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1 Proof of Lemma 1

In this proof we seek to guarantee that the list of functions in Table 2 are invex. We point out that,
since the regularizers in Table 2 is the sum of a scalar function applied to each entry of a vector, then
it is enough to analyze the scalar function to determine the invexity of the regularizer.

Eq. (6).

Proof. Take rϵ(w) = (|w|+ ϵ)
p
,∀w ∈ R, for p ∈ (0, 1) and ϵ ≥ (p(1− p))

1
2−p . The need to

add the constant ϵ it is to formally satisfy the Lipschitz continuous condition required to be invex
according to Definition 2. Observe that if w > 0 then we have that ∂rϵ(w) =

{
p

(|w|+ϵ)1−p

}
, which

means that 0 ̸∈ ∂rϵ(w). Conversely, if w < 0 then ∂rϵ(w) =
{

−p
(|w|+ϵ)1−p

}
, leading to 0 ̸∈ ∂rϵ(w).

Lets examinate w∗ = 0. Note that

lim
w→0+

r′ϵ(w) = lim
w→0+

p

(|w|+ ϵ)
1−p =

p

ϵ1−p
, (1)

and that

lim
w→0−

r′ϵ(w) = lim
w→0−

−p
(|w|+ ϵ)

1−p =
−p
ϵ1−p

. (2)

Additionally, since rϵ(w) is a Lipschitz continuous function, then appealing to Theorem 1 we have
that ∂rϵ(w∗ = 0) = conv

{ −p
ϵ1−p ,

p
ϵ1−p

}
=

[ −p
ϵ1−p ,

p
ϵ1−p

]
. This means that 0 ∈ ∂rϵ(0). Further,

given the fact that rϵ(0) ≤ rϵ(w) for all w ∈ R, then w∗ = 0 is a global minimizer of rϵ. Therefore,
the function rϵ is invex.

Eq. (7)

Proof. Take r(w) = log(1 + |w|). Observe that if w > 0 then we have that ∂r(w) =
{

1
1+|w|

}
,

which means that 0 ̸∈ ∂r(w). Conversely, if w < 0 then ∂r(w) =
{

−1
1+|w|

}
, leading to 0 ̸∈ ∂r(w).

Lets examinate w∗ = 0. Note that

lim
w→0+

r′(w) = lim
w→0+

1

1 + |w|
= 1, (3)
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and that

lim
w→0−

r′(w) = lim
w→0−

−1

1 + |w|
= −1. (4)

Additionally, since r(w) is a Lipschitz continuous function, then appealing to Theorem 1 we have
that ∂r(w∗ = 0) = conv {−1, 1} = [−1, 1]. This means that 0 ∈ ∂r(0). Further, given the fact that
r(0) ≤ r(w) for all w ∈ R, then w∗ = 0 is a global minimizer of r(w). Therefore, the function r(w)
is invex.

Eq. (8)

Proof. Take r(w) = |w|
2+2|w| . Observe that if w > 0 then we have that ∂r(w) =

{
1

2(1+|w|)2

}
, which

means that 0 ̸∈ ∂r(w). Conversely, if w < 0 then ∂r(w) =
{

−1
2(1+|w|)2

}
, leading to 0 ̸∈ ∂r(w).

Lets examinate w∗ = 0. Note that

lim
w→0+

r′(w) = lim
w→0+

1

2(1 + |w|)2
=

1

2
, (5)

and that

lim
w→0−

r′(w) = lim
w→0−

−1

2(1 + |w|)2
= −1

2
. (6)

Additionally, since r(w) is a Lipschitz continuous function, then appealing to Theorem 1 we have
that ∂r(w∗ = 0) = conv

{
− 1

2 ,
1
2

}
=

[
− 1

2 ,
1
2

]
. This means that 0 ∈ ∂r(0). Further, given the fact

that r(0) ≤ r(w) for all w ∈ R, then w∗ = 0 is a global minimizer of r(w). Therefore, the function
r(w) is invex.

Eq. (9)

Proof. Consider r(w) = w2

1+w2 . Observe that ∂r(w) =
{

2w
(1+w2)2

}
, which means r(w) is continu-

ously differentiable. Then, it is clear that w = 0 is the only point that satisfies 0 ∈ ∂r(0). In addition,
the value r(w = 0) is the global minimum of r(w). Thus, since the only stationary point of r(w) is a
global minimizer, then r(w) is invex.

Eq. (10)

Proof. Take r(w) = log(1 + |w|) − |w|
2+2|w| . Observe that if w > 0 then we have that ∂r(w) ={

1
2(1+|w|)2 + w

(1+|w|)2

}
, which means that 0 ̸∈ ∂r(w). Conversely, if w < 0 then ∂r(w) ={

−1
2(1+|w|)2 + w

(1+|w|)2

}
, leading to 0 ̸∈ ∂r(w). Lets examinate w∗ = 0. Note that

lim
w→0+

r′(w) = lim
w→0+

1

2(1 + |w|)2
+

w

(1 + |w|)2
=

1

2
, (7)

and that

lim
w→0−

r′(w) = lim
w→0−

−1

2(1 + |w|)2
+

w

(1 + |w|)2
= −1

2
. (8)

Additionally, since r(w) is a Lipschitz continuous function, then appealing to Theorem 1 we have
that ∂r(w∗ = 0) = conv

{
− 1

2 ,
1
2

}
=

[
− 1

2 ,
1
2

]
. This means that 0 ∈ ∂r(0). Further, given the fact

that r(0) ≤ r(w) for all w ∈ R, then w∗ = 0 is a global minimizer of r(w). Therefore, the function
r(w) is invex.
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1.1 Additional Discussion on Invex Regularizers

To address sub-optimal limitations of convex regularizers, non-convex mappings have been proposed.
For instance, the Smoothly Clipped Absolute Deviation (SCAD) [1], and Minimax Concave Penalty
(MCP) [2]. However, a recent survey in imaging [3], which compared the performance of several
regularizers including SCAD and MCP for a number of imaging, concludes that Eq. (6) shows higher
performance than SCAD and MCP because the value of p can be adjusted in data-dependent manner.
This means that when the images are strictly sparse, and the noise is relatively low, a small value
of p should be used. Conversely, when images are non-strictly sparse and/or the noise is relatively
high, a larger value of p tend to yield better performance. Furthermore, in the context of invexity, we
highlight that SCAD and MCP are non-invex regularizer because they reach a maximum value, which
makes the first derivative zero in non-minimizer values leading to its non-invexity (see Theorem 1).

On the other hand, in the case of minimax-concave-type of regularizers, we present a new function in
our manuscript (Eq. (10)). From Eq. (10) it is clear we are subtracting g1(x) =

∑n
i=1 log(1+ |x[i]|),

and g2(x) =
∑n

i=1
|x[i]|

2+2|x[i]| (selected due to results in [4]). We propose to study regularizer in Eq.
(10), that is g1−g2, for three reasons. First, because g1, g2, and g1−g2 are invex, as stated in Lemma
1, and all of them can achieve global optima for the scenarios studied in the paper. Second, to the
best of our knowledge, there is no evidence that subtracting two convex penalties (current proposal
in the minimax-concave literature) produces another convex regularizer (if exists). Therefore, we
present Eq. (10) to show that at least this is possible in the invex case, as stated in Section 3.

Finally, we point out that the performance of invex regularizers in Eqs. (7), (8), (9), and (10) can be
justified under the framework of re-weighted ℓ1-norm minimization (see [5]), which enhances the
performance of just ℓ1-norm minimization.

2 Proof of Lemma 2

Proof. To prove this theorem, we show that for each x ∈ Rn such that 0 ∈ ∂h(x) where h(x) =
f (Hx− v) is a global minimizer. Observe that

∂h(x) = {∇h(x)} =
{
HT∇f(Hx− v)

}
. (9)

Take x∗ ∈ Rn such that 0 ∈ ∂h(x∗), then since H is a full row-rank matrix (equivalently HT full
col-rank matrix) from Eq. (9) we have

∇h(x∗) = HT∇f(Hx∗ − v) = 0 ↔ ∇f(Hx∗ − v) = 0. (10)

The above equation means that each stationary point of h(x) is found through the stationary points
of f(x). Thus, since f is invex then Hx∗ − v is a global minimizer of f i.e. h is invex.

3 Proof of Theorem 3

In this appendix we seek to guarantee that the proximal operator of the functions in Table 2 are invex.
We point out that, since the proximal of the regularizers in Table 2 is the sum of a scalar function
applied to each entry of a vector, then it is enough to analyze the scalar function to determine the
invexity of the proximal.

3.1 Invexity proofs of the proximal operators

In the following we provide the proof for the first statement in Theorem 3.

Eq. (6)

Proof. Let h(w) be a function defined, for p ∈ (0, 1), as

h(w) = (|w|+ ϵ)p +
1

2
(w − u)2, (11)
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for fixed u ∈ R, and ϵ ≥ (p(1− p))
1

2−p . Then, we seek to show that the second derivate of h(w)
with respect to w for w ̸= 0 is non-negative. Observe that,

h′′(w) =
p(p− 1)

(|w|+ ϵ)2−p
+ 1. (12)

From Eq. (12) we have that (|w| + ϵ)2−p is a positive increasing function since 2 − p > 1. This
implies that to show h′′(w) is non-negative for all w ∈ R we need to analyze only when w = 0.
Therefore, p(p−1)

(|w|+ϵ)2−p ∈ [−1, 0) for all w ∈ R, because p(p− 1) < 0 and ϵ ≥ (p(1− p))
1

2−p . Thus,
h′′(w) is non-negative, leading to the invexity of h(w) (i.e. h′′(w) positive implies convexity).

Eq. (7)

Proof. Take h(w) = log(1 + |w|) + 1
2 (w − u)2 for fixed u ∈ R. Observe that the second derivative

of h(w), for w ̸= 0 is given by

h′′(w) =
−1

(1 + |w|)2
+ 1. (13)

Then, since (1 + |w|)2 ≥ 1 for all w, this implies that −1
(1+|w|)2 ∈ [−1, 0). Thus, h′′(w) is non-

negative, leading to the invexity of h(w).

Eq. (8)

Proof. Take h(w) = |w|
2+2|w| +

1
2 (w − u)2 for fixed u ∈ R. We will use the same argument as in

previous cases. Then, for w ̸= 0 notice that the second derivative of h(w) is given by

h′′(w) =
−1

(1 + |w|)3
+ 1. (14)

Then, from the above equation it is clear that −1
(1+|w|)3 ∈ [−1, 0) for all w ∈ R. Thus, h′′(w) is

non-negative, leading to the invexity of h(w).

Eq. (9)

Proof. Take h(w) = w2

1+w2 + 1
2 (w − u)2, for fixed u ∈ R. Then, notice that the second derivative of

h(w) is given by

h′′(w) =
2− 6w2

(1 + w2)3
+ 1. (15)

Then, we show that s(w) = 2−6w2

(1+w2)3 ≥ −1, by determining its extreme values. Observe that

s′(w) =
24w(w2 − 1)

(1 + w2)3
= 0, (16)

only when w = 0, 1,−1. It is clear that the maximum value of s(w) is attained when w = 0, i.e.
s(w) = 2. And, its minimum value is achieved when w = −1, that is s(1) = s(−1) = −1

2 . Thus,
since s(w) ≥ −1 then h(w) is invex.

Eq. (10)

Proof. Take h(w) = log(1 + |w|)− |w|
2+2|w| +

1
2 (w − u)2, for fixed u ∈ R. Then, for w ̸= 0 notice

that the second derivative of h(w) is given by

h′′(w) =
−|w|

(1 + |w|)3
+ 1. (17)

Then, from the above equation it is clear that −|w|
(1+|w|)3 ∈ [−1, 1], which implies that h′′(w) is

non-negative for any w. Thus, h(w) is invex.
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3.2 The resolvent of proximal operator only has global optimizers

Proof. Now we proof the second part of Theorem 3. From the previous analysis on each proximal
operator, we have that h(x) is an convex (therefore invex) function, then Theorem 2 states that any
global minimizer y of h satisfies that 0 ∈ ∂h(y). This condition implies that 0 ∈ ∂g(y) + (y − v),
from which we obtain that y ∈ (∂g+ I)−1(v). Thus, we have that proxg(v) = (∂g+ I)−1(v) from
which the result holds.

3.3 Numerical Analysis of Proximal

In this section we present additional numerical analysis on the proximal of invex regularizers listed in
Table 2. We start by providing a visual comparison between the one-dimensional version of ℓ1-norm
and the invex regularizers in Eqs. (6), (7), (8), (9), and (10). This comparison is reported in Fig. 1.
From this illustration it is easy to conclude why Eqs. (6), (7), (8), (9), and (10) are non-convex.

To complement the comparison between convex and invex regularizers, we present a graphical
validation of the theoretical result in Theorem 3. To that end, we illustrate also in Fig. 1 the landscape
of function h(x) = g(x) + 1

2∥x − u∥22 where x is a vector of two dimensions x = [x1, x2]
T ,

u = [1, 1]T , with g(x) taking the form of all invex regularizers in Eqs. (6), (7), (8), (9), and (10).
From these results, it is clear that the level curves are concentric convex sets which confirms that
h(x) is convex (therefore invex), as stated in Theorem 3.

Lastly, the running time to compute the proximal of invex regularizers is also an important aspect
to compare with its convex competitor i.e. ℓ1-norm. The reason for this, is because it is desire to
improve imaging quality keeping the same computational complexity to obtain it. Therefore, the
following Table 1 reports the running time to compute the proximal (in GPU) of Eqs. (6), (7), (8),

Figure 1: Here we present a visual comparison between the one-dimensional version of ℓ1-norm
and the invex regularizers in Eqs. (6), (7), (8), (9), and (10). For Eq. (6) we select p = 0.5, and
ϵ = (p(1− p))

1
2−p . We also report the landscape of function h(x) = g(x) + 1

2∥x− u∥22 where x is
a vector of two dimensions x = [x1, x2]

T , u = [1, 1]T , and for all invex regularizers in Eqs. (6), (7),
(8), (9), and (10). It is clear that the level curves are concentric convex sets which confirms that h(x)
is convex (therefore invex), as stated in Theorem 3.
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(9), and (10) for an image of 2048× 2048 pixels. Observe that Table 1 suggests that computing the
proximal of the ℓ1-norm is faster than the proximal of invex regularizers. However, this difference is
given in milliseconds making it negligible in practice.

Table 1: Time to compute the proximal for all invex and convex regularizers, of an image with
2048× 2048 pixels. The reported time is the averaged over 256 trials. For Eq. (6) we select p = 0.5,
and ϵ = (p(1− p))

1
2−p .

Eq. (6) Eq. (7) Eq. (8) Eq. (9) Eq. (10) ℓ1-norm
Time 1.47ms 0.63ms 2.8ms 4.7ms 2.4ms 0.66ms

4 Solutions to the Proximal Operator in Eq. (11)

In this section we present the proximal operator for the functions in Eqs. (6)-(10) summarized in
Table 2. In the case of Eq. (6) its proximal operator was calculated in [6]. We recall that the analysis
for Eq. (6) is valid with and without the constant ϵ. We prefer to add ϵ in order to formally satisfy the
Lipschitz continuity as in Definition 1. Moreover, for functions in Eqs. (7)-(10) we present how to
estimate their proximal operator them in the following.

Proximal of Eq. (7) Consider h(w) = λ log(1 + |w|) + 1
2 (w − u)2 for λ ∈ (0, 1], and fixed

u ∈ R. We note first that we only consider w′s for which sign(w) = sign(u), otherwise h(w) =
λ log(1 + |w|) + 1

2w
2 + |u||w| + 1

2u
2 which is clearly minimized at w = 0. Then, since with

sign(w) = sign(u) we have (w − u)2 = (|w| − |u|)2, we replace u with |u| and take w ≥ 0. As
h(w) is differentiable for w > 0, re-arranging h′(w) = 0 gives

ψλ(w) =
∆ λ

1 + w
+ w = |u|. (18)

Observe that ψ′
λ(w) is always positive then it means that ψλ(w) is monotonically increasing. Thus,

the equation ψλ(w) = |u| has unique solution i.e. at some point the quality holds. Thus, solving
ψλ(w) = |u| is equivalent to

w2 + (1− |u|)w + λ− |u| = 0. (19)

It is easy to verify that the solution to Eq. (19) that returns the minimum value of h(w) is given by

w =
|u|−1+

√
(|u|+1)2−4λ

2 when (|u|+ 1)2 ≥ 4λ, and 0 otherwise.

Proximal of Eq. (8) Consider h(w) = λ |w|
2+2|w| +

1
2 (w − u)2 for λ ∈ (0, 1], and fixed u ∈ R.

We note first that we only consider w′s for which sign(w) = sign(u), otherwise h(w) = λ |w|
2+2|w| +

1
2w

2 + |u||w|+ 1
2u

2 which is clearly minimized at w = 0. Then, since with sign(w) = sign(u) we
have (w − u)2 = (|w| − |u|)2, we replace u with |u| and take w ≥ 0. As h(w) is differentiable for
w > 0, re-arranging h′(w) = 0 gives

ψλ(w) =
∆ λ

2(1 + w)2
+ w = |u|. (20)

Observe that ψ′
λ(w) is always positive then it means that ψλ(w) is monotonically increasing. Thus,

the equation ψλ(w) = |u| has unique solution i.e. at some point the quality holds. Thus, solving
ψλ(w) = |u| is equivalent to

2w3 + (4− 2|u|)w2 + (2− 4|u|)w + λ− 2|u| = 0. (21)

Equation (21) is easily solved using traditional python packages2.

2Example of Python function to solve Eq. (21) at https://numpy.org/doc/stable/reference/
generated/numpy.roots.html.
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Table 2: Invex regularization functions from Table 2 and their corresponding proximity operator
(λ ∈ (0, 1] is a thresholding parameter).

Ref Invex function Proximal operator

[6] gλ(x) = λ|x|p, p ∈ (0, 1), x ̸= 0. Proxgλ(t) =

{
0 |t| < τ
{0, sign(t)β} |t| = τ
sign(t)y |t| > τ

where β = [2λ(1−p)]1/(2−p), τ = β+λpβp−1,
h(y) = λpyp−1 + y − |t| = 0, y ∈ [β, |t|]

- gλ(x) = λ log(1 + |x|) Proxgλ(t) =

 0 (|t|+ 1)2 < 4λ
sign(t)β β ≥ 0
0 otherwise

where β =
|t|−1+

√
(|t|+1)2−4λ

2 .

- gλ(x) = λ |x|
2+2|x| Proxgλ(t) =

{
0 |t| = 0
sign(t)β otherwise

where 2β3+(4−2|t|)β2+(2−4|t|)β+λ−2|t| =
0, β > 0, and closest to |t|.

- gλ(x) = λ x2

1+x2 Proxgλ(t) =
{

0 |t| = 0
sign(t)β otherwise

where β5−|t|β4+2β3− 2|t|β2+(1+2λ)β−
|t| = 0, β > 0, and closest to |t|

- gλ(x) = λ
(
log(1 + |x|)− |x|

2+2|x|

)
Proxgλ(t) =

{
0 |t| = 0
sign(t)β otherwise

where 2β3 + (4− 2|t|)β2 + (2λ+ 2− 4|t|)β +
λ− 2|t| = 0, β > 0, and closest to |t|.

Proximal of Eq. (9) Consider h(w) = λ w2

1+w2 + 1
2 (w − u)2 for λ ∈ (0, 1], and fixed u ∈ R. We

note first that we only consider w′s for which sign(w) = sign(u), otherwise h(w) = λ w2

1+w2 +
1
2w

2+

|u||w| + 1
2u

2 which is clearly minimized at w = 0. Then, since with sign(w) = sign(u) we have
(w − u)2 = (|w| − |u|)2, we replace u with |u| and take w ≥ 0. As h(w) is differentiable for w > 0,
re-arranging h′(w) = 0 gives

ψλ(w) =
∆ 2λw

(1 + w2)2
+ w = |u|. (22)

Observe that ψ′
λ(w) is always positive then it means that ψλ(w) is monotonically increasing. Thus,

the equation ψλ(w) = |u| has unique solution i.e. at some point the quality holds. Thus, solving
ψλ(w) = |u| is equivalent to

w5 − |u|w4 + 2w3 − 2|u|w2 + (1 + 2λ)w − |u| = 0. (23)

Equation (23) is easily solved using traditional python packages.

Proximal of Eq. (10) Consider h(w) = λ
(
log(1 + |w|)− |w|

2+2|w|

)
+ 1

2 (w − u)2 for λ ∈ (0, 1],
and fixed u ∈ R. We note first that we only consider w′s for which sign(w) = sign(u), otherwise
h(w) = λ

(
log(1 + |w|)− |w|

2+2|w|

)
+ 1

2w
2 + |u||w| + 1

2u
2 which is clearly minimized at w = 0.

Then, since with sign(w) = sign(u) we have (w − u)2 = (|w| − |u|)2, we replace u with |u| and
take w ≥ 0. As h(w) is differentiable for w > 0, re-arranging h′(w) = 0 gives

ψλ(w) =
∆ λ

2w + 1

2(1 + w)2
+ w = |u|. (24)

Observe that ψ′
λ(w) is always positive then it means that ψλ(w) is monotonically increasing. Thus,

the equation ψλ(w) = |u| has unique solution i.e. at some point the quality holds. Thus, solving
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ψλ(w) = |u| is equivalent to

2w3 + (4− 2|u|)w2 + (2λ+ 2− 4|u|)w + λ− 2|u| = 0. (25)

Equation (25) is easily solved using traditional python packages.

5 Proof of Theorem 4

We split the proof of Theorem 4 into two parts. First part we focus our analysis on functions in Eqs.
(7),(8),(10) and second part Eq. (9) (extra mild conditions are needed). Recall we skipped Eq. (6).

5.1 Part one

We particularized [7, Theorem 1] in order to prove that whenever the ℓ1-norm solution of optimization
problem in Eq. (12) is unique, then Eq. (12) when g(x) satisfies the following definition has the
same global optima.

Definition 1. (Sparseness measure [7]) Let g : Rn → R such that g(w) =
∑n

i=1 r(w[i]), where
r : [0,∞) → [0,∞) and increasing. If r, not identically zero, with r(0) = 0 such that r(t)/t is
non-increasing on (0,∞), then g(x) is said to be a sparseness measure.

Now we present the particular version in [7, Theorem 1] as follows.

Lemma 1. Assume Hx = b, where x ∈ Rn is k-sparse, the matrix H ∈ Rm×n (m < n) with
ℓ2-normalized columns that satisfies RIP for any 2k-sparse vector, with δ2k < 1

3 , and b ∈ Rm is
a noiseless measurements data vector. If g(x) in Eqs. (7),(8), (10) satisfies Definition 1, then x is
exactly recovered by solving Eq. (12) i.e. only global optimizers exists.

Figure 2: Plot of g(w)/w for g(w) being
Eq. (10) and w > 0 to check that g(w)/w is
non-increasing on (0,∞).

In the following we prove functions in Eqs. (7),(8), and
(10) satisfy Definition 1, and we proceed by cases.

Proof. Eq. (7): Take g(w) = log(1+ |w|) for any w ∈ R.
It is trivial to see that g(0) = 0, and that g(w) it is not
identically zero. Then, we just need to show that g(w)/w
is non-increasing on (0,∞). Define r(w) = log(1+w)

w .
Observe that the derivative of r(w) is given by r′(w) =

w
1+w−log(1+w)

w2 , for w ∈ (0,∞). Since w
1+w − log(1 +

w) < 0, then r′(w) < 0 leads to conclude that g(w)/w is
non-increasing on (0,∞).

Eq. (8): Take g(w) = |w|
2+2|w| for any w ∈ R. It is trivial

to see that g(0) = 0, and that g(w) it is not identically zero.
Then, we just need to show that g(w)/w is non-increasing
on (0,∞). Define r(w) = w

2w+2w2 = 1
2+2w . Then, it is

clear to conclude that g(w)/w is non-increasing on (0,∞).

Eq. (10): Take g(w) = log(1 + |w|) − |w|
2+2|w| for any w ∈ R. It is trivial to see that g(0) = 0,

and that g(w) it is not identically zero. Then, we just need to show that g(w)/w is non-increasing
on (0,∞). For easy of exposition we present in Figure 2 the plot of g(w)/w. Then it is clear that
g(w)/w is non-increasing on (0,∞).

5.2 Part two

For this second part we appeal to a generalized result of [7, Theorem 1] presented in [8, Theorem
3.10]. To exploit this generalized theorem we introduce the following definition.

Definition 2. (Admissible sparseness measure [8]) A function g : Rn → R such that g(w) =∑n
i=1 r(w[i]) is said to be an admissible sparseness measure if

• r(0) = 0, and g even on R,

8



• r is continuous on R, and strictly increasing and strictly concave on R.

Based on the above definition we particularized [8, Theorem 3.10] in the lemma below in order to
prove the solution of optimization problem in Eq. (12) is unique, when functions in Eq. (9) are used
under some mild conditions.

Lemma 2. ([8, Theorem 3.10]) Assume Hx = b, where x ∈ Rn is k-sparse, the matrix H ∈ Rm×n

(m < n) with ℓ2-normalized columns that satisfies RIP for δs ∈ (0, 1) with s ≥ 2k, and b ∈ Rm

is a noiseless measurements data vector. Define β1, β2 > 0 to be the lower and upper bound of
magnitudes of non-zero entries of feasible vectors of Eq. (12) (their existence if guaranteed [8]).
If kr(2β2) < (s + k − 1)r(β1), then x is exactly recovered by solving Eq. (12) i.e. only global
optimizers exists.

In the following we prove functions from Eq. (9) in Table 2 are able to exactly recover the signal x
under some mild conditions.

Proof. Eq. (9): Take r(w) = w2

1+w2 for any w ∈ R. It is trivial to see that r(0) = 0, to check that it
is even, continuous, and strictly increasing. Observe that the second derivative of r(w) is given by
r′′(w) = 2−6w2

(1+w2)2 . Then it is clear to conclude that r(w) is strictly concave when w > 1
3 . Then, in

order to have the chance to exactly recover the signal x we need to assume that the lower bound of
magnitudes of non-zero entries of feasible vectors is β1 > 1

3 . Without loss of generality we assume
x is a normalized signal (in practical imaging applications x is always normalized). Then, we take
β1 = 0.5, and β2 = 1.0. In addition, assuming H satisfies RIP when s ≥ 4k+2, with δs ∈ (0, 1), it
is numerically easy to verified that kr(2β2) < (s+ k − 1)r(β1).

6 Proof of Lemma 3

Before proving Lemma 3 we consider two definitions in the following which the loss function
F (x) = f(x) + λg(x) in Eq. (12) satisfies. Recall that λ ∈ (0, 1].

Definition 3. A function h : Rn → (−∞,∞] is said to be proper if dom h ̸= ∅, where dom =
{x ∈ Rn : h(x) <∞}.

Since we are assuming the sensing matrix H satisfies RIP it guarantees the existence of a solution to
Eq. (12) implying that dom F ̸= ∅. Thus, F (x) in Eq. (12) satisfies the above definition because.

Definition 4. A function h : Rn → R is coercive, if h is bounded from below and h(x) → ∞ when
∥x∥2 → ∞.

Considering that the list of invex functions in Table 2, and f(x) = ∥Hx − v∥22 (for fix v and H
satisfying RIP) are positive, then the loss function F (x) satisfies F (x) ≥ 0. The second part of the
coercive definition is trivially guaranteed since H satisfies RIP, otherwise we will be denying the
existence of a global solution to Eq. (12) which is a contradiction.

Now we proceed to prove Lemma 3.

Proof. Line 6 in Algorithm 1 is given by

v(t+1) = argmin
x∈Rn

〈
∇f(x(t)),x− x(t)

〉
+

1

2λα1
∥x− x(t)∥22 + g(x). (26)

We write equal in the above equation because the proximal in Line 6 is invex therefore it always map
to a global optimizer. So from Eq. (26) we have〈

∇f(x(t)),v(t+1) − x(t)
〉
+

1

2λα1
∥v(t+1) − x(t)∥22 + g(v(t+1)) ≤ g(x(t)). (27)
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From the Lipschitz continuous of ∇f and Eq. (27) we have

F (v(t+1)) ≤ g(v(t+1)) + f(x(t)) +
〈
∇f(x(t)),v(t+1) − x(t)

〉
+
L

2
∥v(t+1) − x(t)∥22

≤ g(x(t))−
〈
∇f(x(t)),v(t+1) − x(t)

〉
− 1

2λα1
∥v(t+1) − x(t)∥22

+ f(x(t)) +
〈
∇f(x(t)),v(t+1) − x(t)

〉
+
L

2
∥v(t+1) − x(t)∥22

= F (x(t))−
(

1

2λα1
− L

2

)
∥v(t+1) − x(t)∥22. (28)

If F (z(t+1)) ≤ F (v(t+1)), then

x(t+1) = z(t+1), F (x(t+1)) = F (z(t+1)) ≤ F (v(t+1)). (29)

If F (z(t+1)) > F (v(t+1)), then

x(t+1) = v(t+1), F (x(t+1)) = F (v(t+1)). (30)

From Eqs. (28), (29) and (30) we have

F (x(t+1)) ≤ F (v(t+1)) ≤ F (x(t)). (31)

So

F (x(t+1)) ≤ F (x(1)), F (v(t+1)) ≤ F (x(1)), (32)

for all t. Recall that we consider the estimation of z(t+1) unique because it is performed through the
proximal of g(x) which always map to a global optimizer.

Observe that from Eq. (31) was concluded that F (x(t)) is nonincreasing then for all t > 1 we have
F (x(t)) ≤ F (x(1)) and therefore x(t) ∈ {w : F (w) ≤ F (x(1))} (known as level sets). Since F (x)
is coercive then all its level sets are bounded. Then we know that {x(t)}, and {v(t)} are also bounded.
Thus {x(t)} has accumulation points. Let x∗ be any accumulation point of {x(t)}, say a subsequence
satisfying {x(tj+1)} → x∗ as j → ∞. Let F ∗ be lim

j→∞
F (x(tj+1)) = F (x∗) = F ∗. The existence

of this limit is guaranteed since f is continuously differentiable. Then, from Eq. (28) we have(
1

2λα1
− L

2

)
∥v(t+1) − x(t)∥22 ≤ F (x(t))− F (v(t+1)) ≤ F (x(t))− F (x(t+1)). (33)

Summing over t = 1, 2, . . . ,∞, we have(
1

2λα1
− L

2

) ∞∑
t=1

∥v(t+1) − x(t)∥22 ≤ F (x(1))− F ∗ <∞. (34)

From α1 <
1
L we have

∥v(t+1) − x(t)∥22 → 0, as t→ ∞. (35)

From the optimality condition of Eq. (26) we have

0 ∈ ∇f(x(t)) +
1

λα1
(v(t+1) − x(t)) + ∂g(v(t+1))

= ∇f(x(t)) +∇f(v(t+1))−∇f(v(t+1)) +
1

λα1
(v(t+1) − x(t)) + ∂g(v(t+1)). (36)

So we have

−∇f(x(t)) +∇f(v(t+1))− 1

λα1
(v(t+1) − x(t)) ∈ ∂F (v(t+1)), (37)

and∥∥∥∥∇f(x(t))−∇f(v(t+1)) +
1

λα1
(v(t+1) − x(t))

∥∥∥∥
2

≤
(

1

λα1
+ L

)
∥v(t+1) − x(t)∥2 → 0, (38)
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as t→ ∞.

From Eq. (35) we have v(tj+1) → x∗ as j → ∞. From Eq. (26) we have〈
∇f(x(tj)),v(tj+1) − x(tj+1)

〉
+

1

2λα1
∥v(tj+1) − x(tj)∥22 + g(v(tj+1))

≤
〈
∇f(x(tj)),x∗ − x(tj)

〉
+

1

2λα1
∥x∗ − x(tj)∥22 + g(x∗) (39)

So

lim sup
j→∞

g(v(tj+1)) ≤ g(x∗). (40)

From the continuity assumption on g we have lim inf
j→∞

g(v(tj+1)) ≥ g(x∗), then we conclude

lim
j→∞

g(v(tj+1)) = g(x∗). (41)

Because f is continuously differentiable, we have lim
j→∞

F (v(tj+1)) = F (x∗). From {v(tj+1)} →

x∗, and Eq. (37) we have 0 ∈ ∂F (x∗). Therefore, since F (x) is invex according to Theorem 4 we
have that the sequence {x(t)} converges to a global minimizer of F (x).

6.1 Numerical Validation of Lemma 3

To numerically validate the proof of Lemma 3 provided in the above section, we present Fig. 3. In
this figure we are reporting the numerical convergence of Algorithm 1 for all invex regularizers to
recover an image of size 256× 256 from blurred data, as explained in Experiment 1 for the noiseless
case. Specifically, Fig. 3(left) reports how the loss function F (x) = ℓ2 + λg(x), analyzed in the
above proof, is minimized along T = 800 iterations. This plot numerically validates the proof of
Lemma 3. As a complement to this plot, Fig. 3(right) presents the running time of Algorithm 1 to
perform T = 800 iterations for all invex regularizers and the ℓ1-norm. This second plot suggests that
Algorithm 1 using the ℓ1-norm as regularizer requires 1.8 seconds less than its invex competitors to
perform T = 800 iterations. We remark that this negligible difference is expected, since in Table
1 was concluded that the running time to compute the proximal operator for all invex differs in the
order of milliseconds with the computation of the proximal of ℓ1-norm.

Figure 3: Numerical convergence of Algorithm 1 for all invex regularizers to recover an image of
size 256 × 256 from blurred data, as explained in Experiment 1. (left) Minimization process of
F (x) = ℓ2 + λg(x) along T = 800 iterations. (right) running time of Algorithm 1 to perform
T = 800 iterations for all invex regularizers and the ℓ1-norm.
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7 Proof of Lemma 4

We proceed to prove this lemma by extending the mathematical analysis in [9] to invex functions. To
that end, we recall some definitions and a classical result from monotone operator theory needed for
the proof of this lemma as follows.
Definition 5. (Nonexpansiveness) An operator F : Rn → Rn is said to be nonexpansive if it is
Lipschitz continuous as in Definition 1 with L = 1.

Based on the nonexpansiveness concept we give the following definition.
Definition 6. For a constant β ∈ (0, 1) we say a function G is β-average, if there exists a nonexpan-
sive operator F such that G = (1− β)I + βF

Now based on the concept of average operators we recall the following classical results.
Lemma 3. ([10, Proposition 4.44]) Let G1 be β1-averaged and G2 be β2-averaged. Then, the
composite operator G =∆ G2 ◦G1 is

β =∆
β1 + β2 − 2β1β2

1− β1β2
, (42)

averaged operator.
Lemma 4. Let F be a β-average operator with β ∈ (0, 1). Then

∥F (x)− F (y)∥22 ≤ ∥x− y∥22 −
(
1− β

β

)
∥x− F (x)− y + F (y)∥22. (43)

Now we proceed to prove Lemma 4

Proof. Following the assumptions made in Lemma 4, we start this proof by noticing that for a
differentiable invex function f a point x is a global minimizer of f according to Theorem 2 if

0 = ∇f(x) ↔ x = (I − α∇f)(x), (44)

for non-zero α. In other words, x is a minimizer of f if and only if it is a fixed point of the mapping
I − α∇f . This property of invex functions is what allows to extend the mathematical guarantees
in [9] given only for convex functions. Now considering that f is assumed to have Lipschitz
continuous gradient with parameter L, then the operator I − α∇f is Lipschitz with parameter
LG = max{1, |1 − αL|} and therefore is nonexpansive for α ∈ (0, 2/L]. So it is averaged for
α ∈ (0, 2/L) since

I − α∇f = (1− κ)I + κ (I − 2/L∇f) , (45)

where κ = αL/2 < 1.

Assume the denoiser d is κ-averaged and the operator Gα = I − α∇f . Observe that Gα is (γL/2)-
averaged for any α ∈ (0, 2/L). From Lemma 3 their composition P = d ◦Gα is

β =∆
κ+ γL/2− 2κγL/2

1− κγL/2
, (46)

averaged. Consider a single iteration v+ = P (x), then we have for any x∗ = P (x∗) (fixed point)
we have that

∥v+ − x∗∥22 = ∥P (x)− P (x∗)∥22

≤ ∥x− x∗∥22 −
(
1− β

β

)
∥x− P (x)− x∗ + P (x∗)∥22

= ∥x− x∗∥22 −
(
1− β

β

)
∥x− P (x)∥22, (47)

where we used Lemma 4. From Line 6 in Algorithm 3 the iteration t+ 1 and rearranging the terms,
we obtain

∥x(t) − P (x(t))∥22 ≤
(

β

1− β

)[
∥x(t) − x∗∥22 − ∥v(t+1) − x∗∥22

]
. (48)
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If F (z(t+1)) ≤ F (v(t+1)), then

x(t+1) = z(t+1), F (x(t+1)) = F (z(t+1)) ≤ F (v(t+1)). (49)

If F (z(t+1)) > F (v(t+1)), then

x(t+1) = v(t+1), F (x(t+1)) = F (v(t+1)). (50)

From Eqs. (49) and (50) we have

F (x(t+1)) ≤ F (v(t+1)) ≤ F (x(t)). (51)

Observe that from Eq. (51) was concluded that F (x(t)) is nonincreasing then for all t > 1 we have
F (x(t)) ≤ F (x(1)) and therefore x(t) ∈ {w : F (w) ≤ F (x(1))} (known as level sets). Since F (x)
is coercive then all its level sets are bounded (concluded from Appendix 6). Then we know that
{x(t)}, and {v(t)} are also bounded. Thus {x(t)} has accumulation points which guarantees the
existence of x∗ implying that for a subsequence satisfying {x(tj+1)} → x∗ as j → ∞, we also have
lim
j→∞

F (x(tj+1)) = F (x∗) = F ∗. Then, from Eqs. (49), (50), and the continuity of F , it is easy to

see that ∥x(t+1) − x∗∥22 ≤ ∥v(t+1) − x∗∥22, which leads to

∥x(t) − P (x(t))∥22 ≤
(

β

1− β

)[
∥x(t) − x∗∥22 − ∥x(t+1) − x∗∥22

]
. (52)

By averaging this inequality over T iterations and dropping the last term ∥x(t+1) − x∗∥22, we obtain

1

T

T∑
t=1

∥x(t) − P (x(t))∥22 ≤ 2

T

(
1 + κ

1− κ

)
∥x(0) − x∗∥22. (53)

To obtain the result that depends on κ ∈ (0, 1), we note that for any α ∈ (0, 1/L], we write

β

1− β
=

κ+ αL/2− καL

(1− κ)(1− αL/2)
≤
κ+ 1

2
1−κ
2

≤ 2

(
1 + κ

1− κ

)
. (54)

Thus, from Eqs. (53) and (54) the result holds.

7.1 Pseudo-code for plug-and-play invex imaging

For the sake of completeness we present Algorithm 3 which is the pseudo-code of the plug-and-play
version of APG for solving Eq. (12). The scaled-up convergence of APG are offered by two auxiliary
variables, i.e., y(t+1) and z(t+1) in Lines 4 and 5. In Line 6 is presented the replacement of the
proximal operator in APG pseudo-code with a neural network based denoiser Noise2Void [11]. And
a monitor constrain computed in Line 8, to satisfy the sufficient descent property.

Algorithm 3 Plug-and-play Proximal Gradient Algorithm

1: input: Tolerance constant ϵ ∈ (0, 1), initial point x(0), and number of iterations T
2: initialize: x(1) = x(0) = z(0), r1 = 1, r0 = 0, α1, α2 <

1
L , and λ ∈ (0, 1]

3: for t = 1 to T do
4: y(t) = x(t) + rt−1

rt
(z(t) − x(t)) + rt−1−1

rt
(x(t) − x(t−1))

5: z(t+1) = proxα2λg
(y(t) − α2∇f(y(t)))

6: v(t+1) = Noise2Void(x(t) − α1∇f(x(t))) ▷ This calls the trained Noise2Void model

7: rt+1 =

√
4(rt)2+1+1

2

8: x(t+1) =

{
z(t+1), if f(z(t+1)) + λg(z(t+1)) ≤ f(v(t+1)) + λg(v(t+1))
v(t+1), otherwise

9: end for
10: return: x(T )
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8 Proof of Lemma 5

Proof. To prove this lemma we start exploiting the convexity of λg(x)+ 1
2∥x−u∥22 for fixed v ∈ Rn

according to Theorem 3, and λ ∈ (0, 1]. Then, for all functions in Table 2, we have

λg(x) +
1

2
∥x− u∥22 − λg(y)− 1

2
∥y − u∥22 ≥

(
ζy + y − u

)T
(x− y)

λg(x)− λg(y) ≥
(
ζy + y − u

)T
(x− y) +

1

2
∥y − u∥22 −

1

2
∥x− u∥22

λg(x)− λg(y) ≥
(
ζy + y − u

)T
(x− y) + (x− u)T (y − x)

(55)

for all x,y ∈ Rn, and ζy ∈ ∂λg(y), where the third inequality comes from the convexity of
f(x) = 1

2∥x− u∥22. Then, from Eq. (55) we conclude

λg(x)− λg(y) ≥ ζT
y (x− y)− ∥x− y∥22, (56)

for all x,y ∈ Rn, and ζy ∈ ∂λg(y).

The iterative procedure summarized in Algorithm 2 is seen as

x(t+1) = argmin
x∈Rn

〈
∇f(x(t)),x− x(t)

〉
+

1

2αtλ
∥x− x(t)∥22 + g(x) (57)

We write equal in the above equation because the proximal in Eq. (11) is invex therefore it always
map to a global optimizer. From the Lipschitz continuous of ∇f we have

f(x(t+1)) ≤ f(x(t)) +
〈
∇f(x(t)),x(t+1) − x(t)

〉
+
L

2
∥x(t+1) − x(t)∥22. (58)

Considering the fact that from Eq. (57) we conclude −∇f(x(t))+ 1
αtλ

(
x(t) − x(t+1)

)
∈ ∂g(x(t+1)),

then Eq. (56) leads to

λg(x(t))− λg(x(t+1)) ≥
〈
−∇f(x(t)) +

1

αtλ

(
x(t) − x(t+1)

)
,x(t) − x(t+1)

〉
− ∥x(t) − x(t+1)∥22

≥
〈
∇f(x(t)),x(t+1) − x(t)

〉
+

(
1

αtλ
− 1

)
∥x(t) − x(t+1)∥22. (59)

The above Eq. (59) combined with Eq. (58) yields

λg(x(t))− λg(x(t+1)) ≥ f(x(t+1))− f(x(t))− L

2
∥x(t+1) − x(t)∥22 +

(
1

αtλ
− 1

)
∥x(t) − x(t+1)∥22

f(x(t)) + λg(x(t)) ≥ f(x(t+1)) + λg(x(t+1)) +

(
1

αtλ
− 1− L

2

)
∥x(t) − x(t+1)∥22. (60)

Observe that by taking αt <
2

L+2 , then from Eq. (60) we have that f(x(t))+λg(x(t)) ≥ f(x(t+1))+

λg(x(t+1)) which is a sufficient decreasing condition. In addition, considering that the list of invex
functions in Table 2, and f(x) = ∥Hx − v∥22 are positive, then the loss function in Eq. (12) is
bounded below. Thus, in particular f(x(t)) + λg(x(t))− (f(x(t+1)) + λg(x(t+1))) → 0 as t→ ∞,
which, combined with Eq. (60), implies that ∥x(t)−x(t+1)∥22 → 0 as t→ ∞. The later convergence
implies the existence of fixed points to the proximal iteration in Algorithm 2 (equivalently to Eq.
(57)), sufficient condition to guarantee that the sequence {x(t)} convergences to a stationary point
of f(x) + λg(x). Thus, since in Theorem 4 we proved the loss function in Eq. (12) is invex then
{x(t)} converges to a global minimizer.
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9 Image Compressive Sensing Experiments Evaluated with SSIM metric

In this section we complement results of Experiments 1,2, and 3 of Section 5. We assess the imaging
quality for these experiments using the structural similarity index measure (SSIM). The best and least
efficient among invex functions is highlighted in boldface and underscore, respectively.

Experiment 1 studies the effect of different invex regularizers under Algorithm 1. The numerical
results of this study are summarized in Table 3. Also, we present Figure 4 which illustrates recon-
structed images, for SNR = 30dB, obtained by Eqs. (6), (7), (8), (9), and (10), which are compared
with the outputs from FISTA, TVAL3, and ReconNet. In addition, to numerically evaluate their
performance we estimate the PSNR for each image.

Table 3: Comparison between convex and invex regularizers, in terms of SSIM, under Algorithm 1,
using p = 0.5 for Eq. (6).

(Experiment 1) Algorithm 1, p = 0.5 for Eq. (6). FISTA [12] TVAL3 [96] ReconNet [97]
SNR Eq. (6) Eq. (7) Eq. (8) Eq. (9) Eq. (10) ℓ1-norm
∞ 0.9486 0.9370 0.9408 0.9332 0.9447 0.9257 0.9294 0.9220

20dB 0.8675 0.8495 0.8554 0.8437 0.8614 0.8323 0.8380 0.8267
30dB 0.9055 0.8944 0.8981 0.8908 0.9018 0.8836 0.8872 0.8801

Figure 4: Reconstructed images, for SNR = 30dB, obtained by Algorithm 1 using Eqs. (6), (7), (8),
(9), and (10), which are compared with the outputs from FISTA, TVAL3, and ReconNet. In addition,
to numerically evaluate their performance we estimate the PSNR for each image.

Experiment 2 studies the invex regularizers under the plug-and-play modification of Algorithm 1
as described in Section 4.2.2 [11]. The same deconvolution problem as in Experiment 1 is used.
The numerical results of this study are summarized in Table 4. Also, we present Figure 5 which
illustrates reconstructed images obtained by Eqs. (6), (7), (8), (9), and (10), which are compared with
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the outputs from ℓ1-norm. In addition, to numerically evaluate their performance we estimate the
PSNR for each image.

Table 4: Comparison between convex and invex regularizers, in terms of SSIM, under plug-and-play
Algorithm 3, using p = 0.8 for Eq. (6).

(Experiment 2) Algorithm 3, p = 0.8 for Eq. (6).
SNR Eq. (6) Eq. (7) Eq. (8) Eq. (9) Eq. (10) ℓ1-norm
∞ 0.9581 0.9409 0.9465 0.9352 0.9523 0.9297

20dB 0.8808 0.8680 0.8722 0.8638 0.8765 0.8597
30dB 0.9189 0.9043 0.9091 0.8995 0.9140 0.8948

Figure 5: Reconstructed images, for SNR = 30dB, obtained by Algorithm 3 using Eqs. (6), (7),
(8), (9), and (10), which are compared with the outputs from ℓ1-norm. In addition, to numerically
evaluate their performance we estimate the PSNR for each image.

Experiment 3 compares the invex regularizers but under the unrolling framework as described in
Section 4.2.3. The numerical results of this study are summarized in Table 5. Also, we present Figure
6 which illustrates reconstructed images obtained by Eqs. (6), (7), (8), (9), and (10) with ISTA-Net,
which are compared with the outputs from ℓ1-norm + ISTA-Net. In addition, to numerically evaluate
their performance we estimate the PSNR for each image.
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Table 5: Performance comparison between convex and invex regularizers, in terms of SSIM, for the
unrolling experiment, using p = 0.85 for Eq. (6).

(Experiment 3) Algorithm 2 - unfolded LISTA. p = 0.85 for Eq. (6) LISTA [13] ReconNet [97]
SNR m/n Eq. (6) Eq. (7) Eq. (8) Eq. (9) Eq. (10) ℓ1-norm

∞
0.2 0.9279 0.9132 0.9181 0.9084 0.9230 0.9037 0.8990

0.4 0.9610 0.9423 0.9485 0.9363 0.9547 0.9303 0.9244

0.6 0.9890 0.9620 0.9708 0.9533 0.9798 0.9448 0.9364

20dB
0.2 0.8690 0.8628 0.8649 0.8608 0.8669 0.8587 0.8567

0.4 0.9370 0.9205 0.9259 0.9151 0.9314 0.9098 0.9045

0.6 0.9498 0.9411 0.9440 0.9382 0.9469 0.9353 0.9325

30dB
0.2 0.8876 0.8781 0.8812 0.8750 0.8844 0.8719 0.8688

0.4 0.9510 0.9318 0.9381 0.9255 0.9445 0.9194 0.9133

0.6 0.9619 0.9545 0.9569 0.9520 0.9594 0.9496 0.9472
(Experiment 3) Algorithm 2 - unfolded ISTA-Net. p = 0.85 for Eq. (6)

SNR m/n Eq. (6) Eq. (7) Eq. (8) Eq. (9) Eq. (10) ℓ1-norm [98]

∞
0.2 0.9350 0.9219 0.9262 0.9176 0.9306 0.9134

-

0.4 0.9733 0.9541 0.9604 0.9479 0.9668 0.9417

0.6 0.9899 0.9697 0.9763 0.9632 0.9831 0.9567

20dB
0.2 0.8829 0.8745 0.8773 0.8717 0.8801 0.8690

0.4 0.9501 0.9323 0.9382 0.9265 0.9441 0.9208

0.6 0.9611 0.9520 0.9550 0.9490 0.9580 0.9460

30dB
0.2 0.8990 0.8836 0.8887 0.8786 0.8938 0.8736

0.4 0.9641 0.9437 0.9504 0.9370 0.9572 0.9305

0.6 0.9859 0.9695 0.9749 0.9641 0.9804 0.9588

Figure 6: Reconstructed images, for SNR = 30dB, obtained by ISTA-Net using Eqs. (6), (7), (8),
(9), and (10), which are compared with the outputs from ℓ1-norm, where m/n = 0.6. In addition, to
numerically evaluate their performance we estimate the PSNR for each image.
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10 Image Denoising Illustration

For the sake of completeness we present in Algorithm 4 the denoising procedure employed in
this paper (following [14]) using invex regularizers g(x) in Eqs. (6), (8), and (10). The parameters
λ1, λ2,K, and S were chosen to be the best for each analyzed function determined by cross validation.

Algorithm 4 Denoising procedure using invex regularizers
1: input: noisy image x, S the number of patches of size 16 × 16, K number of iterations, and

constant λ1, λ2 ∈ (0, 1].
2: initialize: W (0) = 1

2561 where 1 ∈ R256×256 is the matrix of ones.
3: Compute: P ∈ R256×S matrix containing random patches of size 16× 16 from x

4: A = (I256 −W (0)(W (0))T )P , where I256 ∈ R256×256 is the identity matrix
5: for t = 1 to K do
6: W (t) = (W (t−1))TP

7: Ŵ
(t)
[i, j] =

{
W [i, j] |W [i, j]| ≤ λ1
0 otherwise

8: run the SVD decomposition on A(Ŵ
(t)
)T such that A(Ŵ

(t)
)T = UDV T .

9: W (t) = UV T

10: end for
11: x̂ = (W (K))T Proxλ2g(W

(K)x) ▷ Denoising step
12: return: x̂ ▷ Denoised image

Employing Algorithm 4, in Figure 7 we present some denoised images obtained by Eqs. (6), (8),
(10), which are compared with the outputs from BM3D, and Noise2Void. Since we are analyzing all
the regularizers under non-ideal scenarios due to noise, results in Figure 7 highlight the benefit of
having invex regularizers since the cleanest image is obtained by Eq. (6). In addition, to numerically
evaluate their performance we employ the structural similarity index measure (SSIM) by reporting
the SSIM map for each denoised image and its averaged value. Recall that SSIM is reported in the
range [0, 1] where 1 is the best achievable quality and 0 the worst. In the SSIM map small values of
SSIM appear as dark pixels. Thus, we conclude the best performance is achieved using the regularizer
in Equation (6) since it has the whitest SSIM maps (with highest SSIM values).
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Figure 7: Denoised image illustration for Eqs. (6),(8), (10) and the state-of the-arts BM3D and
Noise2Void. To evaluate the performance we employ the structural similarity index measure (SSIM)
by reporting the SSIM map for each denoised image and its averaged value. Recall that SSIM is
reported in the range [0, 1] where 1 is the best achievable quality and 0 the worst. In the SSIM map
small values of SSIM appear as dark pixels. Thus, we conclude the best performance is achieved
using the regularizer in Eq. (6) since it has the whitest SSIM maps.
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