
A Proof of Theorem 4.1

In this section, we shall provide the proof for Theorem 4.1. The rest of this section is organized as
follows. Appendix A.1 provides additional useful notations and definitions including but not limited to
CMDPs, value function, and distance metrics. Appendix A.2 introduces further assumptions, and A.3
introduces the preliminary of optimal transport. Then, we provide the proof pipeline of Theorem 4.1
in Appendix A.4 and postpone the auxiliary proof to Appendix A.5. Finally, we summarize all the
useful notations in Table 1.

A.1 Additional notation and definitions used in the proof

Before starting, let’s introduce some additional notations useful throughout the theoretical analysis.
For any discrete set X , we will denote the set of probability measures on X by ∆(X). For any
vector x ∈ RSA (resp. x ∈ RS or x ∈ RC) that constitutes certain values for each state-action pair
(resp. state or context), we use x(s, a) (resp. x(s) or x(c)) to denote the entry associated with the
(s, a) pair (resp state s or context c). We denote supp(ρ) as the support of any distribution ρ.

Target CMDPs. Throughout the proof, we shall focus on the set of CMDPs introduced in Assump-
tion 4.1. Moreover, without loss of generality, let the state space S = {1, 2, · · · , S} (resp. action
space A = {1, 2, · · · , A}) to be with finite cardinality S (resp. A). Without loss of generality, let the
immediate reward R(s, a, s) ∈ [0, 1− γ] for all (s, a) ∈ S ×A.

First, we introduce the following occupancy distributions associated with policy π and any CMDP
with the initial state distribution c ∼ ρ:

oπ(s; ρ) := (1− γ)

∞∑
t=0

γtP
(
st = s | c ∼ ρ;π

)
, (9a)

oπ(s, a; ρ) := (1− γ)

∞∑
t=0

γtP
(
st = s, at = a | c ∼ ρ;π

)
= oπ(s; ρ)π(a | s). (9b)

With this in mind, we introduce two important definitions in the proof,: the covering state-action
(resp. state) space by executing π with the initial state distribution c ∼ ρ defined as

C(ρ, π) = {(s, a) : oπ(s, a; ρ) > 0} , Cs(ρ, π) = {s : oπ(s; ρ) > 0} . (10)
The covering space represent the area that is possible to be visited by the policy π given the initial
state distribution.

Value function. Different from the value function defined by context distribution ρ, with abuse of
notation, we denote the value function Vs associated with a state s, a policy π and the target CMDPs
as

V π
s (s) = E

[∞∑
t=0

γtR(st, at, c
′)
∣∣ s0 = s, c = s;π

]
. (11)

For convenience, for any s ∈ S, we define ρs(c) := 1(c = s). Recalling that the target MDPs are
defined by p0(s | c) = 1(s = c), it is easily verified that for any policy π, the value function satisfies
the following properties:

∀s ∈ S : 0 ≤ V π
s (s) = V π(ρs) ≤ 1, (12a)

∀ρ ∈ ∆(C) ∈ ∆(S) : V π
s (ρ) = V π(ρ). (12b)

Distance metrics. Furthermore, for the specified target CMDPs, plugging in p0(s | c) = 1(s = c),
for any two contexts ci, cj ∈ C, the π-contextual-distance metric defined in context space C obeys

dπ(ci, cj) = Esi∼p0(·|ci),sj∼p0(·|cj)

[
dπci,cj (si, sj)

]
= dπsi,sj (si, sj), (13)

where si (resp. sj) is the corresponding initial state when the context are ci (resp. cj). With this
observation, we highlight that for the target CMDPs, the contextual π-bisimulation metric degrades
to π-bisimulation dπs (·, ·) [48] such that:

∀si, sj ∈ S : dπs (si, sj) := dπsi,sj (si, sj) = dπ(si, sj). (14)

The above result directly leads to that for any ρ, ρ′ ∈ ∆(C) ⊆ ∆(S),
Wdπ (ρ, ρ′) =Wdπ

s
(ρ, ρ′). (15)

16

A.2 Additional Assumptions in the proof

Besides the key properties of the target CMDPs introduced in Assumption 4.1, we shall introduce
some auxiliary assumptions for convenience as follows:

• Bounded environment. For the optimal policy π⋆ and any state s ∈ S, without loss of
generality, the minimum and maximum π-bisimulation distance between s and other states
satisfies

min
s′∈S

d⋆s (s, s
′)1(d⋆s (s, s

′) > 0) ≥ 1,
Dmax

2
≤ max

s′∈S
d⋆s (s, s

′) ≤ Dmax, (16)

for some universal positive constant Dmax.
• Deterministic environment. Without loss of generality, we suppose the transition kernel is

deterministic. Moreover, at any state s ∈ supp(ρk+1) \ supp(ρk), there are a fixed portion
of actions lead to the decreasing of the distance mins′∈ρk

d⋆s (s
′, s), i.e., for any transition

sample (st, at, st+1),

min
s′∈ρk

d⋆s (s
′, st+1) =

{
mins′∈ρk

d⋆s (s
′, st)− 1 with probability p

mins′∈ρk
d⋆s (s

′, st) + 1 otherwise.
(17)

• Closeness of the subsequent stages. Starting from any state s0 = t ∈ supp(ρk+1) \
supp(ρk), if the sample trajectory shall enter Cs(ρk, π⋆

k) before arriving at somewhere s
obeying d⋆s (s, t) = maxs∈S d⋆s (s, t). Then we suppose that the hitting point s is not far
from the initial distribution ρk of the previous stage k, namely

Es[d
⋆
s (s, t)] ≤ C1 min

s′∈ρk

d⋆s (s
′, t), (18)

for some universal constant C1 > 0.

We would like to note that these additional assumptions are useful for a concise proof to show the
main intuition and idea of our proposed algorithm GRADIENT. These are some general assumptions
without specific limitations. It is interesting to extend our main Theorem 4.1 to more general cases
which shall be the further work.

A.3 Preliminaries: optimal transport and random walk

In this subsection, we introduce several key properties/facts of optimal transport, value function, and
random walk, which play a crucial role in the proof of Theorem 4.1. The proofs for this subsection
are deferred to Appendix A.5.

Preliminaries of optimal transport. We first introduce an important fact of the optimization
problem in optimal transport. Suppose there exists two discrete sets X ,Y (possibly different). As it is
well-known, for any two distributions µ ∈ ∆(X), ν ∈ ∆(Y), 1-Wasserstein distance with any metric
d between µ and ν can be expressed as the optimal solution of the following linear programming
(Kantorovich duality) problem:

max
u,v

∑
x∈X

u(x)µ(x)−
∑
y∈Y

v(y)ν(y),

subject to ∀x ∈ X , y ∈ Y : u(x)− v(y) ≤ d(x, y),

0 ≤ u ≤ 1, 0 ≤ v ≤ 1. (19)
Note that, when X = Y = S, the resulting claim in (19) is equivalent to [48, 63, 64].

Controlling performance gap. Inspired by the above problem formulation, the difference of the
value function conditioned on two different states/state distribution can be controlled in the following
lemma:

Lemma A.1 For any s, t ∈ S and any policy π, we have
|V π

s (s)− V π
s (t)| ≤ dπs (s, t). (20)

In addition, for any two context distribution ρ1, ρ2 ∈ ∆(C) ∈ ∆(S), the performance gap associated
with any policy π obeys

|V π
s (ρ1)− V π

s (ρ2)| ≤ Wdπ (ρ1, ρ2). (21)

17

This fact connects the performance gap in RL and the Wasserstein distance between different state
distribution/contextual distribution, taking advantage of the Kantorovich duality form of the optimal
transport problem.

Definition and properties of random walk. Finally, we describe the following useful lemma
which is essential in proving the main part of Theorem 4.1 when the starting state is not in the
covering area of the optimal policy of the previous training stage

Lemma A.2 The process {Sn : n ≥ 1} is called a random walk if {Xi : i ≥ 1} are iid Bernoulli
distribution with p < 1 and Sn =

∑n
i=1 Xi. Starting from 0, the expectation of the stopping time N

of hitting any d > 0 or −Dmax and the probability pα of hitting d > 0 obeys:

E[N] ≤ max

{
Dmaxd ,

√
Dmax

(1− 2p) ∧ 1
d

}
, pα ≥ 1− 2d

√
Dmax

d+Dmax
. (22)

A.4 Proof of Theorem 4.1

With above preliminaries in hand, we are ready to embark on the proof for Theorem 4.1, which is
divided into multiple steps as follows.

Step 1: decomposing the performance gap of interest. To begin with, we decompose the term of
interest as follows:

V π⋆
k+1(ρk+1)− V π⋆

k(ρk+1)
(i)
= V

π⋆
k+1

s (ρk+1)− V
π⋆
k

s (ρk+1)

(ii)
= V π⋆

s (ρk+1)− V
π⋆
k

s (ρk+1)

= V π⋆

s (ρk+1)− V π⋆

s (ρk) + V π⋆

s (ρk)− V
π⋆
k

s (ρk+1)

(iii)

≤ Wd⋆(ρk+1, ρk) + V
π⋆
k

s (ρk)− V
π⋆
k

s (ρk+1), (23)

where (i) holds by the equivalence verified in (12b), (ii) follows from the value function of the
optimal policy π⋆ (covering the entire state-action space) is the same as that of π⋆

k+1 in the region
C(ρk+1, π

⋆
k+1), and (iii) comes from applying Lemma A.1 and the fact that π⋆ achieves the same

value function as π⋆
k in the region C(ρk, π⋆

k).

Step 2: controlling the second term in (23) in two cases. To proceed, it is observed that

∀(s, t) ∈ Cs(ρk, π⋆
k)× ρk+1 : V

π⋆
k

s (s)− V
π⋆
k

s (t) ≤ d⋆s (s, t) (24)

can directly leads to that (u, v) =
(
V

π⋆
k

s , V
π⋆
k

s

)
is a feasible solution to the Wasserstein distance

Wd⋆(ρk, ρk+1) dual formulation in (19), which yields

V
π⋆
k

s (ρk)− V
π⋆
k

s (ρk+1) =
∑

s∈Cs(ρk,π⋆
k)

V
π⋆
k

s (s)ρk(s)−
∑

s∈Cs(ρk+1,π⋆
k)

V
π⋆
k

s (s)ρk+1(s)

≤ Wd⋆
s
(ρk, ρk+1). (25)

As a result, we turn to show (24) instead of controlling V
π⋆
k

s (ρk) − V
π⋆
k

s (ρk+1). Towards this, we
start from considering V

π⋆
k

s (s) − V
π⋆
k

s (t) for any s ∈ ρk and t ∈ ρk+1 in two different cases: (i)
t ∈ Cs(ρk, π⋆

k); (ii) otherwise.

In the first case when t ∈ Cs(ρk, π⋆
k), since π⋆

k is the same as the optimal policy π⋆ in Cs(ρk, π⋆
k),

invoking Lemma A.1 directly yields

V
π⋆
k

s (s)− V
π⋆
k

s (t) = V π⋆

s (s)− V π⋆

s (t) ≤ d⋆s (s, t). (26)

Step 3: focusing on case (ii). Then, we shall focus on the other case when

t ∈ supp(ρk+1) \ Cs(ρk, π⋆
k). (27)

18

Invoking Lemma A.2, without loss of generality, since in the stage k, we can’t visit the region outside
of Cs(ρk, π⋆

k), we can define π⋆
k(· | s) to be uniformly random in the unseen region, i.e.,

∀a ∈ A, s ∈ supp(ρk+1) \ Cs(ρk, π⋆
k) : π⋆

k(a | s) =
1

A
. (28)

Then we define pg as the probability of the benign events B when we can hit some point sb at the
boundary of the region Cs(ρk, π⋆

k) visited by the previous stage k before arriving at some limit point
slimit := argmaxs′∈S d⋆s (t, s

′). Invoking the assumption of the target CMDPs in (17), combind with
the policy defined in (28), we observe that applying Lemma A.2 leads to

pg ≥ 1− 2d⋆s (t, sb)
√
Dmax

d⋆s (t, sb) +Dmax
≥ 1− 2d⋆s (t, sb)√

Dmax

≥ 1− 2C1d
⋆
s (t, s)√

Dmax

, (29)

where the last inequality holds by the assumption in (16).

To continue, we express the value function at state t as

V
π⋆
k

s (t) ≥ pg

(
EB [

N∑
t=0

0 · γt] + γNV
π⋆
k

s (sb)

)
− (1− pg) = γNpgV

π⋆
k

s (sb)− (1− pg). (30)

Similarly, we have

V
π⋆
k

s (s) ≤ (1− pg) + pgE[
N∑
t=0

(1− γ)γt + γNV
π⋆
k

s (sN)]. (31)

We shall control the performance gap in two cases separately:

• When V
π⋆
k

s (sb) ≥ V
π⋆
k

s (sN). we have

V
π⋆
k

s (s)− V
π⋆
k

s (t) ≤ V
π⋆
k

s (s)− γNpgV
π⋆
k

s (s′) + (1− pg)

≤ pgE[
N∑
t=0

(1− γ)γt + γNV
π⋆
k

s (sN)]− γNpgV
π⋆
k

s (sb) + 2(1− pg)

≤ pgE[
N∑
t=0

(1− γ)γt] + 2(1− pg). (32)

• When V
π⋆
k

s (sb) < V
π⋆
k

s (sN), we have

V
π⋆
k

s (s)− V
π⋆
k

s (t) ≤ pgE[
N∑
t=0

(1− γ)γt + γNV
π⋆
k

s (sN)]− γNpgV
π⋆
k

s (sb) + 2(1− pg)

≤ pgE[
N∑
t=0

(1− γ)γt + γN (N + V
π⋆
k

s (s))]− γNpgV
π⋆
k

s (sb) + 2(1− pg)

≤ pgE

[
N∑
t=0

(1− γ)γt + γN
(
N + V

π⋆
k

s (sb) + (C1 + 1)d⋆(s, t)
)]

− γNpgV
π⋆
k

s (sb) + 2(1− pg)

≤ pg

[
N∑
t=0

(1− γ)γt + γN
(
N + (C1 + 1)d⋆(s, t)

)]
+ 2(1− pg). (33)

19

Summing up the above two cases yields, for all s ∈ C(ρk, π⋆
k), t ∈ supp(ρk+1) \ C(ρk, π⋆

k),

V
π⋆
k

s (s)− V
π⋆
k

s (t)

≤ pg

[
N∑
t=0

(1− γ)γt + γN
(
N + (C1 + 1)d⋆(s, t)

)]
+ 2(1− pg)

≤ pgEB [N] + pg(C1 + 1)d⋆(s, t) + 2(1− pg)

(i)

≤ max

{
Dmaxd

⋆(s, t) ,

√
Dmax

(1− 2p) ∧ 1
d⋆(s, t)

}
+ (C1 + 1)d⋆(s, t) +

4d⋆(s, t)√
Dmax

≤

(
max

{
Dmax ,

√
Dmax

(1− 2p) ∧ 1

}
+ (C1 + 1) +

4√
Dmax

)
d⋆(s, t)

≤ cmodeld
⋆(s, t) (34)

where (i) follows from Lemma A.2, and the last inequality holds by choosing

cmodel :=

(
max

{
Dmax ,

√
Dmax

(1− 2p) ∧ 1

}
+ (C1 + 1) +

4√
Dmax

)

as a large enough problem-dependent parameter.

Step 4: summing up the results. Combining the results (26) and (34) in two cases, we directly
arrive at, for all s ∈ C(ρk, π⋆

k), t ∈ supp(ρk+1), the following fact is satisfied

V
π⋆
k

s (s)− V
π⋆
k

s (t) ≤ cmodeld
⋆(s, t),

→ 1

cmodel
V

π⋆
k

s (s)− 1

cmodel
V

π⋆
k

s (t) ≤ d⋆(s, t). (35)

We observe that (u, v) =
(

1
cmodel

V
π⋆
k

s , 1
cmodel

V
π⋆
k

s

)
is a feasible solution to the Wasserstein distance

Wd⋆
s
(ρk, ρk+1) dual formulation in (19), we achieve

V
π⋆
k

s (ρk)− V
π⋆
k

s (ρk+1) ≤ cmodelWd⋆
s
(ρk, ρk+1) . (36)

Finally, plugging (36) into (23) complete the proof by

V π⋆
k+1(ρk+1)− V π⋆

k(ρk+1) ≤ (1 + cmodel)Wd⋆ (ρk, ρk+1) . (37)

A.5 Proof of auxiliary lemmas

Proof of Lemma A.1. As it is well known that V π
s (s) is the fixed point of the Bellman operator

T (V, π) := Ea∼π(· | s)[R(s, a, s) + γ
∑

s′ P (s′ | s, a, s)V]. In addition, dπs is the fixed point of the
operator [48]

F(d)(s, t) :=
∣∣Ea∼π(· | s)[R(s, a, s)− Ea∼π(· | t)[R(t, a, t)

∣∣
+ γWd

(
Ea∼π(· | t)[P (· | s, a, s)],Ea∼π(· | t)[P (· | t, a)]

)
. (38)

Armed with above facts, initializing V π
s,0 = 0 and dπs,0 = 0, the update rules of V π

s,n+1 and dπs,n+1 at
the (n+ 1)-th iteration are defined as

V π
s,n+1 = T (V π

s,n, π),

dπs,n+1 = F(dπs,n)(s, t). (39)

20

With this in mind, for any s, t ∈ S, we arrive at,∣∣V π
s,n+1(s)− V π

s,n+1(t)
∣∣

=

∣∣∣∣∣Ea∼π(· | s)

[
R(s, a, s) + γ

∑
s′

P (s′ | s, a, s)V π
s,n

]

− Ea∼π(· | t)

[
R(t, a, t) + γ

∑
s′

P (s′ | t, a, t)V π
s,n

] ∣∣∣∣∣
≤
∣∣Ea∼π(· | s)R(s, a, s)− Ea∼π(· | t)R(t, a, t)

∣∣+ γ

∣∣∣∣∣∑
s′

P (s′ | s, a, s)V π
s,n −

∑
s′

P (s′ | t, a, t)V π
s,n

∣∣∣∣∣
(i)

≤
∣∣Ea∼π(· | s)R(s, a, s)− Ea∼π(· | t)R(t, a, t)

∣∣
+ γWdπ

s,n

(
Ea∼π(· | s)[P (s′ | s, a, s)],Ea∼π(· | t)[P (s′ | t, a, t)]

)
= F(dπs,n)(s, t) = dπs,n+1, (40)

where (i) holds by (u, v) =
(
V π
s,n, V

π
s,n

)
is a feasible solution to the Wasserstein distance

Wdπ
s,n

(
Ea∼π(· | s)[P (s′ | s, a, s)],Ea∼π(· | t)[P (s′ | t, a, t)]

)
dual formulation in (19).

As a result, we have

∀n = 1, 2, · · · :
∣∣V π

s,n+1(s)− V π
s,n+1(t)

∣∣ ≤ dπs,n+1, (41)

which directly yields

∀s, t ∈ S : |V π
s (s)− V π

s (t)| ≤ dπs (s, t). (42)

The above fact indicates that for any two distribution ρ, ρ′ ∈ ∆(S),

V π
s (ρk)− V π

s (ρk+1) =
∑
s∈S

V π
s (s)ρ(s)−

∑
s∈S

V π
s (s)ρ′(s) ≤ Wdπ

s
(ρ, ρ′) =Wdπ (ρ, ρ′), (43)

where the penultimate inequality arises from (u, v) =
(
V π
s , V π

s

)
is a feasible solution to the Wasser-

stein distanceWdπ
s
(ρ, ρ′) dual formulation in (19), and the last equality holds by (15).

Proof of Lemma A.2 Before starting, we denote pα as the probability that stopping at d and N as
the stopping time. Then we consider the terms of interest in two cases. In the first case when p = 1

2 ,
invoking the facts in [65] directly leads to

N = Dmaxd, pα = 1− d

d+Dmax
. (44)

So the remainder of the proof will focus on the other case when p ̸= 1
2 . Following the proof in [65],

by basic calculus, it is easily verified that the following two centered terms are all martingales

Sn − (2p− 1)n, S2
n + 2(1− 2p)Sn + (2p− 1)2n2 + 4p(p− 1)n. (45)

In continue, it can also be verified that

E[SN − (2p− 1)N] = pαd− (1− pα)Dmax = 0, (46)

which leads to

pα =
Dmax + (2p− 1)N

d+Dmax
. (47)

Observing that

E[S2
n + 2(1− 2p)Sn + (2p− 1)2n2 + 4p(p− 1)n] = 0 (48)

yields

(2p− 1)2N2 + [(Dmax − d)(1− 2p)− (sp− 1)2 − 1]N +Dmaxd = 0, (49)

21

and then implies

N ≤

√
Dmaxd

1− 2p
≤

√
Dmax

1− 2p
d. (50)

Plugging in (50) into (47) leads to

pα ≥
Dmax −

√
Dmaxd

d+Dmax
= 1−

√
Dmaxd+ d

d+Dmax
≥ 1− 2d

√
Dmax

d+Dmax
, (51)

which follows from (16) in Appendix A.2.

Finally, summing up the two cases, we arrive at

N ≤ max

{
Dmaxd ,

√
Dmax

(1− 2p) ∧ 1
d

}
, pα ≥ 1− 2d

√
Dmax

d+Dmax
. (52)

A.6 Table of notations

We summarize useful notations in the proof here.

Table 1: Notations
Symbol Definition

∆(X) the set of probability measures on X
supp(ρ) support of distribution ρ
oπ(s; ρ) (1− γ)

∑∞
t=0 γ

tP
(
st = s | c ∼ ρ;π

)
oπ(s, a; ρ) oπ(s; ρ)π(a | s)
Cs(ρ, π) {s : oπ(s; ρ) > 0}
C(ρ, π) {(s, a) : oπ(s, a; ρ) > 0}
V π
s (s) E

[∑∞
t=0 γ

tR(st, at, c
′)
∣∣ s0 = s, c = s;π

]
d⋆s bisimulation distance dπ

∗

s under the optimal policy π∗

a ∧ b min(a, b)

22

B Experiment Details

In this section, we discuss details that could not be included in the main paper due to space limitations.
This includes hyperaparameters of the algorithms, additional details about the environment, and
visualizations that assist the qualitative analysis. The experiments were conducted on a desktop
computer with an Intel Core i7-8700K CPU @ 3.70GHz 12-Core Processor, an Nvidia RTX 2080Ti
graphics card and 64GB of RAM. All evaluation results are based on 30 episodes over 3 random seeds.

B.1 Maze

We show the observation, action and context space in Table 2. The state, action and context space
are discrete. For this toy-like example, we fix the maze layout throughout. The context is the initial
position. The observation is the flattened value representation of the maze, including the goal, the
current position of the agent, and the layout.

Table 2: Maze Environment Specifications
Dim. Discrete Observation Space

0-120 Cell Type:
{0 : free, 1 : wall, 2 : agent, 3 : goal}

Index Discrete Action Space

0 Go north
1 Go south
2 Go west
3 Go east

Index Discrete Context Space

0-50 Initial position

Table 3: Maze Hyperparameters
PPO Learner value

gamma 0.99
learning_rate 0.0001
n_steps 100
ent_coef 0.1
total_timesteps 100000

GRADIENT hyperparameters value

reward threshold Ḡ -15

For this task, we use the PPO implementation in the StableBaseline3 library [54].
We list the hyperparameters in the Table 3 (set to the default value if not mentioned in
the table). We conduct hyperparameter grid search mainly on the following hyperparam-
eters: (learning_rate, ent_coef, n_steps) ∈ {0.0001, 0.0003, 0.001} × {0.001, 0.01, 0.1} ×
{10, 100, 200}
We visualize the intermediate task distributions generated by GRADIENT in Figure 8 with a ∆α =
0.05. For ∆α = 0.1 and 0.2 are in the same figure as well (just with different gaps between two
consecutive α). The π-contextual-distance is computed using the A* path finding algorithm. Although
it is not always realistic to have access to the optimal policy, this toy example is just to show the
effectiveness of an appropriate contextual distance metric. More choices of the contextual distance
could be explored in the future work.

B.2 PointMass

In PointMass, the agent needs to navigate a pointmass through a wall with a small gap at an off-center
position to reach the goal. The context is a 2-dimension vector representing the width and position of
the gap on the wall. Following the setting in the original SPDL paper [8], the target distribution is an
isotropic Gaussian distribution centered at [2.5, 0.5] with a negligible variance [4×10−3, 3.75×10−3]
(which is effectively a point as shown in Figure 5a). The source distribution is an isotropic Gaussian
distribution centered at [0, 4.25] with a variance of [2, 1.875]. We show the observation, action and
context space in Table 4.

For the baseline implantation, we use and modify the code base provided in [8]. We also use
the best hyperparameters found by [8]. For ALP-GMM, they conduct hyperparameter grid search
over (pRAND , nROLLOUT , sBUFFER) ∈ {0.1, 0.2, 0.3} × {50, 100, 200} × {500, 1000, 2000}. For
Goal-GAN, they conduct grid search over (δNOISE , nROLLOUT , pSUCCESS) ∈ {0.025, 0.05, 0.1} ×
{50, 100, 200} × {0.1, 0.2, 0.3}. Due to unknown issue, the scale of episodic reward we get (about
0-100) is different from what is shown in [8] (0-10), nevertheless the trend of the training curves is

23

Figure 8: Intermediate task distributions generated by GRADIENT.

very similar. We visualize the context distribution of ALP-GMM and Goal-GAN in Figure 9. From
this figure, we can reason why they underform GRADIENT and SPDL: since they cannot specify the
target distribution, it is very difficult for them to learn to navigate through a narrow door at a specific
position.

Table 4: PointMass Environment Specifications
Dim. Continuous Observation Space range

0 x position [−4, 4]
1 x velocity [− inf, inf]
2 y position [−4, 4]
3 y velocity [− inf, inf]

Dim. Continuous Action Space

0 x force [−10, 10]
1 y force [−10, 10]
Dim. Continuous Context Space

0 gate position [−4, 4]
1 gate width [0.5, 8]

B.3 FetchPush

In FetchPush [58], the objective is to use the gripper to push the box to a goal position. The observation
space is a 28-dimension vector, including information about the goal. The context is a 2-dimension
vector representing the goal position on a surface. The target distribution is a uniform distribution over
the circumference of a half-circle (Figure 5b). The source distribution is a uniform distribution over a
square region centered at the box position, excluding the region within a certain radius of the object.
We use this experiment to highlight the importance of the capability to handle arbitrary distributions
rather than only the parametric Gaussian distributions. Since SPDL can only deal with parametric
Gaussian distribution, we first fit the target and the source distribution with two Gaussian distribu-
tions and feed them into the baseline algorithms. The source Gaussian is [1.14655655, 0.74819359]
with a variance array of [[0.0141083, 0.00055327], [0.00055327, 0.0149638]], and the target Gaus-
sian is [1.33561676, 0.74819359] with a variance array of [[8.89519060e − 03,−1.34467507e −
18], [−1.34467507e− 18, 4.59090909e− 02]]. We visualize the context distribution of ALP-GMM
and Goal-GAN in Figure 10

24

(a) ALP-GMM context visualization

(b) Goal-GAN context visualization

Figure 9: Visualizations of context distributions and curricula in PointMass. The contexts are taken
from environment steps at 10k, 50k, 100k, 200k, and 300k.

(a) ALP-GMM context visualization

(b) Goal-GAN context visualization

(c) WB-SPDL context visualization

Figure 10: Visualizations of context distributions and curricula in FetchPush. The contexts are taken
from environment steps at 5k, 50k, 100k, 250k, and 500k for ALP-GMM and Goal-GAN, 100, 500,
1000, 1200, 1500 for WB-SPDL.

25

Table 5: PointMass Hyperparameters
SAC Learner value

train_freq 5
buffer_size 10000
gamma 0.95
learning_rate 0.0003
learning_starts 500
batch_size 64
net architecture [64, 64]
activation_fn Tanh

SPDL hyperparameter value

α offset 25 iterations
ζ 1.1
KL threshold 8000
maximum KL 0.05
steps per iteration 2048

ALP-GMM hyperparameter value

random task ratio 0.2
fit rate (number of episodes between two fit of GMM) 200
max size (maximal number of episodes for computing ALP) 1000

GOAL-GAN hyperparameter value

state noise level 0.05
fit rate (number of episodes between two fit of GAN) 25
probability to sample state with noise 0.05

GRADIENT hyperparameter value

∆α 0.1
Reward threshold Ḡ 40

Table 6: FetchPush Environment Specifications
Dim. Continuous Observation Space range

0-2 grip_pos [− inf, inf]
3-5 object_pos [− inf, inf]
6-8 object_rel_pos [− inf, inf]
9-10 gripper_state [− inf, inf]
11-13 object_rot [− inf, inf]
14-16 object_velp [− inf, inf]
17-19 object_velr [− inf, inf]
20-22 grip_velp [− inf, inf]
23-24 gripper_vel [− inf, inf]
25-27 goal_pos [− inf, inf]

Index Continuous Action Space

0-2 pos_ctrl [−1, 1]
3 gripper_ctrl [−1, 1]
Dim. Continuous Context Space

0 goal_x_pos [0.8, 1.5]
1 goal_y_pos [0.4, 1.1]

26

Table 7: FetchPush Hyperparameters
SAC Learner value

train_freq 1
buffer_size 100000
gamma 0.99
learning_rate 0.001
learning_starts 1000
batch_size 256
net architecture [64, 64, 64]
activation_fn Tanh

SPDL hyperparameter value

α offset 0 iterations
ζ 1.0
KL threshold 20
maximum KL 0.05
steps per iteration 5000

ALP-GMM hyperparameter value

random task ratio 0.3
fit rate (number of episodes between two fit of GMM) 200
max size (maximal number of episodes for computing ALP) 1000

GOAL-GAN hyperparameter value

state noise level 0.1
fit rate (number of episodes between two fit of GAN) 200
probability to sample state with noise 0.3

GRADIENT hyperparameter value

∆α 0.2
Reward threshold Ḡ -25

27

C Algorithm Details

C.1 Exact Computation of π-contextual-distance for Maze

For the maze, we compute the exact π-contextual-distance using dynamic programming. We itera-
tively compute the π-contextual-distance (represented by a matrix) until the maximum difference in
metric estimate between successive iterations is smaller than a tolerance. Due the Assumption 4.1,
the computation of π-contextual-distance is largely simplified (since the context space is essentially
overlapped with the state space). We present the pseudocode as follows:

Algorithm 3: Compute the exact metric when S = C
Input: environment env, context space size n, tolerance ϵtol, discounting factor γ, agent policy
π

M← 0n×n;// initialize with zero matrix of n by n

δM = 2ϵtol;
while δM > ϵtol do

M′ ← 0n×n;
for s1 in 0, 1, 2, . . . , n− 1 do

for s2 in 0, 1, 2, . . . , n− 1 do
a1 ← π(s1), a2 ← π(s2);
s′1, r1 ← env.step(s1, a1)

s′2, r2 ← env.step(s2, a2)

M′[s1, s2]← |r1 − r2|+ γM[s′1, s
′
2]

δM ← max |M′ −M|
M←M′

Add small offset to the diagonal terms of M to avoid computation issues;
M← M

maxM// normalize to have the maximum value of 1
Output: Contextual Distance Metric M

C.2 Learning Embeddings to Encode Non-Euclidean Distance

Due to the computation complexity of the free-support Wasserstein barycenters, it is generally
difficult to compute them, especially for non-euclidean cost metric. There are some attempts to use
neural networks and stochastic gradient descent to solve for the barycenters approximately [60].
Another possible route is to learn embeddings such that the euclidean interpolation in the latent
space assembles the interpolation in the non-euclidean original space. In the fixed-support setting,
Deep Wasserstein Embedding (DWE) [61] uses siamese networks to learn an latent space where the
euclidean distance approximates the Wasserstein distance in the original space. We could adopt a
similar method but for the free-support, i.e., continuous context space.

Let the encoder be ϵ(·) and decoder be δ(·), given pairs of contexts {ci1, ci2}i=1,...,N and their
contextual distance {d(ci1, ci2)}i=1,...,N , the global objective funtion is to minimize

min
ϵ,δ

∑
i

∥∥∥∥ϵ(ci1)− ϵ(ci2)∥2 − d(ci1, c
i
2)
∥∥∥2 + λ

∑
k=1,2

∥δ(ϵ(cik))− cik∥2 (53)

The first term is the loss for distance embedding, and the second term is for reconstruction. Other
regularization could be added to improve the robustness. After obtaining the trained encoder and
decoder, we can first encode the source and target contexts to the latent space, compute the Wasserstein
barycenter in the latent space and finally decode the latent barycenter back to the original context
space. The main algorithm GRADIENT with distance embedding is shown in Algorithm 4.

28

Algorithm 4: GRADIENT with Distance Embedding
Input: Source task distribution µ(c), target task distribution ν(c), interpolation factor ∆α,
reward threshold Ḡ.

Initialize the agent policy π;
α← 0;
for k in 0, 1, 2, ...,K do

if k == 0 then
ρ(c)← µ(c);

else
ρ(c)← δ(ComputeBarycenter(ϵ(µ), ϵ(ν), α, l2));

{ci, Ri}i=1,...,M ← Optimize π in the task distribution ρ(c) until G > Ḡ (potentially with
some exploration noise for c), and return recent M sampled context ci and corresponding
episodic rewards Ri;

Estimate Jπ(c) from {ci, Ri}i=1,...,M using Gaussian Process;
// Use the absolute difference between episodic reward to define the

distance metric as an example
Define dπ(ci, cj) := |Jπ(ci)− Jπ(cj)|;
Encoder ϵ, Decoder δ ← EmbedDistanceMetric(dπ); // Algorithm 5
α← α+∆α;
µ(c)← ρ(c);

Output: Agent policy π

Algorithm 5: EmbedDistanceMetric
Input: contextual distance metric d.
Initialize encoder ϵ and decoder δ;
Uniformly sample pairs of contexts from the context range {ci1, ci2}i=1,...,N ; // This step is

cheap since there is no interaction with environment required.
Compute {d(ci1, ci2)}i=1,...,N ;
Train encoder and decoder by minimizing (53);
Output: Encoder ϵ, Decoder δ

We show an example of using Algorithm 4. Here we consider a classical U-shaped maze with
continuous state, action and context space. We assume that the source and target distributions are
two Gaussian distributions at the two ends of the maze. Due to the existence of the obstacle in the
middle, it is not appropriate to use the l2 distance as the contextual distance. In this case, we use
dπ(c1, c2) := |Jπ(c1)− Jπ(c2)|.
The interpolation results are shown in Figure 11. At the first a few stages, since the agent does not
have a good policy as well as a good estimate of the episodic reward, the interpolation results are not
very good. However, since α is small, the barycenters are relatively close to the source distribution, so
GRADIENT does not generate too unreasonable tasks. With the learning progressing, the estimates
become better and better and therefore produces much better interpolation results.

29

(a) Stage 1 (b) Stage 2

(c) Stage 3 (d) Stage 4

(e) Stage 5 (f) Stage 6

(g) Stage 7 (h) Stage 8

(i) Stage 9 (j) Stage 10

Figure 11: U-Maze interpolation results. The original source and target distributions are two Gaussian
centered at [0, 0] and [0, 8]. The color of the heat map represents the estimate of Jπ(c). The colored
circle represent the Wasserstein interpolation. More specifically, the circles with cyan to purple color
represent the interpolation results from the current source to target with α = [0, 1]. The yellow circles
highlight the barycenter corresponding to the current stage.

30

	Introduction
	Related Work
	Preliminary
	Contextual Markov Decision Process
	Optimal Transport

	Curriculum Reinforcement Learning using Optimal Transport
	Problem Formulation
	Contextual Distance Metrics
	Algorithms
	Theoretical Analysis

	Experiments
	Can GRADIENT Handle Discrete Contexts and What is the Effect of ?
	How Does GRADIENT Perform When the Distributions Are Gaussian?
	How Does GRADIENT Perform When the Distributions Are NOT Gaussian?
	Beyond Euclidean Distance Metric: Using Distance Embedding for Continuous Spaces

	Conclusion and Limitation
	Proof of Theorem 4.1
	Additional notation and definitions used in the proof
	Additional Assumptions in the proof
	Preliminaries: optimal transport and random walk
	Proof of Theorem 4.1
	Proof of auxiliary lemmas
	Table of notations

	Experiment Details
	Maze
	PointMass
	FetchPush

	Algorithm Details
	Exact Computation of -contextual-distance for Maze
	Learning Embeddings to Encode Non-Euclidean Distance

