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Abstract

Proving algorithm-dependent generalization error bounds for gradient-type opti-
mization methods has attracted significant attention recently in learning theory.
However, most existing trajectory-based analyses require either restrictive assump-
tions on the learning rate (e.g., fast decreasing learning rate), or continuous injected
noise (such as the Gaussian noise in Langevin dynamics). In this paper, we intro-
duce a new discrete data-dependent prior to the PAC-Bayesian framework, and
prove high probability generalization bounds of order O (= - Zthl (v¢/€0)? gt ||2)
for floored GD and SGD (i.e. finite precision versions of GD and SGD with preci-
sion level ;) where, where n is the number of training samples, -, is the learning
rate at step ¢, g; is roughly the difference between the average gradient over all
samples and that over only prior samples. ||g;|| is upper bounded by (typically
much smaller) than the gradient norm ||V f (})||. We remark that our bounds hold
for nonconvex and nonsmooth loss functions. Moreover, our theoretical results
provide numerically favorable upper bounds of testing errors (0.026 on MNIST
and 0.198 on CIFAR10). Furthermore, we study the generalization bounds for
gradient Langevin Dynamics (GLD). Using the same framework with a carefully
constructed continuous prior, we show a new high probability generalization bound
of order O(L + L, ST (v,/4)?) for GLD. The new 1/n? rate is obtained using
the concentration of the difference between the gradient of training samples and
that of the prior.

1 Introduction

Bounding generalization error of learning algorithms is one of the most important problems in
machine learning theory. Formally, for a supervised learning problem, the generalization error is
defined as the testing error (or population error) minus the training error (or empirical error). In
particular, we denote R(w, (z,y)) := L[hy () # y] as the error of a single data point (x, y), where
h.,(z) is the output of a model with parameter w € R?. Suppose S is the set of training data, each
i.i.d. sampled from the population distribution D, and we use R(w, S) := ﬁ > .es R(w, z) and
R(w,D) := E.~p[R(w, )] to denote the training error and the testing error, respectively. The
generalization error of w is formally defined as errge, (w) = R(w, D) — R(w, S).

Proving tighter generalization bounds for general nonconvex learning and particularly deep learning
has attracted significant attention recently. While the classical learning theory (uniform conver-
gence theory) which bounds the generalization error by various complexity measures (e.g., the
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VC-dimension and Rademacher complexity) of the hypothesis class has been successful in several
classical convex learning models, however, they become vacuous and hence fail to explain the success
of modern nonconvex over-parametrized neural networks (i.e., the number of parameters significantly
exceeds the number of training data) (see e.g., Zhang et al. [2017], Nagarajan and Kolter [2019]).
Recently, learning theorists have tried to understand and explain generalization of deep learning
from several other perspectives, such as margin theory [Bartlett et al., 2017, Wei et al., 2019],
algorithmic stability [Hardt et al., 2016, Mou et al., 2018, Li et al., 2020, Bousquet et al., 2020],
PAC-bayeisan [London, 2017, Bartlett et al., 2017, Neyshabur et al., 2018, Zhou et al., 2019, Yang
et al., 2019], neural tangent kernel [Jacot et al., 2018, Du et al., 2019, Arora et al., 2019, Cao and Gu,
2019], information theory [Pensia et al., 2018, Negrea et al., 2019], model compression [Arora et al.,
2018, Zhou et al., 2019], differential privacy [Oneto et al., 2017, Wu et al., 2021] and so on.

In this paper, we aim to obtain tighter generalization error bounds that depend on both the training
data and the optimization algorithms (a.k.a. gradient-type methods) for general nonconvex learning
problems. In particular, we prove algorithm-dependent generalization bounds for several gradient-
based optimization algorithms such as certain variants of gradient descent (GD), stochastic gradient
descent (SGD) and stochastic gradient Langevin dynamics (SGLD). Our proofs are based on the
classic Catoni’s PAC-Bayesian framework [Catoni, 2007] and also have a flavor of algorithmic
stability [Bousquet and Elisseeff, 2002]. Several prior works have obtained generalization bounds for
SGD and SGLD by analyzing trajectory through either the PAC-Bayesian or the algorithmic stability
framework (or closely related information theoretic arguments). However, most existing results
based on analyzing the optimization trajectories require either restrictive assumptions on the learning
rates, or continuous noise (such as the Gaussian noise in Langevin dynamics) in order to bound the
stability or the KL-divergence. In this paper, we resolve the above restrictions by combining the
PAC-Bayesian framework with a few simple (yet effective) ideas, so that we can obtain new high
probability and non-vacuous generalization bounds for several gradient-based optimization methods
with either discrete or continuous noises (in particular certain variants of GD and SGD, either being
deterministic or with discrete noise, which cannot be handled by existing techniques).

1.1 Prior work

We first briefly mention some recent work on bounding the generalization error of gradient-based
methods. Hardt et al. [2016] first studied the uniform stability (hence the generalization) of stochastic
gradient descent (SGD) for both convex and non-convex functions. Their results for non-convex
functions requires that the learning rate 7, scales with 1/¢. Their work motivates a long line of
subsequent work on generalization error bounds of gradient-based optimization methods: Kuzborskij
and Lampert [2018], London [2016], Chaudhari et al. [2019], Raginsky et al. [2017], Mou et al.
[2018], Chen et al. [2018], Li et al. [2020], Negrea et al. [2019], Wang et al. [2021].

Recently, Simsekli et al. [2020], Hodgkinson et al. [2022] obtained generalization bound of SGD
through the perspective of heavy-tailed behaviors and using the notion of Hausdorff dimension dy
which depends on both the algorithm and data.

PAC-Bayesian bounds. The PAC-Bayesian framework [McAllester, 1999] is a powerful method
for proving high probability generalization bound [Bartlett et al., 2017, Zhou et al., 2019, Mou et al.,
2018]. Roughly speaking, it bounds the generalization error by the KL divergence KL (Q H P),
where () is the distribution of the learned output and P is a prior distribution which is typically
independent of dataset S. In this framework, bounding KL (Q H P) is the most crucial part for
obtaining tighter PAC-Bayesian bounds. In order to bound the KL divergence, both the prior P
and posterior () are typically chosen to be continuous distributions (mostly Gaussians so that KL
can be computed in closed form). Hence, most prior work either considered gradient methods with
continuous noise (such as Gradient Langevin Dynamics) (e.g., [Mou et al., 2018, Li et al., 2020,
Negrea et al., 2019]), or injected a Gaussian noise to the final parameter at the end (e.g., [Neyshabur
et al., 2018, Zhou et al., 2019]) (so @ is a Gaussian distribution). We also note that designing
effective prior P can be also very important. For example, Lever et al. [2013] proposed to use the
population distribution to compute the prior. In fact, the prior can even partially depend on the
training data [Parrado-Herndndez et al., 2012, Negrea et al., 2019], and our Theorem 4.1 is partially
inspired by this idea.



1.2 Our contributions

First, we provide high probability generalization bounds for discrete gradient methods. In particular,
we study the generalization of Floored Gradient Descent (FGD), which is a variant of GD, and Floored
Stochastic Gradient Descent (FSGD), a variant of SGD. We obtain our bound by an interesting
construction of discrete priors. Secondly, we consider well studied gradient methods with continuous
noise, (stochastic) gradient Langvin dynamics (GLD and SGLD). We show sharper generalization
bounds by carefully bounding the concentration of the sample gradients. Now, we summarize our
results.

FGD and FSGD. We first study an interesting variant of GD, called Floored GD (FGD) (Algo-
rithm 1). The update rule of FGD is defined as follows:

Wi+ Wiy — %V f(Wi1,S7) — efloor (i8¢ /et) (FGD)

where S is the subset of training dataset S with size m indexed by subset J C [n] (J is chosen
before training), V f(W;_1,2Z) = ﬁ > .cz Vf(Wi_1,2) is the average gradient over the dataset
Z, vy is the learning rate, ¢, is the precision level, and g; := Vf(W;_1,5) — Vf(W;_1,S5) is
the gradient difference. The flooring operation is defined by floor(z) := sign(z)||x|] for any real
number z. FGD can viewed as GD with given precision limit £;. We can see if we ignore the floor
operation or let €; approaches 0, FGD reduces to GD (see also Appendix A).

We also study a finite precision variant of SGD, called Floored SGD (FSGD) (see Section 5 for its
formal definition). Empirically, the optimization and generalization capabilities of FGD and FSGD
are very close to those of GD and SGD (see Figure 5 and 6 in Appendix H).

By constructing a discrete data-dependent prior and incorporate it into Catoni’s PAC-Bayesian
framework, we prove that the following bound (Theorem 5.2) holds for FGD with high probability:

T
1 In(dT ~2
R(Wrp,D) < cgR(Wrp, S[n]\J) +0—+ (dT) % HgtIIQ )
n—m  n—m e
where d is the dimension of parameter space and ¢ can be chosen to be a small constant. The bound
for FSGD is very similar (see Theorem 5.3). Now we make a few remarks about our results.

1. Our result holds for nonconvex and nonsmooth learning problems (replacing the gradients
with subgradients for nonsmooth cases). Moreover, there is no additional requirement on
the learning rate ;.

2. The gradient difference g; is typical much smaller than the worst case gradient norm. It
usually decreases when m = |J| grows (see Figure 1c in Section 7).

3. We obtain non-vacuous generalization bounds on commonly used datasets. Specifically,
our theoretical test error upper bounds on MNIST and CIFAR10 are 0.026 and 0.198,
respectively (see Section 7). Both of them are tighter than the best-known MNIST bound
(11%) and CIFARI10 bound (23%) reported in Dziugaite et al. [2021]. See Table 1 in
Appendix B for more comparisons.

4. In order to bound the KL between P and the deterministic process of FGD, we construct
the prior P from a discrete random processes.. We hope it may inspire future research on
handling deterministic optimization algorithms or discrete noise.

Why study FGD/FSGD? We would like to remark that we study FGD/FSGD, not because
FGD/FSGD have better performances than GD/SGD or other advantages. Indeed, their perfor-
mances are almost the same as those of GD/SGD (see Appendix H). We use them as important
stepping stones to study generalization bounds for GD and SGD. Note that most existing trajectory-
based generalization bounds require either fast decreasing learning rate, or continuous injected noise,
such as the Gaussian noise in Langevin dynamics, for general non-convex loss functions. Handling
deterministic algorithms (such as GD) or discrete noises (such as SGD) is challenging and beyond
the reach of existing techniques. In fact, understanding such discrete noises and their effects on
generalization has been an important research topic (see e.g., Li et al. [2020], Zhu et al. [2019],
Ziyin et al. [2021]). In particular, Zhu et al. [2019] show that it is insufficient to approximate SGD’s
discrete noise by isotropic Gaussian noise. Moreover, proving nontrivial generalization bounds for
SGD-like algorithms with discrete noise has also been proposed as an open research direction in Li
et al. [2020].



GLD and SGLD. We provide a new generalization bound for Gradient Langevin Dynamics (GLD).
The update rule of GLD is defined as follows.

Wi = Wi + 7V (W1, 8) + N (0, Ia). (GLD)

In this paper, we show that the following generalization bound (Theorem 6.2) holds with high
probability over the randomness of S ~ D" and random subset .J C [n] (\J | =m)

)

—1 O

1
-m  (n—

R(WT,D) S C()R(WT, S[n]\]) + 0] (n

where L(W;_1) := max,cs || f(W;i—_1, z)|| is the longest gradient norm of any training sample in
S at step ¢t and m is the size of J. Since Wr is mdependent of the index set J, the first term
R(Wr, Sjn)\s) is upper bounded by R(Wr, S) + O( — ) with high probability, using standard

Hoeffding’s inequality. By setting m = n/2, our generahzatlon bound has an O(—+ NG + 1 =+ n2)

rate. The new 1/n? rate is obtained using the concentration of the difference between the gradient of
training samples and that of the prior (See Lemma 6.1).

We also prove a high probability generalization bound for Stochastic Gradient Langevin Dynamics
(SGLD) (see Theorem 6.3):

—m n—m

1 1
R(WT,D) < C()R(WT, S[n]\]) + (0] <n + ( >

T2
Z; WHD.
1t

We compare our bounds with other GLD/SGLD bounds obtained in [Mou et al., 2018, Negrea et al.,
2019, Li et al., 2020] and the details can be found in Appendix B.

CLD. Using the PAC-Bayesian framework, we obtain a new generalization bound for Continuous
Langevin Dynamics (CLD), defined by the stochastic differential equation dW; = —VF(W,, S) dt+

/263~ dB;. The main term of the generalization bound scales as O(1/n?) (by choosing m = n/2)
and does not grow to infinity as the training time 7" increases. See Theorem G.6 for the details.

2 Other Related Work

Stochastic Langevin Dynamics Stochastic Langevin dynamics is a popular sampling and opti-
mization method in machine learning [Welling and Teh, 2011]. Zhang et al. [2017], Chen et al.
[2020] show a polynomial hitting time (hitting a stationary point) of SGLD in general non-convex
setting. Raginsky et al. [2017] study the generalization and excess risk of SGLD in nonconvex
settings and their bound depends inversely polynomially on a certain spectral gap parameter, which
may be exponential small in the dimension. Continuous Langevin dynamics (SDE) with various
noise structure has also been used extensively as approximations of SGD in literature (see e.g., [Li
et al,, 2017, 2021]). However, in terms of generalization, isotropic Gaussian noise is not a good
approximation of the discrete noise in SGD (Zhu et al. [2019]).

Nonvacuous PAC-Bayesian Generalization Bounds. Dziugaite and Roy [2017] first present a non-
vacuous PAC-Bayesian generalization bound on MNIST (0.161 for a 1-layer MLP, see column T-600
of Table 1 in their paper). They use a very different training algorithm that explicitly optimizes the
PAC-Bayesian bound and the output distribution is a multivariate normal distribution. To computing
the closed form of KL, they choose a zero-mean Gaussian distribution as the prior distribution. Zhou
et al. [2019] obtain the first non-vacuous generalization bound for ImageNet via a different method.
Their method does not require any continuous noise injected but assumes that the network can be
significantly compressed (so that the prior distribution is supported over the set of discrete parameters
with finite precision). To our best knowledge, it is the only work that utilizes a discrete prior for
proving generalization bounds of deep neural networks. Our result for FGD/FSGD has a similar
flavor in a high level, that is the optimization method has a finite precision. However, our results do
not need any assumption on compressibility of the model and can be applied to nonconvex learning
problems other than neural networks.

Generalization bounds via Information theory. Raginsky et al. [2017] first show that the expected
generalization error Eg.p» [R(W, D) —R(W, S)] is bounded by 1/2I(S; W) /n, where I(S; W) :=



KL (P(S,W) H P(S) @ P(W)) is the mutual information between the data set S and the parameter
W. This work motivates several subsequent studies [Pensia et al., 2018, Negrea et al., 2019, Bu
et al., 2020, Wang et al., 2021]. The main goal in this line of work is to obtain a tight bound on the
mutual information I(.S; W). This is again reduced to bounding the KL divergence and thus typically
requires continuous injected noise (e.g., Wang et al. [2021], Negrea et al. [2019]).

3 Preliminaries

Notations. We assume that the training dataset S = (21, .., 2, ) is sampled from D", where D is the
population distribution over the data domain 2. The model parameter w is in R?. The risk function
R : R%x Q — [0, 1] measures the error of a model on a datapoint. The loss function f : RYx Q — R
is a proxy of the risk. The optimization algorithm minimizes the loss function and we assume we can
compute the gradient of the loss function. We note that the loss function may be different from the risk
function (e.g., 0/1 risk vs the cross-entropy loss). The empirical risk is R(w, S) = ﬁ > es R(w, 2)
and population risk is R(w,D) = E..p[R(w, z)]. Similarly, we can define the empirical loss
f(w, S) and population loss f(w,D). For any J = (41, .., jm), we use S to denote the sequence
(Sj,, -, S;,. ). The subsequence (A;, Ait1, ..., A;) is denoted by AJ. We use (A}, BJ*) to denote
the merged sequence (A1, As, ..., Ay, B1, ..., B,,). When the elements in sequence J are distinct,
we also use J to represent the set consisting of all of its elements. We may also slightly abuse the
notation of a random variable to denote its distribution. For example, E.~x[f(x)] is a shorthand
for Eg~py [f(#)], and KL (X || Y) means KL (Px || Py). For a random variable W, we define
R(W,S) = Ew~w [R(w, S)] and R(W, D) = Ew~w[R(w,D)]. The set {1,2,...,n} is denoted by
[n].

KL-divergence. Let P and () be two probability distributions. The Kullback—Leibler diver-
gence KL (P H Q) is defined only when P is absolute continuous with respect to @ (i.e., for
any z, Q(z) = 0 implies P(x) = 0). In particular, if P and () are discrete distributions, then

KL(P||Q) =), P(z)ln Sg; . Otherwise, if P and Q are continuous distributions, it is defined

as [ P(z)In ggﬁg dx. The following Lemma 3.1 is frequently used in this paper and is a well known
property of KL divergence (see Cover [1999, Theorem 2.5.3], Li et al. [2020], Negrea et al. [2019]).

Lemma 3.1 (Chain Rule of KL). We are given two random sequences W = (Wy, ..., Wr) and
W' = (Wy, ..., Wi). Then, the following equation holds (given all KLs are well defined):

T
KL(W || W) =KL (Wo |[Wg) + > B [KL(Wiwg™ =w||wiw'g " = w)].

=1 w~Wo !
Here Wt|W871 = w denotes the distribution of Wy conditioning on ngl =(Wo,...,Wi_1) = w.
PAC-Bayesian. In this paper, we use the PAC-Bayesian bound presented in Catoni [2007] which
enjoys a tighter O(KL (Q || P) /n) rate comparing to the traditional O(,/KL (Q || P) /n) bound,
but with a slightly larger constant factor on the empirical error. We restate their bound as follows.

Lemma 3.2 (Catoni’s Bound). (see e.g., Lever et al. [2013]) For any prior distribution P independent
of the training set S, any ¢ € (0,1), and any n > 0, the following bound holds w.p. > 1 — § over
S ~ D"

KL (Q|| P) +In(1/5) vQ) M

E [RW. D) <nCy E_[R(W,9)]+C,
W~Q W~Q

where Cy, = ﬁ is an absolute constant.
Concentration inequality. We use the following variant of McDiramid inequality (Lemma 3.3)
to prove the concentration of cumulative gradient difference in Section 6. The proof is deferred to

Appendix C.

Lemma 3.3. Suppose ® : [n]™ — R¥ is order-independent' and |®(J) — ®(J')| < c holds for any
adjacent J, J' € [n|™ satisfying |J N J'| = m — 12. Let J be m indices sampled uniformly from [n]
without replacement. Then Prj [D(J) — E;[®(J)] > €] < exp( —2¢” ).

mc

1<I>(j1, ey Jm) = ®(Jrxy s - Jom ) holds for any input J = (j1, ..., jm) € Q™ and any permutation 7 € Sy,.
JnJ ={ien]:ieJnicJ}.



4 Data-Dependent PAC-Bayesian Bound

The dominating term in the PAC-Bayesian bound (1) is KL (Q || P) /n, where P is a prior distribu-
tion independent of the training dataset S. Typically, without knowing any information from S, the
best possible bound for KL (Q ‘ | P) we can hope is at least ©(1) (it should not be a function of n
hence should not decrease with n). However, if we are allowed to see m data points from .S when
constructing our prior, we may produce better prediction on posterior () s. The following theorem
enables us to use data-dependent prior in PAC-Bayesian bound. The proof is almost the same as
Cantoni’s original proof and we provide a proof for completeness in Appendix D.

Theorem 4.1 (Data-Dependent PAC-Bayesian). Suppose J is a random sequence including m
indices uniformly sampled from [n] without replacement. For any ¢ € (0,1) and n > 0, we have w.p.
>1—0over S ~D"and J:

KL (Q|| P(Ss)) + In(1/6)

n—m

where I = [n]|\J is the set of indices not in J, P(Sy) is the prior distribution only depending on the
information of Sy (S is the subset of S indexed by J), and C,, := ﬁ is a constant.

Remarks. Note that the above bound holds regardless of whether ) depends on S or not. Also
note that the first term in the right hand side is R(Q, Sr), not R(Q, S) as in the usual generalization
bounds. We remark that for most of our learning algorithms that are independent of J (i.e., changing
J does not change the output ), by standard Chernoff-Hoeffding inequality, R(Q, S;) can be
bounded by R(Q, S) + O(1/+/n — m) with high probability over the randomness of .J. For example,
the update rules of GLD, SGLD and CLD are independent of J, hence R(Q, S1) can be replaced
by R(Q,S) + O(1/y/n —m) in Theorem 4.1. However, we point out a subtle point that FGD
(Algorithm 1) studied in this paper depends on J. It may be the case that by knowing J, FGD extracts
more information from .S; but not much from S, unintentionally making R(Q, Sy) a validation
error, rather than the training error as it should be. However, from our experiment (see Figure 5 and 6
in Appendix H, and Figure 2a), we can see that FGD is very close to GD and the St error R(Wr, Sy)
is indeed close to the training error R (W7, S) and both are significantly smaller than the testing error
R(Wr, D). So R(Q, Sr) can be considered as a genuine training error in our study of FGD.

5 FGD and FSGD

In this section, we study the generalization error of finite precision variants of gradient descent
and stochastic gradient descent: Floored Gradient Descent (FGD) and Floored Stochastic Gradient
Descent (FSGD).

First we need to define the “floor” operation which is used in the definitions of FGD and FSGD.
Definition 5.1 (Floor). For any vector X € R%, let Y = floor(X) defined as:

Y, = ﬂOOI'(Xi) = LXZJ lez >0, = 7L7XiJ lez <0, foralli € [d]

FGD: The Floored Gradient Descent algorithm is formally defined in Algorithm 1, where (7y;):>0
and (g;);>0 are the step size and precision sequences, respectively. For a subset Z C S, we write
ViWi_1,2) = ﬁ > .cz Vf(Wi_1,2). Note that FGD can be viewed as gradient descent with
given precision limit €;. We can see if we ignore the floor operation or let £; approach 0, FGD
reduces to the ordinary GD (see Appendix A). We also study momentum FGD, in which the 5th line
of Algorithm 1 is replaced by

Wi+ Wiy +a- (Wiey — Wi_a) — g2 — & - floor((g1 — g2)/e4);
Here o > 0 is a constant. We remark that both FGD and its momentum version are deterministic
algorithms. The following theorem provides the generalization error bound for both algorithms.

Theorem 5.2. Suppose J is a random sequence consisting of m indices uniformly sampled from [n]
without replacement. Then for any 6 € (0,1), both FGD (Algorithm 1) and its momentum version
satisfy the following generalization bound w.p. at least 1 — d over S ~ D™ and J:

n(1/6) +3 O, In(dT) <~ [ ~2
R(Wr,D) < nCyR(Wr, 1) + C, - /9 +3 , Gy f )Z<Z§|gt|2),
t

n—m n m
t=1
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Algorithm 1: Floored Gradient Descent (FGD)

Input: Training dataset S = (z1, .., 2z, ). Index set J.
Result: Parameter W € R,
Initialize Wy < wo;
fort:1— T do

g1 < %V (Wi, S);

g2 < 1V f(Wi_1,S7);

Wy <= Wi_1 — g2 — &¢ - floor((g1 — g2)/€t)s
end

where d is the dimension of parameter space, I = [n]\J is the set of indices not in J, C,, := ﬁ

is a constant, and gy := V f(Wi_1,5) = Vf (W1, S).

Proof. We use Theorem 4.1 to prove our theorem for the momentum version. The ordinary FGD is
a special case of the momentum version with o = 0. The key is to construct the prior distribution
P(S) such that KL (Wr || P(S;)) is tractable. Let p be any real number in (0,1/3). We first
define a stochastic process {W, ..., W4}, by the following update rule (W := wy):

W)Wl +a W, =W o) =%V fW{_,S5)—e-&,

where &; is a discrete random variable such that for all (ay, ..,aq) € VAS

oo —d d
Prl¢, = (a1,...,aq) '] := ( Z pi2> exp (—Zln(l/p)ai) .
j k=1

1=—00

It is easy to verify that the sum of the probabilities (3,4 Pr[¢; = a]) equals to 1. Note that W
only depends on S;. We define P(S;) as the distribution of W7.

Recall that W} = (W, ..., W;) is the parameter sequence of FGD (Algorithm 1). Applying the chain
rule of KL-divergence (Lemma 3.1), we have:

KL (Wr || P(S,)) = KL (W || Wg) < KL (W] || W)

S L U [t |

1w

o~
Il

B

KL (W W™t = wi [[wiw g = wit).
t

Il
-

The last equation holds because FGD is deterministic. Let w = W{}™'. The distribution of
Wt\WS_l = w (where w = (wo, ..., w;—1)) is a point mass on

%(Vf(wt,l,S) - Vf(wthsf))) .

&t

w1+ (Wi—1 — wi—2) — %V f(wi—1,S;) — & - floor (

Let vector a = (a1, ..., aq) = floor(2:(V f(wi—1, ) — V f(wi—1,5))). By the definition of W,
we have

KL (Wt|W§*1 —w||[ W = w) =1-In(1/Prf¢ = a))

o o d d

=In << Z p’z) > +Zln(1/p) -az.
i=—00 k=1

Since |i| < 2 and p € (0,1/3), we have In ((Z;’ifoopiz)d) isatmost dln (1+23% 7, p%). It

can be further bounded by dln (1 + 3p). Moreover, it can be bounded by 3dp as In(1 + ) <

x. Thus, the above KL-divergence can be bounded by 3dp + 22:1 In(1/p)a?. Recall that the



kth entry of a is ay = |2t - (Vi f(wi-1,S) — Vi f(wi—1,5s))], which is less than or equal to
Z—: (Vi f(wi—1,S) = Vi f(wi—1,S57)). Therefore, we have

(1/p)

KL (Wi Wi = w [ W{W/ = w) < 3dp+ W7 a1, 8) — Vf (wn—, S|

t
Plugging the above inequality into (2), we have

T
L(Wr|[P(S)) <D <3dp+ % IV f(Wi—1, S) — Vf(Wt_l,SJ)Hi) :

t=1

We conclude our proof by plugging it into Theorem 4.1 (setting p = 1/(Td)). O

FSGD: We can use a similar approach to prove a generalization bound for Floored Stochastic
Gradient Desent (FSGD). Formally, FSGD is identical to Algorithm 1 except for the definitions of g;
and g» replaced with:

g1 < VfWi—1,8B,), g2 < VI(Wi—1,5B,nJ),

where B; C [n] is a random batch independent of S, J and Wé -1 Formally, each B; is a set
including b indices uniformly sampled from [n] without replacement. The following theorem provides
a generalization bound for FSGD. The proof can be found in Appendix E.

Theorem 5.3. Suppose J is a random sequence consisting of m indices uniformly sampled from [n]
without replacement. Then for any § € (0,1),e € (0, 1), FSGD satisfies the following generalization
bound: w.p. at least 1 — 6 over S ~ D™ and J:

In(1/0) + 3 Cy In(dT)

n—m

7€(Mﬂr,ln S nC%7z(ﬂﬂp,S[)+'C%'

T

7
ng lg: )1
—1 €t

where d is the dimension of parameter space, I = [n]\J, C,, = is a constant, and g; :=

f(Wtfla SBt) - Vf(Wtfla SJﬂBt)~
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6 Gradient Langevin Dynamics

In this section, we present new generalization bounds for Gradient Langevin Dynamics (GLD) and
Stochastic Gradient Langevin Dynamics (SGLD) based on Theorem 4.1.

Gradient Langevin Dynamics (GLD): The GLD algorithm can be viewed as gradient descent
plus a Gaussian noise. Formally, for a given training set S ~ D", the update rule of GLD is defined
as follows:

Wit < W, — %“ N VWi, 2) + 001N (0, 1), (GLD)
zeS

Here the gradient V f (W}, z) can be replaced with any gradient-like vector such as a clipped gradient.
The output of GLD is the last step parameter W or some function of the whole training trajectory

W (e.g., the average of the suffix = 3>/, . W)).

We still use the data-dependent PAC-Bayesian framework (Theorem 4.1) to prove the generalization
bound for GLD. Unlike FGD (Algorithm 1), GLD is independent of the prior indices .J, which
enables us to prove the following concentration bound (Lemma 6.1) for the gradient difference. The
proof is based on Lemma 3.3, which is postponed to Appendix F.

Lemma 6.1. Let S = (z1,...2,) be any fixed training set. J is a random sequence including m
indices uniformly sampled from [n] without replacement, and W = (Wy, ..., Wr) is any random
sequence independent of J. Then the following bound holds with probability at least 1 — & over the
randomness of J:

T o
E SV A(Wiiy, 8) = V(Wir, S| <
w 1 Ut

S\Q

T
B |2 w]
1t

where Cs = 4+ 21In(1/9) + 5.66+/In(1/6), and L(w) = max;cpy) ||V f(w, 2;)||.
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Figure 1: MNIST + CNN + FGD. In (a) and (b), we plot the true test error and our bound (Theorem 5.2
with = 1.5,§ = 0.1). In (c), we show how cumulative gradient difference decreases as m (the size
of J) increases.

Now we are ready to present our main results. The proofs can be found in Appendix F.

Theorem 6.2. Suppose J is a random sequence consisting of m indices uniformly sampled from [n]
without replacement. Let W be the output of GLD. Then for any § € (0, %) and n > 0, we have w.p.
>1— 26 over S ~ D" and J, the following holds (L(w) := max.cs || f(w, 2)]|):

C,1n(1/6) C,Cs
_l’_
n—m 2(n —m)m wr

R(Wr,D) < nCr,R(Wr, Sr) +

where Cs = 4 +21n(1/8) + 5.66/In(1/6), I = [n]\J and C,, = —
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Stochastic Gradient Langevin Dynamics (SGLD): For a given training data set .S, the update
rule of SGLD is defined as:
W1 < Wiy = %1V f(Wy, Sp,) + 011N (0, 1a), (SGLD)
where B; ~ uniform([n])® is the mini-batch of size b at step ¢. Note that By is a sequence instead

of a set, thus it may include duplicate elements. Similar to the analysis of GLD, we can prove the
following bound for SGLD.

Theorem 6.3. Let W be the output of SGLD when the training set is S, and J be a random sequence
with m indices uniformly sampled from [n] without replacement. For any § € (0,1) and m > 1, we
have w.p. > 1 — 2§ over S ~ D™ and J, the following holds:

Cyln(1/3) | Gy (4 a;)

<
R(Wr,D) < nCyR(Wr, St) + n—m n—m\b 2m

, Cs =4+ 2In(1/6) 4 5.66+/In(1/6), C,, = 1——=. b is the

where L(w) := max.cs || f(w, z)
batch size, and I = [n]\J.
Remark 6.4. If the gradient norm is bounded® and we use a decaying learning rate schedule such
as v o< O(1/t), then the summation in our bound converges. Hence, under such a learning rate
schedule, Theorem 6.2 and 6.3 imply the following test error bound for GLD or SGLD: R(Wr,D) <
nCyR(Wr, Sr) + 5( L which is independent of T, where O hides some logarithmic factors.

n—m

7 Experiment

In this section, we conduct experiments for FGD and FSGD on MNIST [LeCun et al., 1998] and
CIFARI10 [Krizhevsky et al., 2009] to investigate the the optimization and generalization properties
of FGD and FSGD, and the numerical closeness between our theoretical bounds and true test errors.
Due to space limit, the detailed experimental setting and some additional experimental results can be
found in Appendix H.

FGD/FSGD vs GD/SGD. We first demonstrate that the training and testing curves of FGD and GD
are nearly identical (we choose precision level € = 0.005 or 0.004). We also show that the same is
true for FSGD vs SGD. Due to space limit, the figures are presented in Appendix H (Figure 5 and 6).

3|V f(w, 2)|| < L holds for all w, z
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Figure 2: CIFARI10 + SimpleNet + FSGD. In (a), we plot R(Wr, S7), R(Wr,S) and the test
error. We can see that R(Wr, Sy) is very close to R(Wr, S). In (b), we plot our theoretical bound
(Theorem 5.3 with n = 2,5 = 0.1). The red part corresponds to the first term of our bound (the
empirical risk) and the green part corresponds to the rest. The last step test error and our bound are
0.18 and 0.198, respectively. In (c), we show how cumulative gradient difference decreases as m
(the size of J) increases.

Non-vacuous bounds. For MNIST, we train a CNN (d = 1.4 - 10°) by FGD with v; = 0.005 -
0.9755) and &, = 0.005 and momentum o = 0.9). The size m = |J| is set to n/2 = 30000. As
shown in Figure 1a and 1b, our bound (Theorem 5.2 with n = 1.5, = 0.1) tracks the testing error
closely. At step T' = 990, our bound is 0.026 while the testing error is 0.011. This is non-vacuous
and tighter than best known 11% MNIST bound reported in Dziugaite et al. [2021]. For CIFAR10,
we train a SimpleNet [Hasanpour et al., 2016] without BatchNorm and Dropout. The number of
parameters d is nearly 18 - 105. We use FSGD to train our model. The learning rate ; is set to
0.001 - 0.9L4/200] the precision ¢, is set to 0.004, and the momentum « is set to 0.99. The batch size
is 2000. m = |J| is set to n/5 = 10000. The result is shown in Figure 2b. We stop training at step
t = 8000 when the testing error is and 0.18. At that time, our testing error bound is 0.198 which is
non-vacuous and tighter than best known 0.23 CIFAR10 bound reported in Dziugaite et al. [2021].

Decrease of the gradient difference. Intuitively, the cumulative squared norm of gradient differ-
ence g; := Vf(Wy, S) — Vf(Wy, Sy) should decrease as m = |.J| increases. Although we cannot
prove a concentration like Lemma 6.1 (i.e., ||g;||* scales as O(1/m)), we can still observe that ||g;||*
decreases when m increases. The results are depicted in Figure 1¢ and Figure 2c.

Random labels. We conduct the random label experiment designed in Zhang et al. [2017]. Our
theoretical bounds can distinguish the datasets with different portion (p) of random labels. See
Appendix H.

8 Conclusion

In this paper, we prove new generalization bounds for several gradient-based methods with either
discrete or continuous noises based on carefully constructed data-dependent priors. Recall that FGD
requires to compute the gradient difference for technical reasons. It would be more natural and
desirable if we only need to compute the full gradient and rounded to the nearest grid point. An
intriguing future direction is to free FGD/FSGD from the dependence of the prior subset .J so that we
can apply the concentration on the gradient difference to obtain a tighter bound. Of course, a major
further direction is to obtain similar generalization bounds for vanilla GD and SGD, which remains
to be an important open problem in this line of work. Our technique can be useful for handling
deterministic algorithms and discrete noises, but it seems that new technical ideas or assumptions are
needed for tackling GD or SGD.
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