
Automatic Differentiation of Programs with
Discrete Randomness

Gaurav Arya
Massachusetts Institute of Technology, USA

aryag@mit.edu

Moritz Schauer
Chalmers University of Technology, Sweden

University of Gothenburg, Sweden
smoritz@chalmers.se

Frank Schäfer
Massachusetts Institute of Technology, USA

University of Basel, Switzerland
franksch@mit.edu

Chris Rackauckas
Massachusetts Institute of Technology, USA

Julia Computing Inc., USA
Pumas-AI Inc., USA
crackauc@mit.edu

Abstract

Automatic differentiation (AD), a technique for constructing new programs which
compute the derivative of an original program, has become ubiquitous throughout
scientific computing and deep learning due to the improved performance afforded
by gradient-based optimization. However, AD systems have been restricted to the
subset of programs that have a continuous dependence on parameters. Programs
that have discrete stochastic behaviors governed by distribution parameters, such as
flipping a coin with probability p of being heads, pose a challenge to these systems
because the connection between the result (heads vs tails) and the parameters (p)
is fundamentally discrete. In this paper we develop a new reparameterization-
based methodology that allows for generating programs whose expectation is
the derivative of the expectation of the original program. We showcase how
this method gives an unbiased and low-variance estimator which is as automated
as traditional AD mechanisms. We demonstrate unbiased forward-mode AD of
discrete-time Markov chains, agent-based models such as Conway’s Game of Life,
and unbiased reverse-mode AD of a particle filter. Our code package is available at
https://github.com/gaurav-arya/StochasticAD.jl.

1 Introduction

Automatic differentiation (AD) is a technique for taking a mathematical program X(p) and generating
a new program X̃(p) = dX

dp for computing the derivative [1, 2]. AD is widely used throughout
machine learning and scientific computing due to the increased performance of gradient-based
optimization techniques compared to derivative-free methods [3]. However, if X(p) returns the flip
of a coin with probability p of receiving a 1 and probability 1− p of receiving a 0, it is clear that dX

dp

is not defined in the classical sense. But when attempting to calibrate the parameter p to data, one
may wish to fit the model using statistical quantities, e.g. find p such that the average of X(p) is close
to the average sum of N real-world coin flips. Given this use case, can one automatically construct a
program X̃(p) that computes the derivative of the statistical quantities, i.e. E[X̃(p)] = dE[X(p)]

dp ?

A naïve solution to this problem would be to use finite differences, i.e.:
dE[X(p)]

dp
≈ E[X(p+ ε)]− E[X(p)]

ε
. (1.1)

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/gaurav-arya/StochasticAD.jl

Pruning follows one alternative path

Steps

State space

X(p + ε)(ω2)

Smoothing flattens
onto primalUncoupled path

Primal x = X(p)(ω1)
y ∼ Y |X(p) = x

Figure 1: Qualitative sketch of our method and comparison to finite differences. The primal computa-
tion (solid black line) samples X(p) with random number sequence ω1. Black-box finite differences
samples the perturbed program X(p+ ε) with an independent random number sequence ω2 (bottom)
for some finite choice of ε. In contrast, the component Y of the stochastic derivative of the program
(Section 2) considers the effect of the minimal possible perturbations (gray lines diverging from
primal path) to the original program which could stem from a truly infinitesimal change in the input p.

Finite differences’ major issue in the context of stochastic programs is that this calculation does not
correlate the calculation of E[X(p+ε)] with the calculation of E[X(p)]. This leads to a large variance
in the finite-difference estimator [4] that goes to ∞ as ε → 0. This issue of unbounded variance
could be solved if one could run the perturbed program with the same set of random numbers and
directly estimate E[X(p+ ε)−X(p)] by a method that is well-posed in the limit of ε → 0 (Fig. 1).

We demonstrate how to automatically construct a new stochastic program X̃(p) whose expectation
satisfies E[X̃(p)] = dE[X(p)]

dp . We derive this through a technique which we term the stochastic
derivative, propagating the proportional probability of differing event outcomes due to infinitesimal
changes in p. Our technique has the following design goals:

• Composability. We differentiate stochastic programs X(p) which are themselves composed
of many “elementary” stochastic programs, including samples from discrete distributions
such as the Bernoulli, Poisson, and Geometric, and samples from continuous distribu-
tions. These may be composed (chained, added, etc.) arbitrarily, with computational cost
independent of how they are composed.

• Unbiasedness. The program’s discrete structure is preserved, leading to a provably unbiased
estimator that avoids continuous relaxations and tunable or learned internal parameters.

• Low variance. We consider correlated paths through the computation that are linked by
the smallest possible perturbation (Fig. 1), generalizing the widely-used pathwise gradient
estimator for continuous randomness [5] to the discrete case.

We show the utility of our technique by demonstrating forward-mode AD of stochastic simulations
like inhomogeneous random walks and agent-based models such as the Game of Life. To achieve O(1)
computational overhead for these applications, we combine stochastic derivatives with an online
strategy we call pruning. We also demonstrate a straightforward way to perform reverse-mode
AD from our approach via smoothing, allowing us to derive from first principles the biased but
empirically successful straight-through gradient estimator [6] as a special case and to construct an
unbiased end-to-end reverse-differentiable particle filter, recovering a technique discovered in [7].
We provide an open-source implementation of the method, StochasticAD.jl, for readers to explore
the technique on their own applications.

1.1 Related work

Gradient estimators for stochastic functions can be divided into three different classes [5]:
score-function [8, 9, 10], measure-valued [11, 12], and pathwise [13, 14] gradient estimators. When it
comes to discrete randomness, the score-function method is a popular general-purpose choice because
it is unbiased and can be composed through stochastic computation graphs [15]. However, the
score-function method does not search for correlated paths through the computation and thus suffers
from high variance, making gradient computation with discrete variables challenging. A number

2

of techniques (e.g. REBAR [16], RELAX [17]) have been introduced that rely on control variates
for variance reduction [18]. Measure-valued derivatives also have no notion of intrinsic coupling,
though coupling can be achieved using common random numbers for certain distributions [19]. As
an alternative direction, Gumbel-Softmax [20] considers a continuous relaxation of discrete programs
so that a pathwise gradient estimator, based on the “reparameterization trick” [14], can be applied.
However, such methods face a bias-variance tradeoff and are inapplicable to discrete programs that
cannot be continuously relaxed. Our stochastic derivatives also extend the pathwise gradient estimator
to discrete programs but do so unbiasedly. The conceptual starting point of our approach is finite
differences with common random numbers [21, 22, 23], whose ideas have also been extended by
direct optimization [24, 25], but crucially we show how to take the exact limit of step size ε → 0 even
in the discrete case. The field of smoothed perturbation analysis [26, 27] develops a mathematically
equivalent object to our smoothed stochastic derivative based on conditional expectations, which is a
special case of our formalism, and has also considered a randomized approach similar to our pruning
technique in the context of generalized semi-Markov processes [28]. However, these ideas have
not previously been applied to construct a general-purpose AD method via rigorous composition
rules and the algorithms and data structures to realize the approach automatically.

Although our method can be used to hand-derive a gradient estimator, the main feature is compos-
ability through user-written functions, enabling an automated mechanism. While mainstream AD
frameworks do not support unbiased differentiation of discrete random programs, Storchastic [29] is
a specialized framework for AD of stochastic computation graphs [15] where the user can specify
which estimator to use at each node, as well as any tunable hyperparameters. Storchastic implements
an exhaustive set of prior gradient estimation methods at each sampling step. However, the runtime of
the derivative estimate is in general exponential in the length of the largest chain of stochastic nodes,
an artifact of the way many prior gradient estimators compose [29, 30]. In Section 3 we demonstrate
stochastic AD that matches the computational complexity of deterministic AD even when discrete
random functions are chained together, alleviating these performance issues.

2 Composable derivatives of stochastic programs

In this section, we develop the notion of a stochastic derivative for programs containing discrete
randomness. We shall motivate this object as a natural generalization of the pathwise gradient
estimator for continuous random programs, and present the key ideas underpinning the formalism.
When describing infinitesimal asymptotics, we say a function g(ε) is O(ε) if |g(ε)| ≤ C|ε| for some
real C and all sufficiently small ε. Colloquially, we describe quantities that are O(ε) as “infinitesimal”.

2.1 Infinitesimally perturbing a stochastic program

We are interested in differentiating stochastic programs, formally defined below. A stochastic program
can be thought of as a map from an input p to a random variable X(p). Here, X(p) can represent
either an “elementary” program such as a draw from a Bernoulli distribution, or the full user-provided
stochastic program represented using many elementary programs, e.g. a simulation of a random walk.
Definition 2.1. A stochastic program X(p) is a stochastic process with values in a Euclidean space
E, whose index set I is either an open subset of a Euclidean space or a closed real interval.

Let Ω be the sample space, equipped with a probability distribution P. To sample X(p) at input p ∈ I ,
which we call the primal evaluation, one should imagine a sample ω being randomly chosen from Ω
according to P to produce an output X(p)(ω) ∈ E. Note that P is independent of p and X(p) is a
map Ω → E; such a formulation has been called the “reparameterization trick” [14]. For example,
a Bernoulli distribution Ber(p) can be represented by choosing a uniform random ω ∈ [0, 1] and
defining X(p)(ω) = 1[1−p,1](ω), where 1S is the indicator function for a set S (see Fig. 2b).

At fixed p ∈ I we define the differential dX(ε), which is itself a stochastic program:

dX(ε) = X(p+ ε)−X(p). (2.1)

Let us now restrict our attention to the case where I is a closed real interval, so that p, ε ∈ R. The
sensitivity of stochastic programs Z with more general index sets can be understood at an input u by
studying at p = 0 the directional perturbation X(p) = Z(u+ pv) in a direction v.

3

Output

Ω
0

X(p+ ε)

X(p)

dX(ε)

O(ε)

ω1ω2 1

{

{Not
O(ε)

(a) X(p) ∼ Exp(p).

Output

Ω
0 1− p− ε 1− p

X(p+ ε) X(p)

1

1

(b) X(p) ∼ Ber(p).

dX(ε)

1− p− ε 1− p

Output

Ω
0

X(p)(ω) = 0 X(p)(ω) = 1{ {
1

1

(c) X(p) ∼ Ber(p).

Figure 2: Illustrations of dX(ε) for a small finite ε, assuming ε > 0 for simplicity. (a) The O(ε)
range of dX(ε) for continuous X(p). The blue bracket indicates a sample from dX(ε), while the red
bracket indicates a sample obtained by black-box finite differences. (b) The original program X(p)
and the perturbed program X(p+ ε) for discrete (Bernoulli) X(p). (c) Only those samples ω below
the hatched area cause a non-zero change in output. The hatched area equals E[dX(ε)], the expected
size of a change for randomly drawn ω.

For the full user-provided stochastic program, we are interested in computing dE[X(p)]
dp , which is

related to E[dX(ε)] by
dE[X(p)]

dp
= lim

ε→0

E[dX(ε)]

ε
. (2.2)

We thus expect dX(ε) to have “infinitesimal” O(ε) expectation as ε approaches 0. Let us consider
the form of dX(ε) for two elementary programs: a program returning a sample from the continuous
Exponential distribution Exp(p) with scale p and a program returning a sample from the discrete
Bernoulli distribution Ber(p) with success probability p. In both cases, the program is parameterized
via the inversion method [31] over the sample space Ω = [0, 1], which chooses P to be uniform over
[0, 1] and X(p)(ω) to be non-decreasing in ω. For X(p) ∼ Exp(p), X(p)(ω) = −p log(1 − ω) is
differentiable in p. Thus, the range of dX(ε) is O(ε) for any fixed ω, as illustrated in Fig. 2a.

In contrast, consider X(p) ∼ Ber(p), with X(p)(ω) = 1[1−p,1](ω). As shown in Fig. 2b, as ε → 0
the output of X(p) at a random ω ∈ Ω almost surely does not change in X(p + ε). Specifically,
dX(ε) is 0 with probability 1−ε ≈ 1, and assumes the value 1 with probability ε (Fig. 2c). This is the
fundamental challenge presented by discrete randomness: a O(ε) change in the input turns into a finite
perturbation to the output, where “finite” means that it is non-vanishing as ε → 0. The perturbation
occurs with “infinitesimal” O(ε) probability, contributing to the O(ε) expectation of dX(ε).

2.2 Coupling to the primal

To produce low-variance estimates of the derivative of X(p), it is important that the primal and
derivative computations are coupled by a shared source of randomness. To see this, let us understand
what happens when they are entirely uncoupled. A black-box finite difference approach with step size
ε would independently sample ω1 and ω2 from Ω (Fig. 2a, red), computing the derivative estimate
(X(p+ ε)(ω2)−X(p)(ω1)) /ε. However, since the samples are independent, the variance of the
estimator is of order 1/ε2, so we are forced to pick a finite ε to balance a bias-variance tradeoff.

This motivates using the same random sample for the primal and derivative computations (Fig. 2a,
blue). For continuous randomness, taking the limit of this approach as ε → 0 leads to the widely-used
pathwise gradient estimator δ, given as the almost sure limit of dX(ε)/ε as ε → 0 (i.e. the pointwise
derivative of X(p) at each fixed ω), so that

dE[X(p)]

dp
= lim

ε→0

E[dX(ε)]

ε

?
= E

[
lim
ε→0

dX(ε)

ε

]
= E [δ] . (2.3)

But, considering a simple Bernoulli variable X(p) ∼ Ber(p) as in Fig. 2c, we see how this approach
is ill-suited for the discrete case! As ε approaches 0, the differential dX(ε) is non-zero with

4

infinitesimal O(ε) probability. This means that δ is almost surely 0, while the true derivative of
E[X(p)] = p is 1. The finite perturbation is neglected.

Thus, the pathwise gradient estimator needs to be modified to handle discrete randomness. The
issue with the interchange of limit and expectation in (2.3) is that dX(ε)/ε is unbounded in ε in
the presence of a finite perturbation. This motivates explicitly considering the event of a large jump
in dX(ε), as characterized by the event AB(ε) = {|dX(ε)| > B|ε|} for a chosen random bound
B > |δ|. The event AB(ε) has O(ε) probability, which is vanishingly small, but its contribution to
the derivative estimate cannot be neglected because it contains finite perturbations. This motivates
sampling from this part of the probability space separately. Formally, we introduce a random weight
w ∈ R and alternate value Y ∈ E that characterize the sensitivity of X(p) when the probability space
is restricted to AB(ε) [as given by the r.h.s. of (2.4) below], forming the “stochastic derivative”:
Definition 2.2 (Stochastic derivative). Suppose X(p) ∈ E is a stochastic program with index set I a
closed real interval. We say that the triple of random variables (δ, w, Y), with w ∈ R and Y ∈ E, is a
right (left) stochastic derivative of X at the input p ∈ I if dX(ε)/ε → δ almost surely as ε → 0, and
there is an integrable (i.e. of bounded expectation) random variable B > |δ| such that for all bounded
functions f : E → R with bounded derivative it holds almost surely that

E [w (f(Y)− f(X(p))) | X(p)] = lim
ε→0+/−

E

[
f(X(p+ ε))− f(X(p))

ε
1AB(ε)

∣∣∣∣ X(p)

]
, (2.4)

with limit taken from above (below), where P (AB(ε) | X(p)) /ε is dominated by an integrable
random variable for all ε > 0 (ε < 0).

A stochastic derivative may be collapsed into an unbiased estimator of the derivative of E[X(p)].
Proposition 2.3 (Unbiasedness). If (δ, w, Y) is a stochastic derivative of X(p) at p, it holds that

dE [X(p)]

dp
= E[δ + w (Y −X(p))]. (2.5)

Proof sketch. With f as identity, by Definition 2.2 the sensitivity of X(p) over AB(ε) is given by
w(Y − X(p)). Given the complement event Ac

B(ε), it holds that |dX(ε)/ε| ≤ B: a dominated
convergence argument shows that the sensitivity of X(p) is then given by its almost-sure derivative δ.

Theorem 2.4 shows the existence of the stochastic derivative for a stochastic program, subject to
technical assumptions given in our formal treatment (Appendix B).
Theorem 2.4 (Existence, simplified). Given a sufficiently regular stochastic program X(p) with
index set I a closed interval [a, b] ⊂ R, there exists a right stochastic derivative (δ, wR, YR) with
wR ≥ 0 at any p ∈ [a, b) and a left stochastic derivative (δ, wL, YL) with wL ≤ 0 at any p ∈ (a, b].

Proof sketch. The proof is by construction: at a high level, w is the derivative of the probability
of a large jump, while Y follows the distribution of the possible jumps, conditional on a jump
happening. Specifically, Y has distribution given as the limit as ε → 0 of the conditional distribution
of X(p+ε) = X(p)+dX(ε) given the event AB(ε) and the outcome of X(p). The weight w is given
as the derivative w.r.t. ε of the probability P (AB(ε) | X(p)) that dX(ε) jumps by a non-infinitesimal
amount, conditional on X(p). Essentially, since P (AB(ε) | X(p)) ≈ wε, multiplying by w bridges
the gap between conditioning on AB(ε) [recall Y is constructed conditional on AB(ε)] and simply
restricting the probability space to AB(ε) [i.e. multiplying by 1AB(ε) as in (2.4)].

Example 2.5 (Right stochastic derivative of Bernoulli variable). Suppose X(p) ∼ Ber(p), parame-
terized via the inversion method, and take ε > 0. As shown in Fig. 2c, dX(ε) is parameterized as,

dX(ε)(ω) =

{
1 if 1− p− ε ≤ ω < 1− p,
0 otherwise.

(2.6)

Given the event X(p) = 1, we have that ω ≥ 1− p and dX(ε) is deterministically 0. On the other
hand, given X(p) = 0, we have ω < 1 − p, so with probability ε/(1 − p) the differential dX(ε)
assumes a value of 1, i.e. the Bernoulli variable flips from 0 to 1. Thus, we may construct a right

5

stochastic derivative (0, wR, YR) of X(p) by letting wR = 1/(1 − p), YR = 1 conditionally on
X(p) = 0 and wR = YR = 0 conditionally on X(p) = 1. For a concrete example, with p = 0.6,
we have wR = 2.5, YR = 1 conditionally on X(p) = 0; StochasticAD.jl prints this as "0 + (1
with probability 2.5ε)" (as explained further in Section 3.1).

We give a number of examples of stochastic derivatives in Appendix A. It is of crucial importance
that w and Y depend conditionally on the output of X(p). In particular, given a primal evalua-
tion X(p) = x, the forms of w and Y depend only on the distribution of the perturbed program on
the set {ω : X(p)(ω) = x} ⊂ Ω, which elegantly generalizes the coupling achieved by the pathwise
gradient estimator δ at each fixed ω ∈ Ω. Intuitively, this coupling allows us to consider only the
smallest possible perturbations to the program in the derivative computation (Fig. 1), and thereby
achieve variance reduction without resorting to continuous relaxations. For example, for a binomial
variable X(p) ∼ Bin(n, p) parameterized via the inversion method (a natural parameterization for
maximizing coupling), it holds that Y ∈ {X(p)− 1, X(p) + 1}. We show in Example A.1 that our
gradient estimator for such a binomial variable has variance of order n, whereas the score function
estimator has variance of order n3, justifying this intuition.

2.3 Composition of stochastic derivatives

Proposition 2.3 shows that the derivative estimate produced by stochastic derivatives is correct
in expectation. But this is insufficient to ensure composition, i.e. a stochastic derivative “chain
rule”. While Definition 2.2 requires composition through deterministic test functions f to enforce a
sufficiently strict definition, Theorem 2.6 provides a general-purpose composition result through any
program which has a stochastic derivative, as well as multidimensional programs with directional
stochastic derivatives (i.e. stochastic derivatives of directional perturbations of the program).
Theorem 2.6 (Chain rule, simplified). Consider independent stochastic programs X1 and X2 and
their composition X2 ◦X1. Suppose that X1 has a right (left) stochastic derivative at p ∈ R given by
(δ1, w1, Y1), and X2 has a right stochastic derivative (δ2, w2, Y2) in the direction δ̂1 = δ1/|δ1| given
conditionally on its input X1(p). Then, under regularity and integrability assumptions, the stacked
program [X1;X2 ◦X1] has a right (left) stochastic derivative (δ, w, Y) at p where δ = [δ1; |δ1|δ2],

Y =

[Y1;X2(Y1)] with probability

w1

w1 + |δ1|w2
,

[X1(p);Y2] with probability
|δ1|w2

w1 + |δ1|w2
,

(2.7)

and w = w1 + |δ1|w2.

Proof sketch. Let A1(ε) be the event of a jump in X1 and A2(ε) be the event of a jump in X2 when
its input is perturbed by εδ1. Given Ac

1(ε) ∩ Ac
2(ε) (a jump in neither), a dominated convergence

argument implies that X2 ◦ X1 does not jump either. Given A1(ε), Definition 2.2 yields that the
sensitivity of X2 ◦X1 is described by alternate values Y1 with weight w1, while given A2(ε) the
sensitivity of X2 ◦X1 is described by alternate values Y2 with weight |δ1|w2. We may then form
w as the sum of these weights and Y as a weighted distribution over the two cases. Crucially, we
may neglect the sensitivity of X2 ◦ X1 given A1(ε) ∩ A2(ε) (a jump in both), as this event has
probability O(ε2). This prevents a combinatorial explosion in the complexity of Y .

2.4 Smoothed stochastic derivatives

The reparameterization trick neglects finite perturbations, while stochastic derivatives precisely
capture all possible finite perturbations. There exists a middle ground between these methods: one
may take a conditional expectation on X(p) so that finite perturbations have been “smoothed” into
infinitesimal ones. (E.g. "0 + (1 with probability 2.5ε)" becomes "0 + 2.5ε".)
Definition 2.7 (Smoothed stochastic derivative). For a stochastic program X(p) with a right (left)
stochastic derivative (δ, w, Y) at input p, a right (left) smoothed stochastic derivative δ̃ of X at input
p is given as

δ̃ = E [δ + w(Y −X(p)) | X(p)] . (2.8)

6

1 struct StochasticTriple
2 value # primal evaluation
3 δ # "infinitesimal" component
4 Δs # component of discrete change
5 # with "infinitesimal"
6 # probability
7 end

1 using Distributions
2 function X(p) p = 0.6 + ε

3 a = p^2 0.36 + 1.2ε
4 b = rand(Binomial(10, p))
5 6 + (1 with probability 10.0ε)
6 c = 2 * b + 3 * rand(Bernoulli(p))
7 12 + (3 with probability 12.5ε)
8 return a * c * rand(Normal(b, a))
9 end

1 julia> using StochasticAD
2 julia> st = stochastic_triple(X, 0.6) # sample a single stochastic triple at p = 0.6
3 27.11 + 94.32ε + (6.78 with probability 12.5ε)
4 julia> derivative_contribution(st) # which produces a single derivative estimate...
5 179.04
6 julia> samples = [derivative_estimate(X, 0.6) for i in 1:1000] # take many estimates!
7 julia> println("d/dp of E[X(p)]: $(mean(samples)) ± $(std(samples) / sqrt(1000))")
8 d/dp of E[X(p)]: 204.63 ± 1.25

Figure 3: Left: Stochastic triple structure (simplified). Right: A toy program X(p), using discrete
distributions Bin(n, p), Ber(p), and the continuous normal distribution N (µ, σ); the used stochastic
derivatives are given in Appendix A. Highlights show intermediate values during a single derivative
estimate. Bottom: Differentiating E[X(p)]; printout float precision reduced for clarity.

Smoothed stochastic derivatives easily permit reverse-mode AD instead of forward-mode, as they have
the same form as the usual derivative. However, they enjoy more limited composition properties: they
propagate exactly through differentiable functions f that are linear over the conditional distribution of
Y given X(p) via the standard chain rule, as we prove in Appendix B.6. Due to the coupling of Y and
X(p), this is a much weaker requirement than global linearity, which can lead to low-bias estimates:
for example, for the program X(p) = Geo(p)3 smoothed stochastic derivatives give a derivative
estimate with < 0.5% bias at p = 0.01, even though the cube function is highly non-linear on the
inter-quartile range [28, 137] of Geo(p). Smoothed stochastic derivatives recover the widely-used
straight-through gradient estimator [6] as a special case, as we work out in Example A.8.

3 Automatic differentiation of stochastic programs

We develop StochasticAD.jl, a prototype package for stochastic AD based on our theory of
stochastic derivatives. As discussed in Section 2.4, smoothed stochastic derivatives obey the usual
chain rule, and thus can be used with existing AD infrastructure by supplying custom rules for discrete
random constructs, and we do so for a particle filter in Section 3.4. However, performing automatic
differentiation with unsmoothed stochastic derivatives, which are unbiased in all cases, requires
new innovation. We develop a novel computational object called a stochastic triple, introduced in
Section 3.1 and showcased in Section 3.2 and Section 3.3.

3.1 Educational toy example of stochastic triples
Forward-mode AD is often implemented with dual numbers [2], which pair the primal evaluation of
a deterministic function f(p) with its derivative d

dpf(p). Dual numbers can be propagated through a
program using the chain rule. A useful alternative perspective of dual numbers is that they propagate
an “infinitesimal” perturbation ε to the input through the program, where d

dpf(p) is the coefficient of
the “dual” element ε. Stochastic triples generalize dual numbers by including a third component ∆s
to describe finite perturbations with infinitesimal probability (Fig. 3, left).

In Fig. 3, we consider a toy program X(p) including discrete randomness. We are interested in
the derivative of E[X(p)] at p = 0.6, and hence we provide the stochastic triple printed as "0.6
+ ε" as input. First, the triple is squared and becomes "0.36 + 1.2ε": this is the familiar way
that dual numbers propagate, via the chain rule. But what happens when the triple is propagated

7

...
X = 0
for step in 1:n
i = rand(Categorical(probs(X)))
X += steps[i]

end
return f(X)

<latexit sha1_base64="6XYQ7oVm7339ZGiKpU103sB/slI=">AAADfHicdZJdb9MwFIa9lo9Rvja45CYQkIboqjjtCpfTEILLgeg2UZfKcU7aqE5S2SeIys2/4Bb+F38G4aQpo/uwZOnkvM/xeR2fYC5jjZ73e6vRvHHz1u3tO6279+4/eLiz++hEZ7kSMBCZzNRZwDXIOIUBxijhbK6AJ4GE02D2ttRPv4HScZZ+xsUcRgmfpHEUC4429YUhfEezx18W4x3X63jVci4HtA5cUq/j8W6DsTATeQIpCsm1HlJvjiPDFcZCQtFiuYY5FzM+gaENU56AHpnKcuG8sJnQiTJld4pOlf2/wvBE60USWDLhONUXtTJ5lTbMMXozMnE6zxFSsWoU5dLBzCnv74SxAoFyYQMuVGy9OmLKFRdo/1KrxUKI2AzQpYZJiHDpUqbiyRSZ4umkulZJBIqvCSYrYc0ta0ILLl3q+uafvnT9zUOseVUibncDWrrdTY4H+ryZfUw891R+1dS7khFhhtT7alxarH2MQ7BdjGEqccKCPXWstpI2hCpd5e0kVc9hZrBIM4RxIHMozKf3R4Xx2rTvt/2Dg+JqVJa2Joovat6nvbZPu+W+puI62M4jvTh9l4MTv0P7nd7Hnnt4VE/mNnlCnpE9Qslrckg+kGMyIIKk5Af5SX41/jSfN18191doY6uueUw2VrP/F+WjGWQ=</latexit>

(a)
<latexit sha1_base64="yJv+mkKVwWNis9YUaAaiNySI2To=">AAADfHicdZJdb9MwFIa9lo9Rvja45CYQkIboqjjtCpfTEILLgeg2UZfKcU7aqE5S2SeIys2/4Bb+F38G4aQpo/uwZOnkvM/xeR2fYC5jjZ73e6vRvHHz1u3tO6279+4/eLiz++hEZ7kSMBCZzNRZwDXIOIUBxijhbK6AJ4GE02D2ttRPv4HScZZ+xsUcRgmfpHEUC4429YUhfEezF7wsxjuu1/Gq5VwOaB24pF7H490GY2Em8gRSFJJrPaTeHEeGK4yFhKLFcg1zLmZ8AkMbpjwBPTKV5cJ5YTOhE2XK7hSdKvt/heGJ1osksGTCcaovamXyKm2YY/RmZOJ0niOkYtUoyqWDmVPe3wljBQLlwgZcqNh6dcSUKy7Q/qVWi4UQsRmgSw2TEOHSpUzFkykyxdNJda2SCBRfE0xWwppb1oQWXLrU9c0/fen6m4dY86pE3O4GtHS7mxwP9Hkz+5h47qn8qql3JSPCDKn31bi0WPsYh2C7GMNU4oQFe+pYbSVtCFW6yttJqp7DzGCRZgjjQOZQmE/vjwrjtWnfb/sHB8XVqCxtTRRf1LxPe22fdst9TcV1sJ1HenH6Lgcnfof2O72PPffwqJ7MbfKEPCN7hJLX5JB8IMdkQARJyQ/yk/xq/Gk+b75q7q/QxlZd85hsrGb/L+i0GWU=</latexit>

(b)
<latexit sha1_base64="yzmc/K2Vx9sARVuE2xwWuYgsHeU=">AAADfHicdZJdb9MwFIa9lo9Rvja45CYQkIboqjjtCpfTEILLgeg2UZfKcU7aqE5S2SeIys2/4Bb+F38G4aQpo/uwZOnkvM/xeR2fYC5jjZ73e6vRvHHz1u3tO6279+4/eLiz++hEZ7kSMBCZzNRZwDXIOIUBxijhbK6AJ4GE02D2ttRPv4HScZZ+xsUcRgmfpHEUC4429YUhfEezJ14W4x3X63jVci4HtA5cUq/j8W6DsTATeQIpCsm1HlJvjiPDFcZCQtFiuYY5FzM+gaENU56AHpnKcuG8sJnQiTJld4pOlf2/wvBE60USWDLhONUXtTJ5lTbMMXozMnE6zxFSsWoU5dLBzCnv74SxAoFyYQMuVGy9OmLKFRdo/1KrxUKI2AzQpYZJiHDpUqbiyRSZ4umkulZJBIqvCSYrYc0ta0ILLl3q+uafvnT9zUOseVUibncDWrrdTY4H+ryZfUw891R+1dS7khFhhtT7alxarH2MQ7BdjGEqccKCPXWstpI2hCpd5e0kVc9hZrBIM4RxIHMozKf3R4Xx2rTvt/2Dg+JqVJa2Joovat6nvbZPu+W+puI62M4jvTh9l4MTv0P7nd7Hnnt4VE/mNnlCnpE9Qslrckg+kGMyIIKk5Af5SX41/jSfN18191doY6uueUw2VrP/F+vFGWY=</latexit>

(c)

Figure 4: Automatic differentiation of discrete-time Markov processes. (a) Code snipped for a 1D
random walk, which can be automatically differentiated by StochasticAD.jl; probs(X) gives the
transition probabilities at value X and steps[i] gives the step size for the ith transition. (b) The
variance of unbiased gradient estimates of the random walk program using stochastic triples and
the score function, which is applied both without a control variate (CV) and with a pre-computed
batch-average CV. (c) The final board for one run of the stochastic Game of Life with N = 25 and
T = 10, where the “+” signs represent additional living cells (white) in the stochastic alternative
path, and the “X” signs represent additional dead cells (grey).

through the discrete and random Binomial variable? The resultant stochastic triple "6 + (1 with
probability 10.0ε)" is an integer with a component of discrete change, reflecting an infinitesimal
probability of one more success in the Binomial Bin(10, 0.6). We can in fact understand why the
probability is "10ε" by representing the Binomial as the sum of 10 Bernoulli variables, each with
probability 0.6. Since 4 of the Bernoulli’s have an output of 0, they each have a probability "2.5ε"
of switching to 1 (recall Example 2.5), and thus there is in total a "10ε" probability that the output of
the Binomial increases by 1 (rigorously, we have applied Theorem 2.6). Formally, we can interpret
a printout "x + δε + (Δ with probability wε)" as follows: x is a sample of the random
variable X(p) describing the primal evaluation, and δ, w, and x+Δ are samples of the components δ,
w, and Y , respectively, of the stochastic derivative of X at p.

Using our chain rule for stochastic derivatives (Theorem 2.6), we write rules for propagating stochas-
tic triples through functions via operator overloading [32], exploiting Julia’s multiple dispatch
feature [33]. When multiple discrete changes are possible, we pick one probabilistically: we call
this strategy pruning (recall Fig. 1) and show its unbiasedness in Appendix B.5. For example, in
line 6 of Fig. 3, right, we probabilistically choose between the perturbation to the Binomial and
the perturbation to the Bernoulli, in this case picking the latter. To handle causal relationships
between perturbations as in the first case of Eq. (2.7), we associate each perturbation with a tag
to avoid erroneously pruning between two perturbations that occur simultaneously. Thus, stochas-
tic triples can efficiently propagate through the full toy function written in Fig. 3. The function
derivative_estimate creates a stochastic triple, propagates it, and collapses it into the derivative
estimate δ + wΔ, forming an unbiased estimate of the derivative via Proposition 2.3 (Fig. 3, bottom).

3.2 Inhomogeneous random walk

We consider a Markovian random walk x0, . . . , xn on Z≥0, with transition behavior dependent on a
parameter p as follows,

xn =

xn−1 + 1 with probability exp
(
−xn−1

p

)
xn−1 − 1 with probability 1− exp

(
−xn−1

p

) , x0 = 0. (3.1)

We consider a program that stochastically simulates this walk and applies an arbitrary non-linear
function f to the output xn. In practice, f may represent a loss or a likelihood estimate; in this toy
setting, we take f(x) = x2. We are interested in studying the asymptotic behavior of the variance of
our automatically derived gradient estimator, and so set p = n so that the transition function varies
appreciably over the range of the walk for all n. We find that the stochastic triple estimator has
asymptotically lower variance than the score function estimator (Fig. 4b). Crucially, stochastic triples
achieve this variance reduction while remaining entirely in discrete space, automatically producing a
gradient estimate that is provably unbiased.

8

Figure 5: Unbiased differentiable particle sampler using smoothed stochastic derivatives. (a) Latent
path (blue) and observations (orange) for a particular realization of the process given by the hidden
Markov model (see Appendix C for details) in d = 2 dimensions, including the recursively applied
Kalman filter estimator (red) and the particles of the particle filter (going from blue at n = 1 to
pink at n = 20). (b) The value of the derivative of logL with respect to the first parameter for
d = 2 calculated by differentiating the Kalman filter is marked by a black line. The blue distribution
corresponds to the derivative computed with smoothed stochastic derivatives. The orange distribution
represents the biased derivative approach, where the resampling step is not differentiated. The means
of the two distributions are highlighted by a line in the respective color. In both cases, we use 1000
samples. (c) Averaged run times in ms comparing forward- and reverse-mode AD for increasing
numbers of parameters.

3.3 Stochastic Game of Life

For our next example, we differentiate a stochastic version of John Conway’s Game of Life, played
on a two-dimensional board. In the traditional Game of Life, a dead cell becomes alive when 3 of
its neighbors are alive, while a living cell survives when 2 or 3 of its neighbors are alive. In our
stochastic version, each of these events instead has probability 95%, while their complementary events
have probability 5%. Such types of discrete stochastic programs arise in many applications. For
example, mixing machine learning with agent-based models found in epidemiology and sociological
contexts [34, 35] or rule-based models and discrete stochastic (Gillespie) simulations in systems
biology [36, 37] requires similar program constructs.

Consider a program that populates each cell of an N ×N board with probability p, runs the stochastic
Game of Life for T time steps, and counts the number of living cells nliving. We perform a sensitivity
analysis of the final living population with respect to the initial living population, i.e. differentiate the
expectation of nliving with respect to p. Stochastic triples propagate fully through the program, leading
to an unbiased estimate of the derivative, as we verify with black-box finite differences. An example
final board is depicted in Fig. 4c, along with the difference to the alternative final board chosen
by pruning. This is a high-dimensional example (the state space has dimension N2 = 625) with
fundamentally discrete structure, providing support for the algorithmic correctness and generality of
stochastic triples. In particular, the program cannot directly be continuously relaxed since it includes
array indexing; in the approach of stochastic triples, integer-valued quantities stay integers.

3.4 Particle filter

As a final example, we consider a hidden Markov model with random latent states X1, . . . , Xn,
observations y1 ∼ Y1, . . . , yn ∼ Yn, and parameters θ. The likelihood L = p(y1, . . . , yn | θ) is in
general not tractable, but a particle filter can be used to compute an estimate of L. Here, we assume
familiarity with particle filters [38, 39] but provide a short exposition with focus on the resampling
step and experimental details in Appendix C. We assume the latent states to be continuous random,
but discrete randomness enters through the resampling step.

To differentiate the particle filter resampling step, we provide a stochastic derivative formulation of
the returned particles and importance weights (Appendix C). Importantly, L can be expressed by the
sum of the weights at the last step, and the weight assigned to each particle in the resampling steps

9

is used in a purely linear way. Smoothed stochastic derivatives permit unbiased reverse-mode AD
in this case. Our formulated approach, though derived very differently, is equivalent to the particle
filter AD scheme developed in [7] implementing the first estimator derived in [40], as we show in
Appendix C. Our particular choice of system allows the calculation of a ground-truth gradient of L by
differentiating the Kalman filter algorithm [41]. Fig. 5a visualizes the latent process and observations,
and the Kalman and particle filter trajectories. Our estimator agrees with the Kalman filter derivative,
unlike biased estimators [42, 43, 44] that neglect the contribution of the resampling step or perform
it with entropy-regularized optimal transport (Fig. 5b). For our program, we observe reverse-mode
AD to perform better for more than ≈ 100 parameters (Fig. 5c). However, we find that the variance
increases more rapidly with the number of steps and dimension as compared to biased estimators,
suggesting that there is room for improvement in the coupling approach [7, 40].

4 Limitations and outlook

We have presented a method for unbiased AD of programs with discrete randomness, which, we have
argued, is a natural generalization of pathwise gradient estimators based on the reparameterization
trick to the discrete case. However, more work will need to be done to turn our software demonstration
StochasticAD.jl into an AD system capable of handling the full complexity of applications such
as machine learning. A useful improvement would be better support for discrete constructs such as
if statements with discrete random input; currently, such branches need to be rewritten using array
indexing, which is supported. Further, an interesting direction for future work is to automatically
handle functions which deterministically turn a continuous random quantity into a discrete one, such
as an inequality comparison X(p) > 0 or a Bernoulli variable implemented implicitly as rand()
< p and also to handle constructs such as while loops based on such functions. It would also be
interesting to explore synergies of our approach with ADEV [45], a Haskell-based framework for
provably correct stochastic AD developed concurrently with our work, which formulates gradient
estimation strategies using Haskell’s continuation passing style.

We also expect future work to focus on further variance reduction. Our method’s variance depends on
the degree to which the primal and derivative computations can be coupled: while we present a natural
method of coupling for a number of elementary stochastic programs and their compositions, the design
space is rich when it comes to challenging examples such as the Game of Life or the resampling step
of a particle filter. (This design space is reflected in the fact that the form of the stochastic derivative
depends not only on a program’s probability distribution, but also on the way it is parameterized.)
Furthermore, the pruning operation can introduce additional variance: for example, the derivative
estimate automatically produced for the program B1 + 2B2 with i.i.d. Bi ∼ Bin(n, p) has variance
O(n2) due to the pruning between the +1 and +2 perturbations, even though stochastic derivatives give
gradient estimators with variance O(n) for each of B1 and B2. Smoothing does not face this issue but
accrues a bias through non-linear functions. Pruning and smoothing may be thought of as the simplest
ways to construct an AD algorithm from stochastic derivatives, lying on opposite ends of the design
space: we anticipate future work to address their suboptimalities and ideally form unbiased estimators
for discrete random programs that fully close the variance gap to their continuous counterparts [14, 46].
Finally, going beyond smoothing for reverse-mode AD, and ideally achieving unbiasedness while
remaining coupled to the primal, is an important open problem for large-scale applications.

Acknowledgments and disclosure of funding

We thank Alan Edelman, Guillaume Dalle, and the anonymous reviewers for their feedback, Emile van
Krieken for helpful discussions regarding composing gradient estimators, and Simeon Schaub for help
with the package. We acknowledge the MIT SuperCloud and Lincoln Laboratory Supercomputing
Center for providing HPC resources that have contributed to the research results reported within
this paper. This material is based upon work supported by the National Science Foundation OAC-
1835443, SII-2029670, ECCS-2029670, OAC-2103804, and PHY-2021825; the Advanced Research
Projects Agency-Energy DE-AR0001211 and DE-AR0001222; the Defense Advanced Research
Projects Agency (DARPA) HR00112290091; the United States Artificial Intelligence Accelerator
FA8750-19-2-1000; the Chalmers AI Research Centre; and the Swiss National Science Foundation
51NF40-185902. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

10

References

[1] Andreas Griewank. On automatic differentiation. Mathematical Programming: recent develop-
ments and applications, 6(6):83–107, 1989.

[2] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
Automatic differentiation in machine learning: a survey. Journal of Machine Learning Research,
18:1–43, 2018.

[3] George Corliss, Christele Faure, Andreas Griewank, Laurent Hascoet, and Uwe Naumann.
Automatic differentiation of algorithms: from simulation to optimization. Springer Science &
Business Media, 2002.

[4] Søren Asmussen and Peter W Glynn. Stochastic simulation: algorithms and analysis, volume 57.
Springer, 2007.

[5] Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte Carlo gradient
estimation in machine learning. J. Mach. Learn. Res., 21(132):1–62, 2020.

[6] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv:1308.3432, 2013.

[7] Adam Ścibior and Frank Wood. Differentiable particle filtering without modifying the forward
pass. arXiv:2106.10314, 2021.

[8] Peter W Glynn. Likelihood ratio gradient estimation for stochastic systems. Communications of
the ACM, 33(10):75–84, 1990.

[9] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3):229–256, 1992.

[10] Jack PC Kleijnen and Reuven Y Rubinstein. Optimization and sensitivity analysis of computer
simulation models by the score function method. European Journal of Operational Research,
88(3):413–427, 1996.

[11] G Ch Pflug. Sampling derivatives of probabilities. Computing, 42(4):315–328, 1989.
[12] Bernd Heidergott and FJ Vázquez-Abad. Measure-valued differentiation for Markov chains.

Journal of Optimization Theory and Applications, 136(2):187–209, 2008.
[13] Paul Glasserman and Yu-Chi Ho. Gradient estimation via perturbation analysis, volume 116.

Springer Science & Business Media, 1991.
[14] Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv:1312.6114,

2013.
[15] John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient estimation

using stochastic computation graphs. Advances in Neural Information Processing Systems, 28,
2015.

[16] George Tucker, Andriy Mnih, Chris J Maddison, John Lawson, and Jascha Sohl-Dickstein.
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models. Advances
in Neural Information Processing Systems, 30, 2017.

[17] Will Grathwohl, Dami Choi, Yuhuai Wu, Geoffrey Roeder, and David Duvenaud. Back-
propagation through the void: Optimizing control variates for black-box gradient estimation.
arXiv:1711.00123, 2017.

[18] Peter W Glynn and Roberto Szechtman. Some new perspectives on the method of control
variates. In Monte Carlo and Quasi-Monte Carlo Methods 2000, pages 27–49. Springer, 2002.

[19] Bernd Heidergott, Felisa J Vázquez-Abad, and Warren Volk-Makarewicz. Sensitivity estimation
for Gaussian systems. European Journal of Operational Research, 187(1):193–207, 2008.

[20] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with Gumbel-Softmax.
In International Conference on Learning Representations, 2017.

[21] David F Anderson. An efficient finite difference method for parameter sensitivities of continuous
time markov chains. SIAM Journal on Numerical Analysis, 50(5):2237–2258, 2012.

[22] Vo Hong Thanh, Roberto Zunino, and Corrado Priami. Efficient finite-difference method
for computing sensitivities of biochemical reactions. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 474(2218):20180303, 2018.

11

[23] Paul Glasserman and David D Yao. Some guidelines and guarantees for common random
numbers. Management Science, 38(6):884–908, 1992.

[24] Tamir Hazan, Joseph Keshet, and David McAllester. Direct loss minimization for structured
prediction. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors,
Advances in Neural Information Processing Systems, volume 23. Curran Associates, Inc., 2010.

[25] Guy Lorberbom, Chris J Maddison, Nicolas Heess, Tamir Hazan, and Daniel Tarlow. Direct
policy gradients: Direct optimization of policies in discrete action spaces. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 18076–18086. Curran Associates, Inc., 2020.

[26] Wei-Bo Gong and Yu-Chi Ho. Smoothed (conditional) perturbation analysis of discrete event
dynamical systems. IEEE Transactions on Automatic Control, 32(10):858–866, 1987.

[27] Paul Glasserman and W-B Gong. Smoothed perturbation analysis for a class of discrete-event
systems. IEEE Transactions on Automatic Control, 35(11):1218–1230, 1990.

[28] Michael C Fu and Jian-Qiang Hu. Conditional Monte Carlo: Gradient estimation and optimiza-
tion applications, volume 392. Springer Science & Business Media, 2012.

[29] Emile van Krieken, Jakub Mikolaj Tomczak, and Annette Ten Teije. Storchastic: A framework
for general stochastic automatic differentiation. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, 2021.

[30] Emile van Krieken, Jakub Tomczak, and Annette Ten Teije. Openreview: Stor-
chastic: A framework for general stochastic automatic differentiation. URL
https://openreview.net/forum?id=KAFyFabsK88.

[31] Luc Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, 1986.
[32] Jarrett Revels, Miles Lubin, and Theodore Papamarkou. Forward-mode automatic differentiation

in Julia. arXiv:1607.07892 [cs.MS], 2016.
[33] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to

numerical computing. SIAM Review, 59(1):65–98, 2017.
[34] Eric Silverman, Umberto Gostoli, Stefano Picascia, Jonatan Almagor, Mark McCann, Richard

Shaw, and Claudio Angione. Situating agent-based modelling in population health research.
Emerging Themes in Epidemiology, 18(1):10, Jul 2021.

[35] Ayush Chopra, Alexander Rodríguez, Jayakumar Subramanian, Balaji Krishnamurthy, B Aditya
Prakash, and Ramesh Raskar. Differentiable agent-based epidemiology. arXiv preprint
arXiv:2207.09714, 2022.

[36] Lily A Chylek, Leonard A Harris, Chang-Shung Tung, James R Faeder, Carlos F Lopez, and
William S Hlavacek. Rule-based modeling: a computational approach for studying biomolecular
site dynamics in cell signaling systems. Wiley Interdiscip. Rev. Syst. Biol. Med., 6(1):13–36,
January 2014.

[37] James R Faeder, Michael L Blinov, and William S Hlavacek. Rule-based modeling of biochemi-
cal systems with BioNetGen. Methods Mol. Biol., 500:113–167, 2009.

[38] Nicolas Chopin and Omiros Papaspiliopoulos. An introduction to sequential Monte Carlo.
Springer, 2020.

[39] Arnaud Doucet and Adam M Johansen. A tutorial on particle filtering and smoothing: Fifteen
years later. Oxford Handbook of nonlinear filtering, 12(656-704), 2011.

[40] George Poyiadjis, Arnaud Doucet, and Sumeetpal S. Singh. Particle approximations of the score
and observed information matrix in state space models with application to parameter estimation.
Biometrika, 98(1):65–80, 02 2011.

[41] R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems. Journal of Basic
Engineering, 82(1):35–45, 03 1960.

[42] Rico Jonschkowski, Divyam Rastogi, and Oliver Brock. Differentiable particle filters: End-to-
end learning with algorithmic priors. arXiv:1805.11122, 2018.

[43] Adrien Corenflos, James Thornton, George Deligiannidis, and Arnaud Doucet. Differentiable
particle filtering via entropy-regularized optimal transport. In Marina Meila and Tong Zhang,
editors, Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 2100–2111. PMLR, 18–24 Jul 2021.

12

https://openreview.net/forum?id=KAFyFabsK88

[44] Conor Rosato, Lee Devlin, Vincent Beraud, Paul Horridge, Thomas B. Schön, and Simon
Maskell. Efficient learning of the parameters of non-linear models using differentiable resampling
in particle filters. IEEE Transactions on Signal Processing, 70:3676–3692, 2022.

[45] Alexander K Lew, Mathieu Huot, Sam Staton, and Vikash K Mansinghka. Adev: Sound
automatic differentiation of expected values of probabilistic programs. arXiv preprint
arXiv:2212.06386, 2022.

[46] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. In International Conference on Learning Representations,
2017.

[47] Fernando Mazzone. A characterization of almost everywhere continuous functions. Real
Analysis Exchange, 21(1):317–319, 1995.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 4.
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Appendix.
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See Appendix D
and the provided code.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] Our examples were small-scale, so we could take enough
samples to achieve minimal error.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix D.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cite the Julia

packages on which this work is based.
(b) Did you mention the license of the assets? [No] We only use open-source software

packages.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We have included our package in the supplemental material.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] We do not use any previously collected data.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

