx

1/2
0

)2 . (E.16)

Sketch of Conjecture. Suppose we want to establish the approximation of

xn ≤ x0(
1 + bnx

1/2
0

)2 . (E.17)

Then for the initial induction n = 1 step, we only need

1 + x
1/2
0 ≥ (1 + bx

1/2
0 )2 , (E.18)

which is equivalent to

x0 ≤ (1− 2b)2

b4
. (E.19)

Using WolframAlpha (probably through the quartic formula), we find the desired solution for b ∈
(0, 1/2) is

b =

√
1 +

√
x0 − 1

√
x0

. (E.20)

This function b(x0) is a strictly decreasing function on [0, 1], and it satisfies b(0) = 1
2 , b(1) =

√
2−1.

This implies that whenever x0 is small, we can choose b closer to 1
2 in the n = 1 step of the induction.

Similarly, for the induction step, it’s sufficient to show(
1 + (nb+ 1)x

1/2
0

)(
1 + nbx

1/2
0

)
≥
(
1 + (n+ 1)bx

1/2
0

)2
, (E.21)

which is equivalent to
nbx

1/2
0 + 1 ≥ (2n+ 1)b2x

1/2
0 + 2b . (E.22)

Again, since we are always choosing b ≤ 1/2, therefore we have 1 ≥ 2b, and we will only need to
focus on the first coefficient. To this end we rewrite the first term as

b(n(1− 2b)− b)x
1/2
0 = b(1− 2b)

(
n− b

1− 2b

)
x
1/2
0 . (E.23)

This implies we require n ≥ b
1−2b , which increases as we choose b closer to 1/2. However, if the

induction starts the step ⌈ b
1−2b⌉, then this is not a problem, which leads to our conjecture.
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Using the above results, we can have a similar approximation for rℓ given the infinite-width update

rℓ+1 = rℓ −
2
√
2

3π
r
3/2
ℓ , (E.24)

which we can rewrite using r̂ℓ :=
(

2
√
2

3π

)2
rℓ to get

r̂ℓ+1 = r̂ℓ(1− r̂
1/2
ℓ ) . (E.25)

This allows us to consider the upper bound

r̂ℓ ≤
r̂0(

1 + 1
3ℓ r̂

1/2
0

)2 , (E.26)

or equivalently
rℓ ≤

r0(
1 + 2

√
2

9π ℓ r
1/2
0

)2 . (E.27)

Similarly, the conjecture leads to the following approximation

rℓ ≈
r0(

1 +
√
2

3π ℓ r
1/2
0

)2 . (E.28)
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Figure 3: Plot of the convergence of correlation ραβℓ to 1 for a ReLU network, and the lower bounds
(E.27) and (E.28). Computed with d = n = 150, ραβ0 = 0.3, using the usual ReLU activation i.e.
φs(x) = max(x, 0).
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F Additional Simulations and Discussions

In this section, we have additional simulations plotting the densities of ραβd and V αβ
d for shaped

ReLU-like, sigmoid, and softplus networks. In particular, the density of V αβ
d for ReLU-like net-

works can be found in Figure 4, the densities for sigmoid in Figure 5, and the densities for softplus
in Figure 6.
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Figure 4: Empirical distribution of the covariance V αβ
d for a ReLU-like network, SDE sample

density computed via kernel density estimation. Infinite width prediction simulated from the
ODE ∂tρ

αβ
t = ν(ραβt ), and we note V αα

t = V αα
0 in the infinite width limit. Simulated with

n = d = 150, c+ = 0, c− = −1, ραβ0 = 0.3, SDE and ODE step size 10−2, and 213 samples.
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Figure 5: Empirical distribution of the covariance V αβ
d and correlation ραβd for a shaped sigmoid

network, SDE sample density computed via kernel density estimation. Simulated with n = d =

150, a = 1, ραβ0 = 0.3, SDE step size 10−2, and 213 samples.

F.1 Convergence in Kolmogorov–Smirnov Distance

From Figure 7, we can show that our results (Theorem 3.3) converges at a rate of n−1/2 in terms of
the KS-distance.

F.2 Tuning Shape and Depth-to-Width Ratio

Since the existing shaping methods [38, 39] estimates the output correlation based on the infinite-
width limit, we can easily improve the shape tuning based on the covariance SDEs. In particular,
we consider the example of ReLU-like activations with correlation described by the SDE (3.4). By
simulating both the SDE and the infinite-width limit ODE, we arrive at the results in Figure 8.
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Figure 6: Empirical distribution of the covariance V αβ
d and correlation ραβd for a shaped softplus

network (centered at x0 = log 2), SDE sample density computed via kernel density estimation.
Simulated with n = d = 150, a = 1, ραβ0 = 0.3, SDE step size 10−2, and 213 samples.
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Figure 7: The Kolmogorov–Smirnov statistic (sup norm of the difference between two empirical
CDFs) for the empirical samples of the correlation SDE (3.4) and from a neural network at initial-
ization. Simulated with c+ = 0, c− = −1, ραβ0 = 0.3, d

n = T = 1, SDE step size 10−2, and 213

samples.
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Figure 8: ReLU Correlation SDE (3.4) and ODE simulated with c+ = 0, ραβ0 = 0.3 varying c−
values, 212 samples, and step size 10−2. infinite-width is from ODE ∂tρ

αβ
t = ν(ραβt ) with ν.

We observe that simply by increasing c− towards zero does not automatically reduce effects on the
correlation when time t (the depth-to-width ratio) is large. In other words, even a linear network
will observe an increase in correlation when depth is large enough. Therefore shaping the activation
alone is insufficient, but we also need to account for the depth-to-width ratio.
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We also remark that Figure 8 only plotted the median for simplicity, but if we recall the density
plots from Figure 1, correlation is heavily skewed and concentrated near 1. More precisely, while
the median correlation is approximately 0.55, roughly 20% of the samples are larger than 0.9. In
other words, one in five random initializations will lead to a correlation worse than 0.9! As a conse-
quence, practitioners implementing the shaping methods of [38, 39] should consider simulating the
correlation SDE to account for the heavy skew.
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