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Abstract

The logit outputs of a feedforward neural network at initialization are condition-
ally Gaussian, given a random covariance matrix defined by the penultimate layer.
In this work, we study the distribution of this random matrix. Recent work has
shown that shaping the activation function as network depth grows large is neces-
sary for this covariance matrix to be non-degenerate. However, the current infinite-
width-style understanding of this shaping method is unsatisfactory for large depth:
infinite-width analyses ignore the microscopic fluctuations from layer to layer, but
these fluctuations accumulate over many layers.
To overcome this shortcoming, we study the random covariance matrix in the
shaped infinite-depth-and-width limit. We identify the precise scaling of the acti-
vation function necessary to arrive at a non-trivial limit, and show that the random
covariance matrix is governed by a stochastic differential equation (SDE) that we
call the Neural Covariance SDE. Using simulations, we show that the SDE closely
matches the distribution of the random covariance matrix of finite networks. Addi-
tionally, we recover an if-and-only-if condition for exploding and vanishing norms
of large shaped networks based on the activation function.

1 Introduction

Of the many milestones in deep learning theory, the precise characterization of the infinite-width
limit of neural networks at initialization as a Gaussian process with a non-random covariance ma-
trix [1, 2] was a turning point. The so-called Neural Network Gaussian process (NNGP) theory
laid the mathematical foundation to study various limiting training dynamics under gradient descent
[3–12]. The Neural Tangent Kernel (NTK) limit formed the foundation for a rush of theoretical
work, including advances in our understanding of generalization for wide networks [13–15]. Be-
sides the NTK limit, the infinite-width mean-field limit was developed [16–19], where the different
parameterization demonstrates benefits for feature learning and hyperparameter tuning [20–22].

Fundamentally, the infinite-width paradigm derives results from the assumption that the depth of the
network is held fixed while the widths of all layers grow to infinity. Unfortunately, this assumption
can be problematic for modeling real-world networks, as the microscopic fluctuations from layer to
layer are neglected in this limit (see Figure 1). In particular, infinite-width predictions are shown to
be poor approximations of real networks unless the depth is much less than the width [23, 24].

Impressive achievements of deep networks with billions of parameters crystallize the importance of
understanding extremely large, deep neural networks (DNNs). An alternative to the infinite-width
paradigm is the infinite-depth-and-width paradigm. In this setting, both the network depth d and the
width n of each layer are simultaneously scaled to infinity, while their relative ratio d/n remains
fixed [23, 25–29]. Recent work also explores using d/n as an effective perturbation parameter [30–
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(Left Column) Unshaped ReLU DNNs, see (2.1)
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(Right Column) Shaped ReLU DNNs, see Definition 3.1
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Figure 1: Simulations of correlation ραβℓ =
⟨φα

ℓ ,φβ
ℓ ⟩

|φα
ℓ ||φβ

ℓ |
between post-activation vectors in ReLU net-

works, comparing finite NNs vs. our theoretical predictions vs. infinite-width paradigm. Left Col-
umn: ραβℓ vs. our Markov chain (2.10) vs. infinite-width update ρℓ+1 = cK1(ρℓ) (see (2.10) and
note the log scale and 1− ρ here). Right Column: ραβ⌊tn⌋ vs. our Neural Covariance SDE vs. ODE
dρt = ν(ρt) dt (see Theorem 3.3). Top Row: Median ρ as a function of layer. Bottom Row: Full
distribution at final layer ℓ = d. Simulation details: n = d = 150, ρ0 = 0.3, 213 samples for each.
In right column: c+ = 0, c− = −1, DE step size 1e−2. Densities from kernel density estimation.

33] or to study concentration bounds in terms of d/n [5, 34]. This limit has the distinct advantage of
being incredibly accurate at predicting the output distribution for finite size networks at initialization
[27] — a significant improvement over the NNGP theory. Furthermore, it has also been shown that
there is feature learning in this limit [23], in contrast to the linear regime of infinite-width limits [8].
Considering the mathematical success of the NNGP techniques, the infinite-depth-and-width limit
hints at the possibility of developing an accurate theory for training and generalization.

An immediate issue of the infinite-depth limit is that this limit predicts that network output becomes
degenerate as depth increases: on initialization the network becomes a constant function sending all
inputs to the same (random) output [35, 36, 33]. While degenerate outputs are not necessarily an
issue in theory, it poses a more serious problem in practice: degenerate correlations imply a “sharp”
input–output Jacobian, and therefore exploding gradients [37, 25]. Intuitively, the output is not very
sensitive to changes in the input, hence the gradient must be very large in the earlier layers.

A promising new attack on this problem is to modify the activation function (“shaping”) to reduce
to the effect of degeneracy [38, 39]. In this prior work, extensive experiments show that shaping
the activation significantly improves training speed without the need for normalization layers. This
method has been proven effective for problems as large as standard ResNets on ImageNet data. The
authors designed several criteria including reducing estimated output correlation, and numerically
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Notation Description Notation Description
nin ∈ N Input dimension nout ∈ N Output dimension
n ∈ N Hidden layer width d ∈ N Number of hidden layers (depth)
φ(·) Base activation φs(·) Shaped activation
xα ∈ Rnin Input for 1 ≤ α ≤ m W0 ∈ Rnin×n Weight matrix at layer 0
zαout ∈ Rnout Network output Wout ∈ Rn×nout Weight matrix at final layer
zαℓ ∈ Rn Neurons (pre-activation)

for layer 1 ≤ ℓ ≤ d
Wℓ ∈ Rn×n Weight matrix at layer 1 ≤ ℓ ≤ d

All weights initialized iid ∼ N (0, 1)
φα

ℓ ∈ Rn Neurons (post-activation)
for layer 1 ≤ ℓ ≤ d

c ∈ R Normalizing constant
c :=

(
Eφ(g)2

)−1 for g ∼ N (0, 1)

Table 1: Notation

optimized the shape of activation functions for improved training results. However, their determin-
istic estimation of output correlation using the infinite-width limit leads to a poor approximation of
real networks, as the additional randomness has both non-zero mean and heavy skew (see Figure 1
right column). Furthermore, numerically searching for the activation shape obscures the picture on
how shaping should depend on the network depth and width.

In this paper, we address these problems by providing a precise theory of shaped infinite-depth-
and-width networks, extending both the NNGP theories and the activation shaping techniques. In
particular, we prescribe an exact scaling of the activation function shape as a function of network
width n that leads to a non-trivial nonlinear limit. By keeping track of microscopic O(n−1/2) ran-
dom fluctuations in each layer of the network, we show that the cumulative effect is described by a
stochastic differential equation (SDE) in the limit. In contrast to existing infinite-width theory, we
are able to characterize the random distribution of the output covariance, which matches closely to
simulations of real networks. In a similar spirit to how the NNGP theory laid the foundation for
studying training and generalization in the infinite-width limit, we also see this work as building the
mathematical tools for an infinite-depth-and-width theory of training and generalization.

1.1 Contributions

Similar to the NNGP approach, we use the fact that the output is Gaussian conditional on the penul-
timate layer. However, unlike in the infinite-width paradigm, the covariance matrix is no longer
deterministic in the infinite-depth-and-width limit. Our focus in this paper is to study this random
covariance matrix. Our main contributions are as follows:

1. We introduce the tool of stochastic
√
n-expansions and convergence to SDEs for analyzing the

distribution of covariances in DNNs.
2. For unshaped ReLU-like activations, we show that the norm of each layer evolves according to

geometric Brownian motion and correlations evolve according to a discrete Markov process. See
left column of Figure 1 and Section 2.

3. For both ReLU-like and a large class of smooth activation functions, we derive the Neural Covari-
ance SDE characterizing the distribution of the shaped infinite-depth-and-width limit. See right
column of Figure 1 and Section 3.

4. We show our prescribed shape scaling is exact, as other rates of scaling leads to either degenerate
or linear network limits. See Proposition 3.4 and Proposition 3.10.

5. For smooth activations, we derive an if-and-only-if condition for exploding/vanishing norms based
on properties of the activation function. See Proposition 3.7 and Section 4.

6. We provide simulations to verify theoretical predictions and help interpret properties of real DNNs.
See Figures 1 and 2 and supplemental simulations in Appendix F.

2 Limits for Unshaped ReLU-Like Activations

Using the notation in Table 1, the output of a fully connected feedforward network with d hidden
layers of width n on input xα is defined by vectors of pre-activations zαℓ and post-activations φα

ℓ :

zα1 :=
1

√
nin

W0x
α, φα

ℓ := φ(zαℓ ), zαℓ+1 :=

√
c

n
Wℓφ

α
ℓ , zαout :=

√
c

n
Woutφ

α
d . (2.1)
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Note that factors of
√
cn−1 are equivalent to intializing according to the so-called He initialization

[40]. We use Greek indices α, β, . . . to denote multiple different inputs. Note that while our results
are all stated for fixed width n in each layer, they can be generalized to layer width nℓ in the limit
where all nℓ → ∞ with

∑d
ℓ=1 nℓ

−1 replacing the role of the depth-to-width ratio d/n [25].

In this section, we analyze ReLU-like activations by which we mean activations which are linear on
the negative and positive numbers given respectively by two slopes s+ and s−:

φ(x) := s+ max(x, 0) + s− min(x, 0) = s+φReLU(x)− s−φReLU(−x) . (2.2)

These are precisely the positive homogeneous functions: φ(ax) = |a|φ(x) ∀x, a ∈ R.

2.1 SDE Limits of Markov Chains

We briefly review the main type of SDE convergence principle used in our main results (see Propo-
sition A.6 for a more precise version). Let Xt, t ∈ R+, be a continuous time diffusion process
obeying an SDE with drift b and variance σ2 as given in (2.3). Suppose that for each n ∈ N, Y n

ℓ is a
discrete time Markov chain ℓ ∈ N whose increments obey (2.3) in terms of the same functions b, σ2:

dXt = b(Xt) dt+ σ(Xt) dBt , Y n
ℓ+1 − Y n

ℓ = b(Y n
ℓ )

1

n
+ σ(Y n

ℓ )
ξℓ√
n
+O(n−3/2), (2.3)

where ξℓ are independent variables with E(ξℓ) = 0,Var(ξℓ) = 1. With this setup, under technical
conditions described precisely in Appendix A, we have convergence of Yℓ at ℓ = ⌊tn⌋ to Xt, or
more precisely: with Xn

t := Y n
⌊tn⌋ we have Xn → X as n → ∞ in the Skorohod topology. In

our applications, n is always the width (i.e., number of neurons in each layer) which may appear
implicitly and ℓ is always the layer number.

2.2 A Simple SDE: Geometric Brownian Motion Describes |φα
ℓ |

2

To motivate our approach of SDE limits, we illustrate the method using the example of the squared
norm of the ℓ-th layer, |φα

ℓ |2, where we recall φα
ℓ = φ(zαℓ ). For a single fixed input xα and a ReLU-

like activation φ, the norm of the post-activation neurons |φα
ℓ |

2 forms a Markov chain in the layer
number ℓ. We use the fact that a matrix with iid Gaussian entries applied to any unit vector gives a
Gaussian vector of iid N (0, 1) entries. Hence, in each layer, we can define the Gaussian vector gα
as follows, and use (2.1) with the positive homogeneity of φ to write the Markov chain update rule:∣∣φα

ℓ+1

∣∣2 = |φα
ℓ |

2 1

n

n∑
i=1

cφ(gαi )
2, where gα := Wℓ

φα
ℓ

|φα
ℓ |

d
= N (0, In) . (2.4)

At this point, the infinite-width approach applies the law of large numbers (LLN) to conclude
lim
n→∞

∣∣φα
ℓ+1

∣∣2 = |φα
ℓ |

2 E[cφ2(g)] = |φα
ℓ |

2 · 1 a.s. by definition of c. However, the LLN cannot
be applied when depth d is diverging with n, as the cumulative effect of the fluctuations over d lay-
ers does not vanish! Instead, we keep track of the O(1/

√
n) fluctuations in each layer by introducing

the zero mean finite variance random variable Rαα
ℓ := 1√

n

∑n
i=1

(
cφ(gαi )

2 − 1
)
. This allows us to

rewrite this Markov chain update rule as∣∣φα
ℓ+1

∣∣2 = |φα
ℓ |

2

(
1 +

1√
n
Rαα

ℓ

)
, (2.5)

which allows us to see that the Markov chain Y n
ℓ = c

n |φ
α
ℓ |2 is now in the form of (2.3) with

Y n
0 = 1

nin
|xα|2, b(Y ) ≡ 0, σ2(Y ) = Var(Rαα

ℓ )Y 2 = Var(cφ(g)2)Y 2. Consequently, we have
that the squared norm Markov chain converges to a geometric Brownian motion dXt = σXtdBt, or
more precisely

lim
n→∞

c

n

∣∣∣φα
⌊tn⌋

∣∣∣2 = Xt
d
= eN (−σ2

2 t,σ2t) , (2.6)

where the convergence is in the Skorohod topology (see Appendix A). When φ is the ReLU function
(s+ = 1, s− = 0), we have c = 2 and σ2 = 5, which recovers known results in [25, 27–29].
We remark again this simple Markov chain example illustrates the main technique we use in later
sections to establish SDE convergence for shaped networks in Section 3.
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2.3 Non-SDE Markov Chains: the Gram Matrix
〈
φα
ℓ , φ

β
ℓ

〉
and Correlation ραβℓ

We can generalize Section 2.2 to a collection of m inputs {xα}mα=1 by looking at the entire Gram
matrix [⟨φα

ℓ , φ
β
ℓ ⟩]mα,β=1, where we again recall φα

ℓ = φ(zαℓ ). We note that the convergence of
Markov chains to SDEs in (2.3) can be generalized to Y n

ℓ ∈ RN by considering Cov(ξℓ) = IN ,
b : RN → RN , and σ : RN → RN×N . The Gram matrix is of particular interest because the
neurons in any layer are conditionally Gaussian when conditioned on the previous layer, with
covariance matrix proportional to the Gram matrix:

[zαℓ+1]
m
α=1

∣∣Fℓ
d
= N

(
0,

c

n
[⟨φα

ℓ , φ
β
ℓ ⟩]

m
α,β=1 ⊗ In

)
,

[zαout]
m
α=1| Fd

d
= N

(
0,

c

n
[⟨φα

d , φ
β
d ⟩]

m
α,β=1 ⊗ Inout

)
,

(2.7)

where Fℓ denotes the sigma-algebra generated by the ℓ-th layer [zαℓ ]
m
α=1, and ⊗ denotes the Kro-

necker product (here indicating conditionally independent entries in each vector). With this prop-
erty in mind, we will introduce Eℓ[ · ] := E[ · |Fℓ] to denote the conditional expectation, and
Varℓ( · ) ,Covℓ( · ) similarly to denote the conditional variance and covariance. If we define gα

as in (2.4), we see that the gα are all marginally N (0, In). Similar to (2.4), we can write the update
rule for the α, β-entry of the Gram matrix:

⟨φα
ℓ+1, φ

β
ℓ+1⟩ = |φα

ℓ ||φ
β
ℓ |
1

n

n∑
i=1

cφ(gαi )φ(g
β
i ) , (2.8)

Just as we did in (2.5), we can define Rαβ
ℓ := 1√

n

∑n
i=1 cφ(g

α
i )φ(g

β
i )−Eℓ[cφ(g

α
i )φ(g

β
i )] and write

⟨φα
ℓ+1, φ

β
ℓ+1⟩ = |φα

ℓ ||φ
β
ℓ |
(
Eℓ

[
cφ(gαi )φ(g

β
i )
]
+

1√
n
Rαβ

ℓ

)
, (2.9)

where Rαβ
ℓ are mean zero with covariance Covℓ[R

αβ
ℓ , Rγδ

ℓ ] = Covℓ[cφ(g
α)φ(gβ), cφ(gγ)φ(gδ)].

(By the Central Limit Theorem, Rαβ
ℓ will be approximately Gaussian for large n.)

However, unlike the simple single-data-point case from Section 2.2, we do not have convergence to
a continuous time SDE. This is because the differences ⟨φα

ℓ+1, φ
β
ℓ+1⟩ − ⟨φα

ℓ , φ
β
ℓ ⟩ ↛ 0 as n → ∞.

Instead, (2.9) is a discrete recursion update with additive noise of the form Y n
ℓ+1 = f(Y n

ℓ ) + 1√
n
ξ

for some function f , and consequently Y n
ℓ+1 − Y n

ℓ does not vanish as n → ∞.

For a clarifying example, we can consider the one-dimensional Markov chain of hidden layer correla-
tions. More precisely, we can define ραβℓ = ⟨φα

ℓ , φ
β
ℓ ⟩/|φα

ℓ ||φ
β
ℓ |, which we observe can be extracted

from the entries of the Gram matrix. In fact, we can write down an approximate recursion update
for ραβℓ (see Appendix B and Proposition B.8 for details):

ραβℓ+1 ≈ cK1(ρ
αβ
ℓ ) +

1

n
µReLU(ρ

αβ
ℓ ) +

ξℓ√
n
σReLU(ρ

αβ
ℓ ) , ραβ0 =

⟨xα, xβ⟩
nin

, (2.10)

where K1(ρ) := E [φ(g)φ(gρ + w
√
1− ρ2)] for g, w iid N (0, 1) random variables, and ξℓ are iid

N(0, 1). For the ReLU case, c = 2 and cK1(ρ) = (
√

1− ρ2+ρ arccos(−ρ))/π was first calculated
in [41]. In fact, we can observe that as n → ∞, ραβ⌊tn⌋ converges to the fixed point of cK1(·) at ρ = 1

for all t > 0. We note this limiting behaviour cannot be described by an SDE, as the solution
must jump from the initial condition to the fixed point at t = 0.

Despite not having an SDE limit, we observe that the approximate Markov chain (2.10) already
provides a much better approximation to finite size networks compared to the infinite-width theory
(see left column of Figure 1). This is because the infinite-width approach discards the terms in
(2.10) that vanish as n → ∞ and consider only the update ραβℓ+1 = cK1(ρ

αβ
ℓ ). Analysis of this

deterministic equation leads to the prediction that ραβℓ = 1 − O(ℓ−2) for ℓ ≫ 1 (see (4.8) in [33]
and a new bound in Appendix E).

Furthermore, we observe that in this case, the microscopic O(n−1) and O(n−1/2) terms in (2.10)
accumulate to macroscopic differences! For the examples in Figure 1, we see their net effect is that
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ραβℓ → 1 faster than the infinite-width prediction. Heuristically, the reason for this discrepancy is
due to σReLU(ρ) → 0 as ρ → 1. This means that the randomness can push ραβℓ closer to 1, but
becomes “trapped” when ραβℓ is close to 1 because σReLU is so small here. In the next section, we
will see that we are just one step away from achieving limiting SDEs.

3 Neural Covariance SDEs: Shaped Infinite-Depth-and-Width Limit

In this section, we follow the ideas of [38, 39] to reshape the activation function φ. Reshaping means
to replace the base activation function φ in (2.1) with φs that depends on width n. We will also
replace the normalizing constant c =

(
Eφs(g)

2
)−1

for g ∼ N (0, 1). Specifically, we will choose
φs to depend on n such that in the limit as n → ∞, we have that φ is approximately an identity
function, φs → Id. Recalling from (2.7) that the output is conditionally Gaussian with covariance
determined by the Gram matrix [⟨φα

ℓ , φ
β
ℓ ⟩]mα,β=1, therefore we recover a complete characterization

by describing the random covariance matrix.

3.1 Neural Covariance SDE for Shaped ReLU-Like Activations

Definition 3.1. We shape the ReLU-like activation φs(x) := s+ max(x, 0) + s− min(x, 0), by
setting the slopes to depend on n according to s± := 1 + c±√

n
for some given constants c+, c− ∈ R.

We will also set c =
(
Eφs(g)

2
)−1

for g ∼ N (0, 1).

We will show that with shaping of Definition 3.1, one gets non-trivial SDEs that describe the covari-
ance (Theorem 3.2) and correlations (Theorem 3.3) of the network. The precise scaling is shown to
be the critical scaling for a non-trivial limit in Proposition 3.4. All proofs for results in this section
appear in Appendix C.

Remark. Note that in the statement of our theorems, we abuse notation and use the same letter to
denote the pre-limit Markov chain and the limiting SDE. For example, in Theorem 3.2 we use Vℓ

for the covariance at layer ℓ and Vt to denote the limiting SDE at time t.

Theorem 3.2 (Covariance SDE, ReLU). Let V αβ
ℓ := c

n ⟨φ
α
ℓ , φ

β
ℓ ⟩, and define Vℓ := [V αβ

ℓ ]1≤α≤β=m

to be the upper triangular entries thought of as a vector in Rm(m+1)/2. Then, with s± = 1 + c±√
n

as in Definition 3.1, in the limit as n → ∞, d
n → T , the interpolated process V⌊tn⌋ converges in

distribution in the Skorohod topology of DR+,Rm(m+1)/2 to the solution of the SDE

dVt = b(Vt) dt+Σ(Vt)
1/2 dBt , V0 =

[
1

nin
⟨xα, xβ⟩

]
1≤α≤β≤m

, (3.1)

where ν(ρ) := (c+−c−)2

2π

(√
1− ρ2 − ρ arccos ρ

)
, ραβt :=

V αβ
t√

V αα
t V ββ

t

b(Vt) =

[
ν
(
ραβt

)√
V αα
t V ββ

t

]
1≤α≤β≤m

, and Σ(Vt) =
[
V αγ
t V βδ

t + V αδ
t V βγ

t

]
α≤β,γ≤δ

.

(3.2)
Furthermore, the output distribution can be described conditional on VT evaluated at final time T

[zαout]
m
α=1 |VT

d
= N

(
0, [V αβ

T ]mα,β=1

)
. (3.3)

Here we remark that ν(1) = 0, and therefore the drift component of diagonal entries (V αα
t ) are

zero, as they are geometric Brownian motion. However, we emphasize that the m-point joint out-
put distribution is not characterized by the marginal for each of the pairs, as the output zαout is not
Gaussian. In particular, we observe the diffusion matrix entry corresponding to V αβ

t , V γδ
t involves

other processes V αγ
t , V βδ

t , V αδ
t , V βγ

t ! This implies that the Neural Covariance SDE limit cannot be
described by a kernel, unlike stacking random features or NNGP.

That being said, it is still instructive to study the marginal for a pair of data points. More specifically,
it turns out in the generalized ReLU case, we can derive the marginal SDE for the correlation process.
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Theorem 3.3 (Correlation SDE, ReLU). Let ραβℓ :=
⟨φα

ℓ ,φβ
ℓ ⟩

|φα
ℓ | |φβ

ℓ |
, where φα

ℓ := φs(z
α
ℓ ). In the limit as

n → ∞ and s± = 1 + c±√
n

, the interpolated process ραβ⌊tn⌋ converges in distribution to the solution
of the following SDE in the Skorohod topology of DR+,R

dραβt =
[
ν(ραβt ) + µ(ραβt )

]
dt+ σ(ραβt ) dBt , ραβ0 =

⟨xα, xβ⟩
|xα| |xβ |

, (3.4)

where

ν(ρ) =
(c+ − c−)

2

2π

[√
1− ρ2 − arccos(ρ)ρ

]
, µ(ρ) = −1

2
ρ(1− ρ2) , σ(ρ) = 1− ρ2 . (3.5)

To help interpret the SDE, we observe that µ and σ are entirely independent of the activation function.
In other words, these terms will be present in this limit even for linear networks. At the same time,
ν describes the influence of the shaped activation function in this limit. [39] has derived a related
ordinary differential equation (ODE) of dρt = ν(ρt) dt in the sequential limit of n → ∞ then
d → ∞, where the activation is shaped depending on depth. Here we also note that ν(ρ) is closely
related to the J1 function derived in [41]. See Appendix C.3 for the m-point joint version of the
correlation SDE, and Appendix F for an empirical measure of convergence in the Kolmogorov–
Smirnov distance.

One immediate consequence of the correlation SDE is that we can show the n−1/2 scaling in Defi-
nition 3.1 is the only case where the limit is neither degenerate nor a linear network.

Proposition 3.4 (Critical Exponent, ReLU). Let ραβℓ :=
⟨φα

ℓ ,φβ
ℓ ⟩

|φα
ℓ | |φβ

ℓ |
, where φα

ℓ := φs(z
α
ℓ ). Consider

the limit n → ∞ and s± = 1 + c±
np for some p ≥ 0. Then depending on the value of p, the

interpolated process ραβ⌊tn⌋ converges in distribution w.r.t. the Skorohod topology of DR+,R to

(i) the degenerate limit: ραβt = 1 for all t > 0, if 0 ≤ p < 1
2 , and c+ ̸= c−,

(ii) the critical limit: the SDE from Theorem 3.3, if p = 1
2 ,

(iii) the linear network limit: if p > 1
2 , the following SDE, with µ, σ as defined in (3.5),

dραβt = µ(ραβt ) dt+ σ(ραβt ) dBt , ραβ0 =
⟨xα, xβ⟩
|xα| |xβ |

. (3.6)

Here we remark that the unshaped network case (p = 0) is contained by the above in case (i). At
the same time, we observe that case (iii) is equivalent to the correlation SDE in Theorem 3.3 except
with ν = 0. In particular, we observe this limit is also reached when c+ = c−, which implies
φs(x) = s+x is linear, which is the reason we call this the linear network limit. Furthermore,
without much additional work, the same argument also implies the joint covariance SDE also loses
the drift component, i.e., dVt = Σ(Vt)

1/2 dBt.

3.2 Neural Covariance SDE for Shaped Smooth Activations

In this section, we consider smooth activation functions and derive a similar covariance SDE. All
the proofs for results in this section can be found in Appendix D.

Assumption 3.5. φ ∈ C4(R), φ(0) = 0, φ′(0) = 1, and |φ(4)(x)| ≤ C(1+|x|p) for some C, p > 0.

We note that for any non-constant function σ ∈ C1(R) and x0 ∈ R such that σ′(x0) ̸= 0, we can
always define φ(x) := σ(x+x0)−σ(x0)

σ′(x0)
such that it satisfies φ(0) = 0, φ′(0) = 1. The choice of x0

will be discussed further in Section 4. The fourth derivative growth condition is used to control the
Taylor remainder term in expectation, but any control over the remainder will suffice.

Following the ideas of [38], we consider the following shaping of a smooth activation function φ.
Definition 3.6. For some constant a > 0, we set φs(x) := sφ

(
x
s

)
with s = a

√
n, and c =(

Eφs(g)
2
)−1

for g ∼ N (0, 1).

7



Observe that in the limit n → ∞, we will achieve that φs → Id as desired. We also observe
that the shaping factor s outside the activation cancels out with the next layer’s 1

s factor, therefore
it is equivalent shape the entire network. More precisely, if we view zout as an input-output map
f : Rnin → Rnout of an unshaped network, then shaping the smooth activation functions is equivalent
to the modification sf

(
x
s

)
.1

In this regime, we can similarly characterize the joint output distribution, however the limiting SDEs
are not always well behaved. In particular, they can have finite time explosions as described by the
Feller test for explosions [42, Theorem 5.5.29]. Here the SDE in Proposition 3.7 is exactly the V αα

t
marginal of the Neural Covariance SDE, with the parameter b determined by the activation function
φ and controls whether or not finite time explosions happen (see (4.1)).
Proposition 3.7 (Finite Time Explosion). Let Xt ∈ R+ be a solution to the following SDE

dXt = bXt(Xt − 1) dt+
√
2Xt dBt , X0 = x0 > 0 , b ∈ R . (3.7)

Let τ∗ = supM>0 inf{t : Xt ≥ M or Xt ≤ M−1} be the explosion time, and we say Xt has a
finite time explosion if τ∗ < ∞. For this equation, P[τ∗ = ∞] = 1 if and only if b ≤ 0.

Technically speaking, the main culprit behind finite time explosions is the non-Lipschitzness of the
drift coefficient. This issue requires us to weaken the sense of convergence in this section; the
ordinary convergence in the Skorohod topology is in general not true when the diffusion has finite
time explosions. A weakened type of convergence is the best we can hope for. To this goal, we
introduce the following definition.
Definition 3.8. We say a sequence of processes Xn converge locally to X in the Skorohod topology
if for any r > 0, we define the following stopping times

τn := {t ≥ 0 : |Xn
t | ≥ r} , τ := {t ≥ 0 : |Xt| ≥ r} , (3.8)

and we have that Xn
t∧τn converge to Xt∧τ in the Skorohod topology.

This weakened sense of convergence essentially constrains the processes Xn, X in a bounded set
by adding an absorbing boundary condition. Not only do these stopping times rule out explosions,
the drift coefficient is now also Lipschitz on a compact set. With this notion of convergence, we can
now state a precise Neural Covariance SDE result for general smooth activation functions.

Theorem 3.9 (Covariance SDE, Smooth). Let φ satisfy Assumption 3.5, V αβ
ℓ := c

n ⟨φ
α
ℓ , φ

β
ℓ ⟩ where

φα
ℓ = φs(z

α
ℓ ), and define Vℓ := [V αβ

ℓ ]1≤α≤β=m to be the upper triangular entries thought of as a
vector in Rm(m+1)/2. Then, with s = a

√
n as in Definition 3.6, in the limit as n → ∞, d

n → T , the
interpolated process V⌊tn⌋ converges locally in distribution to the solution of the following SDE in
the Skorohod topology of DR+,Rm(m+1)/2

dVt = b(Vt) dt+Σ(Vt)
1/2 dBt , V0 =

[
1

nin
⟨xα, xβ⟩

]
1≤α≤β≤m

, (3.9)

where Σ(Vt) is the same as Theorem 3.2 and

bαβ(Vt) =
φ′′(0)2

4a2

(
V αα
t V ββ

t + V αβ
t (2V αβ

t − 3)
)
+

φ′′′(0)

2a2
V αβ
t (V αα

t + V ββ
t − 2) . (3.10)

Furthermore, if VT is finite, then the output distribution can be described conditional on VT as

[zαout]
m
α=1 |VT

d
= N

(
0, [V αβ

T ]mα,β=1

)
, (3.11)

and otherwise the distribution of [zαout]
m
α=1 is undefined.

We also have a similar critical scaling result for general smooth activations.

Proposition 3.10 (Critical Exponent, Smooth). Let φ satisfy Assumption 3.5, V αβ
ℓ := c

n ⟨φ
α
ℓ , φ

β
ℓ ⟩

where φα
ℓ = φs(z

α
ℓ ) with s = anp for some p > 0, and define Vℓ := [V αβ

ℓ ]1≤α≤β=m to be the upper
triangular entries thought of as a vector. Then in the limit as n → ∞, d

n → T , the interpolated
process V⌊tn⌋ converges locally in distribution w.r.t. the Skorohod topology of DR+,Rm(m+1)/2 to V ,
which depending on the value of p is

1We want to thank Boris Hanin for observing this equivalent parameterization.
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Figure 2: Simulation of 10 shaped softplus networks as in Example 4.2 with n = d = 100, a =
1, V αα

0 = 1
nin

|xα|2 = 1 centred at two different values. “Stable” here means the Neural Covariance
SDE is guaranteed not to have finite time explosions; unstable networks can explode on initializa-
tion!

(i) the degenerate limit: if 0 < p < 1
2{

V αα
t = 0 or ∞, if 3

4φ
′′(0)2 + φ′′′(0) > 0 and V αα

0 ̸= 0 ,

V αβ
t = const. , if 3

4φ
′′(0)2 + φ′′′(0) ≤ 0 ,

(3.12)

for all t > 0 and 1 ≤ α ≤ β ≤ m,

(ii) the critical limit: the solution of the SDE from Theorem 3.9, if p = 1
2 ,

(iii) the linear network limit: the stopped solution to the SDE dVt = Σ(Vt) dBt with coefficient
Σ defined in Theorem 3.3, if p > 1

2 .

Here we observe that in case (i) when 3
4φ

′′(0)2 + φ′′′(0) ≤ 0, we also have a constant (in time) cor-
relation ραβt similar to the ReLU case in Proposition 3.4, however in this case ραβt is not necessarily
equal to 1. At the same time, the linear network limit in case (iii) also has the same covariance SDE
as Proposition 3.4.

4 Consequences, Discussion, and Future Directions

So far, we have derived the Neural Covariance SDE. Analysis of this SDE reveals important be-
haviour of the network on initialization. Here we lay out one concrete example and provide some
discussion and future directions.

Exploding and Vanishing Norms. Here we consider the behaviour of shaping smooth activation
functions, as it is done in the experiments of [38]. While the authors here avoided exploding and
vanishing norms by numerically optimizing shaping parameters, we can actually describe the precise
behaviour a priori with the Neural Covariance SDE. Recall the shaping parameter a from Defini-
tion 3.6. Let Vt be the solution to the SDE in (3.9). We can write down the marginal SDE for V αα

t
as

dV αα
t =

(
3

4
φ′′(0)2 + φ′′′(0)

)
V αα
t

a2
(V αα

t − 1) dt+
√
2V αα

t dBt , (4.1)

which implies by Proposition 3.7 that Vt has a finite time explosion (with non-zero probability)
if and only if 3

4φ
′′(0)2 + φ′′′(0) > 0. This criterion can be used to help choose how activation

functions should be centered for shaping; below are two examples.
Example 4.1 (Sigmoid and tanh at x0 = 0). We start with the sigmoid activation σ(x) = 1

1+e−x ,
then we can define φ(x) := 4σ(x)−2 to satisfy Assumption 3.5, which leads to φ′′(0) = 0, φ′′′(0) =
− 1

2 , and therefore leads to a stable network. It turns out φ(x) := tanh(x) already satisfies Assump-
tion 3.5, which leads to φ′′(0) = 0, φ′′′(0) = −2, and therefore is also stable.
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More generally, if σ behaves like a cumulative distribution function for a symmetric unimodal den-
sity, we will have that φ′′(0) = 0 and φ′′′(0) < 0 as desired.
Example 4.2 (Soft Plus at General x0 ∈ R). Let us consider x0 ∈ R and σ(x) = log(1 + ex+x0),
which implies φ(x) := (1 + e−x0) log 1+ex+x0

1+ex0
satisfies Assumption 3.5. This gives us φ′′(0) =

1
1+ex0

, φ′′′(0) = 1−ex0

(1+ex0 )2 , and therefore 3
4φ

′′(0)2 + φ′′′(0) = 1
(1+ex0 )2

(
5
4 − ex0

)
. In other words,

the shaped network is stable if and only if x0 ≥ log 5
4 (see Figure 2). We note that the authors of

[38] numerically found a shift of x0 ≈ 0.41, which is in the stable regime of x0 ≥ log 5
4 ≈ 0.097.

Relationship to Edge of Chaos. The finite time explosion example above resembles the Edge of
Chaos (EOC) analysis of gradient stability [43, 35, 44, 45], where the weight and bias variance at
initialization determines a stability criterion. However, we note that the EOC regime is sufficiently
different that the results are not directly comparable. More precisely, the EOC analysis is in the
sequential limit of infinite-width and then infinite-depth, which also leaves the activation function
unchanged. Under very weak assumptions, the variance (diagonal of Vt) will not explode in this
regime; instead, the gradient can explode due to the covariance (off diagonals). On the other hand,
our finite explosion result is in the joint limit of depth and width, where the variance (diagonal of
Vt) can explode instead.

Posterior Inference. Similar to the NNGP setting, we can use the Neural Covariance SDE to gener-
ate a prior over functions f : Rnin → Rnout . Consequently, an interesting future direction would be
to study the posterior distribution, i.e. the output zm+1

out conditioned on xm+1 and a training dataset
(xα, zαout)

m
α=1. However, to our best knowledge, it is not straightforward to explicitly compute or

sample from the conditional distributions for this SDE structure. It would be desirable to extend
existing approaches in the perturbative regime [30, 31] to our setting.

Extension to Other Architectures. The key step to deriving the covariance SDE is the conditional
Gaussian distribution in (2.7), which directly leads to a Markov chain. It follows immediately that
ResNets [46] admit a similar conditional structure. With a bit more work for convolutional networks,
we can obtain zαℓ+1|Fℓ ∼ N (0,A(Vℓ) ⊗ In) where A is an affine transformation and Vℓ is the
previous layer’s Gram matrix [47]. We note that recurrent networks will not lead to a Markov chain
or SDE limit, as the weight matrix is reused from layer to layer.

Simulating SDEs. Both the Markov chains and SDEs predict neural networks at initialization very
well (see Figure 1), but the SDE is significantly faster to simulate. In particular, we can view the
Markov chain as an approximate Euler discretization of the SDE, but with a very small step size
n−1. In contrast, to simulate the SDE we should only need a step size that is small on the scale of
depth-to-width ratio T = d/n, which is independent of width n. Therefore, practitioners using the
shaping techniques of [38, 39] can now simulate the covariance SDEs at a low computational cost
to significantly improve estimates of the output correlation (see Figure 1 and additional simulations
in Appendix F).

Analytical Tractability of SDEs. Besides numerical tractability, the SDEs are also far more
tractable to analyze. For example, in the one input case, we arrive at geometric Brownian mo-
tion (2.6), which is known to have a log-normal distribution at fixed times. Similarly, our finite time
explosions hinge on the fact we identified an SDE limit. In the same way that NNGP theory played
a major role in the infinite-width regime, the Neural Covariance SDEs and the techniques developed
here also serve as a mathematical foundation for studying training and generalization.
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enough that it did not require GPUs.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
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(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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