
Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on how to
answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or [N/A] . You are
strongly encouraged to include a justification to your answer, either by referencing the appropriate section of
your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the Checklist
section does not count towards the page limit. In your paper, please delete this instructions block and only keep
the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contribu-

tions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Our work is tied to the usage of Transform-

ers, we remind it in the conclusions.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A] We don’t have theoretical

results.
(b) Did you include complete proofs of all theoretical results? [N/A] We don’t have theorems.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results (either in the supplemental material or as a URL)? [TODO]We will provide the code if
the paper is accepted.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)?
[Yes] See Section 5 and Appendix A.2.

(c) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes] Yes, all figures show the standard deviation (shaded regions).

(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs,
internal cluster, or cloud provider)? [Yes] See Appendix A.2.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We used AdapterHub, that is

cited in experiments and appendix sections.
(b) Did you mention the license of the assets? [Yes] Yes, in Appendix A.3.
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
(d) Did you discuss whether and how consent was obtained from people whose data you’re us-

ing/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable informa-

tion or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?
[N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB)
approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? [N/A]
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A Memory Efficient Continual Learning with Transformers: Appendix

A.1 Related work on CL approaches, distillation and transferability

Continual Learning (CL). Existing methods for CL can be roughly categorized as follows: (1) Replay-
based methods [34, 48, 11, 8, 60] retain some training data of old tasks and use them in learning a new task
to circumvent the issue of catastrophic forgetting (CF); (2) Regularization-based methods [27, 2, 23] add a
regularization term to the loss to consolidate previous knowledge when learning a new task; (3) Gradient-
based methods [68, 1] ensure the gradient updates occur only in the orthogonal direction to the input of old
tasks and thus will not affect old tasks. Recently, some studies use pre-trained models for class incremental
learning [26, 21]; (4) Parameter isolation-based methods [25, 62] allocate model parameters dedicated to different
tasks and mask them out when learning a new task; (5) Meta-learning-based methods, which directly optimize
the knowledge transfer among tasks [47, 37] or learn robust data representations [24, 60].

Distillation for CL. Knowledge distillation refers to the process of transferring the knowledge from a large
bulky model or a set of models to a single smaller model that can be practically deployed under real-world
constraints. Essentially, it is a form of model compression that was first proposed by [5] and used by [17] to
preserve the output of a complex ensemble of networks when adopting a simpler network for more efficient
deployment. The idea is adopted in CL and incremental learning domain to maintain the responses of the network
unchanged on the old tasks whilst updating it with new training samples in different ways [52, 7, 31, 70]. [52]
propose an end-to-end learning framework where the representation and the classifier are learned jointly without
storing any of the original training samples. [31] distill previous knowledge directly from the last trained model.
[70] propose to use the current model to distill knowledge from all previous model snapshots, of which a pruned
version is saved. [51] use distillation to consolidate the network after each task has been learned and [6] leverage
knowledge distillation for retaining past experience.

We inspired from the idea proposed by Zhang et al. [69] where two individual image classification models
trained on image data of two distinct set of classes (old classes and new classes) are consolidated into one single
model that can classify all classes. The training objective for consolidation is defined as:

min
⇥

1
U

X

xi2U

Ldd(yi, ŷi) (5)

where U denotes the unlabeled auxiliary training data and the double distillation loss Ldd is defined as:

Ldd(yi, ŷi) =
1
t

tX

j=1

(yj � ŷj)2 (6)

in which yj is the logit produced by the consolidated model for the j-th class. In our work, we adopt the idea of
model consolidation and use it for incremental text classification. In our setting, we leverage the pre-trained
model, keep it fixed, and only use Adapters to transfer knowledge from old tasks to the new tasks and train one
Adapter that can perform well on all classification tasks. Our main goal is to use the advantage of knowledge
transfer between tasks with distillation. So we also use transferability estimation methods to select the Adapters
that needs to be distilled. By enhancing the power of distillation, we achieve the same performance with
state-of-the-art methods while keeping the number of model parameters much smaller.

Task Transferability. Automatically selecting intermediate tasks that yield transfer gains is critical when
considering the increasing availability of tasks and models. There are a number of works that explores task
transferability in NLP [42, 32, 59, 45, 44]. Poth et al. [43] present a large-scale study on Adapter-based sequential
fine-tuning. Given multiple source and target task pairs (s,t), they first train an Adapter on s, then fine-tune the
trained Adapter on t and show the relative transfer gains across the different combinations. They use different
methods for intermediate task selection, and LEEP [36] is one of the methods that they used in this work to
measure transferability and it is consolidated in NLP domain. TransRate [22] is a very recent work and it is used
with image classification tasks in the original work. To the best of our knowledge, we use TransRate for the first
time in NLP domain. Our work is quite different from what is proposed in the literature. We focus on selecting
the best representation from a pool of representations (trained Adapters) for model consolidation, without the
necessity of computationally expensive additional approach. We use proxy estimators, LEEP and TransRate, that
evaluate the transferability of pre-trained models towards a target task without explicit training on all potential
candidates.

A.2 ADA algorithm

The visual representation of ADA is shown in Figure 7.
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Figure 7: ADA workflow.

A.3 Datasets and Experimental Setup

Datasets. Arxiv papers dataset contains the abstract and the corresponding subjects of 55,840 papers in the
computer science field from Arxiv.org. There are 54 subjects in total and each paper can cover multiple subjects.
In our work each of these subjects will represent a different task for the classifier where the target is to predict
corresponding subjects of an academic paper according to the content of the abstract. Reuters consists of over
800,000 manually categorized newswire stories made available by Reuters Ltd for research purposes. Multiple
topics can be assigned to each newswire story and there are 103 topics in total. For Wiki-30K, a set of tags for the
English Wikipedia was gathered. Starting with a set of more than 2 million articles from the English Wikipedia
on April 2009, the tag information for each of these articles was retrieved from the social bookmarking site
Delicious. Only the articles annotated by at least 10 users in Delicious were preserved. As a result, a dataset with
20,764 tagged Wikipedia articles was generated. There are 29,947 labels in this dataset. Both CIFAR100 [28]
and MiniImageNet [49] consist of 60000 colour images in 100 classes, with 600 images per class.

Setup. We use Adam as optimizer with the batch size of 8. For learning rate, we select best from
{0.00005, 0.0001, 0.0005, 0.001} after observing the results on the first five tasks.
We tune the regularization coefficient of EWC by grid search in {0, 1, 10, 100, 1000}.

As computation environment, we used Amazon G4dn instances that provide up to 8 NVIDIA T4 GPUs, 96
vCPUs, 100 Gbps networking, and 1.8 TB local NVMe-based SSD storage and are also available as bare metal
instances.

A.4 Adapter Architecture

Architecture. Figure below shows the Adapter architecture and it’s integration with transformer. In [20],
they add the adapter module twice to each Transformer layer: after the projection following multi-headed
attention and after the two feed-forward layers. To limit the number of parameters, a bottleneck architecture
is proposed. The adapters first project the original d-dimensional features into a smaller dimension, m, apply
a non-linearity, then project back to d dimensions. The total number of parameters added per layer, including
biases, is 2md+ d+m. By setting m ⌧ d, the number of parameters added per task is limited.

Vision Adapters. One other contribution of this work is using Adapters approach with vision Transformers for
the first time on sequential image classification tasks, validating that Adapters work with vision Transformers
and show that ADA can achieve predictive performance on-par with AdapterFusion. We implement vision
Transformer Adapters in AdapterHub [40]1 (that has Apache License, Version 2.0). As in AdapterBERT [20],
we insert a 2-layer fully-connected network in each Transformer layer of ViT [13] and DeiT [55] is built upon
the ViT architecture, so an Adapter is added in the same way.

A.5 Trainable parameters for different models

The tables below reports the number of parameters used for baselines and ADA in our experiments. We reported
all the cases for different models: BERTbase, RoBERTabase and DistilBERTbase. We don’t add the head size to
the table, since it’s very small and same for all the methods.

1
https://github.com/Adapter-Hub/adapter-transformers
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Figure 8: Left shows AdapterBERT [20] in a BERT transformer layer, and middle shows the Adapter
architecture. Right shows our Adapter implementation in a ViT [13] transformer layer. As in
AdapterBERT, we added an Adapter before layer norm and feed-forward layers (MLP).

Table 1: The number of all parameters and those used for training and inference as well as the model
size of methods for BERTbase. K is the number of Adapters in the pool, and F is the number of
fused Adapters (it is between 2 and number of tasks). For the Adapters F = 1.

Fine-Tuning
Trainable Inference Total Total (Size)

Task = {1, 10, 30, 60} 110 M 110 M 110 M 440 MB

Adapters & AdapterFusion
Trainable Inference Total Total (Size)

Task = 1 1.8 M 111.8 M 111.8 M 447.2 MB
Task = 10 1.8 M 110 + (F⇥1.8) M 128 M 512 MB
Task = 30 1.8 M 110 + (F⇥1.8) M 164 M 656 MB
Task = 60 1.8 M 110 + (F⇥1.8) M 218 M 872 MB

ADA
Trainable Inference Total Total (Size)

Task = 1 1.8 M 111.8 M 111.8 M 447.2 MB
Task = {10, 30, 60} 2⇥1.8 M 111.8 M 110 + (K+1)⇥1.8 M 440 + (K+1)⇥7.2 MB

Table 2: The number of all parameters and those used for training and inference as well as the model
size of methods for RoBERTabase.

Fine-Tuning
Trainable Inference Total Total (Size)

Task = {1, 10, 30, 60} 125 M 125 M 125 M 500 MB

Adapters & AdapterFusion
Trainable Inference Total Total (Size)

Task = 1 1.8 M 126.8 M 126.8 M 507.2 MB
Task = 10 1.8 M 125 + (F⇥1.8) M 143 M 584 MB
Task = 30 1.8 M 125 + (F⇥1.8) M 179 M 716 MB
Task = 60 1.8 M 125 + (F⇥1.8) M 233 M 932 MB

ADA
Trainable Inference Total Total (Size)

Task = 1 1.8 M 126.8 M 126.8 M 507.2 MB
Task = {10, 30, 60} 2⇥1.8 M 126.8 M 125 + (K+1)⇥1.8 M 500 + (K+1)⇥7.2 MB
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Table 3: The number of all parameters and those used for training and inference as well as the model
size of methods for DistilBERTbase.

Fine-Tuning
Trainable Inference Total Total (Size)

Task = {1, 10, 30, 60} 66 M 66 M 66 M 264 MB

Adapters & AdapterFusion
Trainable Inference Total Total (Size)

Task = 1 0.9 M 66.9 M 66.9 M 267.6 MB
Task = 10 0.9 M 66 + (F⇥0.9) M 75 M 300 MB
Task = 30 0.9 M 66 + (F⇥0.9) M 93 M 372 MB
Task = 60 0.9 M 66 + (F⇥0.9) M 120 M 480 MB

ADA
Trainable Inference Total Total (Size)

Task = 1 0.9 M 66.9 M 66.9 M 267.6 MB
Task = {10, 30, 60} 2⇥0.9 M 66.9 M 66 + (K+1)⇥0.9 M 264 + (K+1)⇥3.6 MB

Table 4: The number of all parameters and those used for training and inference as well as the model
size of methods for ViT-B (Same for Deit-B). K is the number of Adapters in the pool, and F is the
number of fused Adapters (it is between 2 and number of tasks). For the Adapters F = 1. For ER,
for Task = {1, 10, 20}, it is same with ADA Task=1. Total size is in MB.

Fine-Tuning (B1, B2) and EWC
Trainable Inference Total Total (Size)

Task = {1, 10, 20} 86 M 86 M 86 M 344

Adapters & AdapterFusion
Trainable Inference Total Total (Size)

Task = 1 1.8 M 87.8 M 87.8 M 351.2
Task = 10 1.8 M 86 + (F⇥1.8) M 104 M 416
Task = 20 1.8 M 86 + (F⇥1.8) M 122 M 488

ADA
Trainable Inference Total Total (Size)

Task = 1 1.8 M 87.8 M 87.8 M 351.2
Task = 10 2⇥1.8 M 87.8 M 86 + (K+1)⇥1.8 M 344 + (K+1)⇥7.2
Task = 20 2⇥1.8 M 87.8 M 86 + (K+1)⇥1.8 M 344 + (K+1)⇥7.2

Table 4 reports the number of parameters used for baselines and ADA in image classification experiments with
ViT and DeiT. We don’t add the head size to the table, since it’s very small: 768 parameters per binary head,
15K parameters (6 KB) for 20 tasks, 3840 per multi-class head, 75K parameters (30KB) for 20 tasks. Also they
are same for all the methods.

Figure 9: Comparison of number of parameters of baselines and ADA on Arxiv, Reuters and
Wiki-30K. The predictive performance reported on the y-axis is measured after processing all tasks.

Figure 9 and Table 5 show the number of parameters used by each method and their predictive performance.
These results make clear that ADA is significantly more efficient in terms of memory usage. It can achieve
predictive performance similar to the one of Adapters and AdapterFusion while requiring significantly less
model parameters. On Reuters and Arxiv, it can store the parameters of only 5 Adapters (K=4 Adapters in the
pool, and one Adapter for new task), against the 20 required by AdapterFusion.
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Table 5: The accuracy (with standard deviation) reported after last task and number of total parameters
(Num Params) kept in memory for Adapters, AdapterFusion and ADA variants for experiments on
Arxiv, Reuters, Wiki-30K and Mixed setting experiments with BERTbase.

Arxiv Reuters Wiki-30K Mixed
Accuracy Num Params Accuracy Num Params Accuracy Num Params Accuracy Num Params

Adapters 0.872 ± 0.017 182 M 0.918 ± 0.015 182 M 0.847 ± 0.006 326 M 0.820 ± 0.008 470 M
AdapterFusion 0.905 ± 0.013 182 M 0.957 ± 0.012 182 M 0.867 ± 0.009 326 M 0.833 ± 0.010 470 M
ADA (K=1) 0.772 ± 0.021 120.8 M 0.825 ± 0.018 120.8 M 0.770 ± 0.019 120.8 M 0.729 ± 0.017 120.8 M
ADA (K=4) - LEEP 0.867 ± 0.017 128 M 0.947 ± 0.015 128 M 0.842 ± 0.013 128 M 0.795 ± 0.012 128 M
ADA (K=4) -TansRate 0.898 ± 0.014 128 M 0.951 ± 0.013 128 M 0.858 ± 0.011 128 M 0.812 ± 0.012 128 M

A.6 Inference and training time

In Figure 10a, 10b and 10c we report the average time per prediction made during our experiments. We observe
a significant speedup at inference time compared to AdapterFusion. For example, on Reuters, ADA is 5 times
faster than AdapterFusion when both K=1 and K=4 (because it always uses one distilled Adapter for inference
that has a fixed size). The inference time of AdapterFusion depends on the number of Adapters fused. Results
demonstrate that ADA provides a sufficiently fast inference for all datasets.

(a) (b) (c) (d)

Figure 10: Comparison of inference times of methods on a) Arxiv, b) Reuters and c) Wiki-30K. d)
Comparison of training time on Wiki-30K.

Training time. Distillation of Adapters brings an extra cost for ADA while learning fusion parameters brings an
extra cost for AdapterFusion. Computing transferability takes constant time which is negligible. Distillation
costs training an additional Adapter ( 1.6 % of full fine-tuning time of BERT). Figure 10d reports the average
training time comparison on Wiki-30K that is the largest difference with AdapterFusion given larger number
of tasks. We can clearly see that the difference is fractional while the difference between the inference time is
significant.

A.7 Memory consumption of ViT and DeiT

Figure 11 shows the number of parameters used by each method and their predictive performance. These
results make clear that ADA is significantly more efficient in terms of memory usage also with ViT and DeiT
models. It can achieve predictive performance similar to the one of Adapters and AdapterFusion while requiring
significantly less model parameters.

A.8 Additional experiments with different task sizes

We would like to verify if the intelligent distillation mechanism we designed for ADA is not only able to avoid
forgetting and save memory but also to increase the data efficiency. Distilling together similar tasks for which a
small number of data points is available could also provide a better representation of the data points.

To verify this hypothesis, we repeated our experiments with a variable number of data points in the training set
of each task. The amount of positive and negative samples is balanced in both train and test tasks. The size of
the training sets of the Reuters tasks contain t = {20, 50, 80} samples per class (positive and negative) and the
test sets contain 20 samples per class. Arxiv Papers has more samples than Reuters dataset, so we added larger
training tasks of size 400 to the configuration, and increased the test task size. For Arxiv, we created the training
sets with t = {20, 50, 100, 200} samples per positive and negative classes and the test set with 50 samples per
class. Our expectation is that by increasing the training set size the overall predictive performance will improve,
but we also expect to see the predictive performance of ADA matching (or narrowing the gap with) independent
Adapters’ one when using a smaller training set.
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Figure 11: Comparison of number of parameters of baselines and ADA on ImageNet with ViT and
DeiT models. The predictive performance reported on the y-axis is measured after processing all
tasks.

Figure 12: Predictive performance of Adapter based methods with t = {20, 50, 100, 200} on Arxiv
and t = {20, 50, 80} on Reuters.

In Figure 12 we report the results of our experiment. We observe TransRate performing generally better than
LEEP, as in previous experiments. Focusing on TransRate, we can see that ADA K=4 with TransRate can
actually outperform independent Adapters when the training set size is around 100 data points and even match
the performance of independent Adapters using significantly more labels (200 labels on Arxiv and 160 on
Reuters). The effect becomes smaller or vanishes when the training set gets larger but this could still bring an
important advantage in the “few-shot” setting.

A.9 Additional experiments with DistilBERT and Roberta

We repeated all the experiments presented in Section 5.1 with DistilBERTbase and RoBERTabase as our base
models in order to show that it’s not only limited to one specific model. The results demonstrated the same
trends with BERTbase model experiments.

Figure 13: Comparison of baselines and distillation methods on Arxiv and Reuters with RoBERTabase.
On the x-axis we report the number of tasks processed, on the y-axis we report the average accuracy
measured on the test set of the tasks processed, shaded area shows standard deviation.
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Figure 13 compares the ADA algorithms with baselines. The findings that we mention in predictive performance
is exactly applicable to RoBERTabase results. RoBERTabase performs slightly better on all the methods
compared to BERTbase. The behavior of algorithms are same for DistilBERTbase and is very similar to the
results with BERTbase, however, the number of parameters used is different.

Figure 14: Comparison of number of parameters of baselines and ADA on Arxiv, Reuters and
Wikipedia with DistilBERTbase.

Figure 14 shows the number of parameters used by each method and their predictive performance with
DistilBERTbase model. (We skip this figure for RoBERTabase because the number of parameters is very
close to BERTbase, and we already show the accuracy in Figure 13.)

Figure 15: Predictive performance of Adapter based methods with t = {20, 50, 100, 200} on Arxiv
and t = {20, 50, 80} on Reuters.

As in A.8, we report the results of experiments of different task sizes with DistilBERTbase in Figure 15. This
figure emphasises that with small number of labels and with a model much less parameters, we can still have
good prediction accuracy on old and new tasks in CL setting.

A.10 Additional experiments with DeiT

We repeated all the experiments presented in Section 5.2 with DeiT-B [55] 2 as our base model in order to show
that it’s not only limited to one specific model. The results demonstrated the same trends with ViT-B [13] 3

experiments.

In Figure 17 we present FWT and BWT scores for baselines. As in Section 5.1, we didn’t present B1 and Adapters
in the plots, since both FWT and BWT are zero for them. The behaviour is quite similar to text classification
experiments. BWT is zero for AdapterFusion, since the fusion parameter is computed with available Adapters,
and the Adapters trained later is not used for the previous tasks. ADA-LEEP and ADA-TransRate minimizes
negative backward transfer, while showing a positive forward transfer for both MiniImageNet and CIFAR100.

2
https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth

3
https://huggingface.co/google/vit-base-patch16-224
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Figure 16: Comparison between baselines and ADA with DeiT model on MiniImageNet and CI-
FAR100. Top figures shows the first scenario (binary) results, and bottom figures shows the second
scenario (multi-class) results.

Figure 17: Comparison between baselines and ADA with DeiT model on MiniImageNet and CI-
FAR100 for multi-class classification in terms of FWT and BWT.

A.11 Additional experiments with different Adapters pool size

This section has the additional results with different Adapters pool size on Arxiv Papers dataset. As in Figure 5,
the results in Figure 18 show a rapidly decreasing added value when the number of Adapters grows, a behavior
which aligns well with our practical requirements of keeping the number of model parameters under control
when the number of tasks grows.

Figure 18: Impact of Adapter pool size for LEEP and TransRate when K = {1, 2, 4, 8} on Arxiv for
t = 50.
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