
Decomposed Knowledge Distillation for
Class-Incremental Semantic Segmentation

Donghyeon Baek1 Youngmin Oh1 Sanghoon Lee1
Junghyup Lee1 Bumsub Ham1,2∗

1Yonsei University 2Korea Institute of Science and Technology (KIST)

https://cvlab.yonsei.ac.kr/projects/DKD/

Abstract

Class-incremental semantic segmentation (CISS) labels each pixel of an image
with a corresponding object/stuff class continually. To this end, it is crucial to
learn novel classes incrementally without forgetting previously learned knowledge.
Current CISS methods typically use a knowledge distillation (KD) technique for
preserving classifier logits, or freeze a feature extractor, to avoid the forgetting
problem. The strong constraints, however, prevent learning discriminative features
for novel classes. We introduce a CISS framework that alleviates the forgetting
problem and facilitates learning novel classes effectively. We have found that
a logit can be decomposed into two terms. They quantify how likely an input
belongs to a particular class or not, providing a clue for a reasoning process of a
model. The KD technique, in this context, preserves the sum of two terms (i.e.,
a class logit), suggesting that each could be changed and thus the KD does not
imitate the reasoning process. To impose constraints on each term explicitly, we
propose a new decomposed knowledge distillation (DKD) technique, improving
the rigidity of a model and addressing the forgetting problem more effectively. We
also introduce a novel initialization method to train new classifiers for novel classes.
In CISS, the number of negative training samples for novel classes is not sufficient
to discriminate old classes. To mitigate this, we propose to transfer knowledge
of negatives to the classifiers successively using an auxiliary classifier, boosting
the performance significantly. Experimental results on standard CISS benchmarks
demonstrate the effectiveness of our framework.

1 Introduction

A general way of learning knowledge for neural networks is to tune network weights with examples
for all object/scene classes at hand. After finishing the learning process, the weights are normally fixed
for inference, suggesting that the current learning paradigm is not flexible enough to handle novel
classes unseen at training time. Fine-tuning the weights with additional examples for novel classes
addresses the problem in part, but this causes catastrophic forgetting [19]. Namely, neural networks
rather forget the previously learned knowledge in order to learn new information. Class-incremental
learning (CIL) targets to learn novel object/scene classes continually using training samples for those
classes only, while minimizing the forgetting problem. A key to CIL is to design a learning method
that balances between rigidity and plasticity of a model [20]. On the one hand, network weights
should not be altered abruptly in learning new information from novel classes, in order to preserve
the discriminative ability for old ones (i.e., rigidity), avoiding catastrophic forgetting. On the other
∗Corresponding author

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://cvlab.yonsei.ac.kr/projects/DKD/

hand, a strong rigidity rather distracts learning knowledge from novel classes. The network weights
should thus be tuned accordingly (i.e., plasticity).

Class-incremental semantic segmentation (CISS) adopts a CIL paradigm for the task of semantic
segmentation. CISS methods [5, 9, 21, 29] typically exploit a softmax cross-entropy (CE) term along
with knowledge distillation (KD) [14]. Although the CE term helps to learn novel classes, applying
the softmax function to all classes, including both old and novel ones, lowers class probabilities of old
ones. This in turn prevents the model from preserving knowledge learned from old classes, resulting
in catastrophic forgetting [1, 23]. The KD technique prevents changing network weights drastically,
alleviating the forgetting problem. Recently, SSUL [6] proposes to use multiple binary cross-
entropy (BCE) terms for individual novel classes separately. This approach handles the forgetting
problem caused by the softmax function, but it is limited in the following: (1) A feature extractor is
frozen in order to enforce the rigidity of the model. This strong constraint for preserving knowledge
for old classes makes it hard to learn discriminative features for novel classes. (2) An initialization
technique for classifiers requires an off-the-shelf saliency detector [15], which is computationally
demanding.

In this paper, we present a simple yet effective CISS framework that overcomes the aforementioned
problems. To achieve better plasticity and rigidity for a CISS model, we propose to train a feature
extractor, and introduce a decomposed knowledge distillation (DKD) technique. KD encourages a
model to predict logits similar to the ones obtained from an old model. We have found that logits
can be represented as the sum of positive and negative reasoning scores that quantify how likely and
unlikely an input belongs to a particular class, respectively. In this context, KD focuses on preserving
the relative difference between positive and negative reasoning scores only, without considering the
change of each score. The DKD technique imposes explicit constraints on each reasoning score,
instead of class logits themselves, which is beneficial to improving the rigidity of a CISS model
together with KD effectively. We also propose an initialization technique to train classifiers for
novel classes effectively. Note that training samples for novel classes are available only for each
incremental step, suggesting that classifiers for the novel classes are trained with a small number
of negative samples. To address this, we propose to train an auxiliary classifier in a current step,
and use it to initialize classifiers for novel classes in a next step. To this end, we consider training
samples of a current step as potential negatives for novel classes in a next step. We then train the
auxiliary classifier, such that all pixels in current training samples as negative ones, transferring prior
knowledge of negative samples to the next step for the classifiers of novel classes. Our initialization
technique also does not require any pre-trained models, e.g., for saliency detection [6], in order to
differentiate possibly negative samples. We demonstrate the effectiveness of our framework with
extensive ablation studies on standard CISS benchmarks [11, 30]. We summarize main contributions
of our work as follows:

• We introduce a simple yet effective CISS framework that exploits a novel DKD and multiple BCE
terms, achieving a good trade-off between rigidity and plasticity.

• We present a novel initialization technique that encodes prior knowledge for negatives to train
classifiers for novel classes effectively.

• We achieve a new state of the art on standard benchmarks for CISS [11, 30], and demonstrate the
effectiveness of our approach through extensive experiments and ablation studies.

2 Related work

2.1 Class incremental image classification

Many CIL methods [2, 4, 8, 10, 16, 27] have been proposed for image classification, attempting to
preserve the discriminative ability for old classes. Since training samples of novel classes are available
only in incremental steps, they typically adopt a KD [14] technique to retain classifier logits for old
classes. For example, the works of [8, 10] additionally apply the technique to intermediate feature
maps from a feature extractor. LwM [8] proposes an attention-based distillation loss to preserve
visual information of old classes. PODNet [10] introduces a spatial-based distillation technique that
encourages pooled feature maps between current and previous steps to be similar to each other. CIL
methods [2, 4, 16, 27] exploiting an external memory have recently been introduced. They store a
subset of training samples for old classes for re-training, which is effective to alleviate catastrophic
forgetting. Due to the data imbalance between old and novel classes, they generally use training

2

person

car

bicycle

car

bicycle

Step Step

Initialize

person

bicycle

sheep

person

bicycle
Initialize

Initialize

ignoring
gradient

(a) Training.

person

car

bicycle

car

bicycle

Step Step

Initialize

person

bicycle

sheep

person

bicycle
Initialize

Initialize

Step

(b) Initialization.

Figure 1: Overview of our framework. (a) Our framework consists of a feature extractor Ft,
classifiers Gt, and an auxiliary classifier Ht at each step t. Given an input image, we extract a
feature map ft, and obtain class logits zt from corresponding classifiers Gt. We train our model
with four terms: mBCE (Lmbce), KD (Lkd), DKD (Ldkd), and AC (Lac) losses. Note that the feature
extractor does not receive any gradients from the AC term for the auxiliary classifier. (b) In the next
step t + 1, we initialize classifiers for novel classes with the previous auxiliary classifier Ht. The
feature extractor Ft+1, a new auxiliary classifier Ht+1, and other classifiers are simply initialized
with the counterparts from the step t. Best viewed in color.

tricks, such as re-training with a balanced subset of training samples [4, 27] or re-balancing classifier
weights [2, 16], which is however computationally expensive and requires additional memory. Note
that all the aforementioned methods [2, 4, 8, 10, 16, 27] exploit a softmax CE term to learn novel
classes. Similar to ours, the seminal work of [25] uses BCE losses along with KD for CIL. Differently,
we use a novel DKD loss together with a novel initialization technique specialized for CISS.

2.2 Class incremental semantic segmentation

Similar to class-incremental classification, CISS methods [5, 9] generally adopt the KD technique
to alleviate catastrophic forgetting. For example, MiB [5] applies the technique to pixel-wise
classification scores. PLOP [9] employs KD to intermediate feature maps, and introduces a local POD
loss, specially designed for CISS, by extending the vanilla version in [10]. In addition, SDR [22]
recently proposes to leverage contrastive learning, complementary to existing KD techniques, to
separate feature clusters, making it easier to learn novel classes. These methods also exploit a softmax
CE term to learn novel classes. Different from image classification, supervisory signals for CISS
are given in pixel-level labels only for regions corresponding to novel classes. The regions for
background and old classes are thus unlabeled, suggesting that we have limited information to train
classifiers for CISS using a softmax CE loss. To tackle this issue, several works [9, 22] propose to
generate pseudo labels from an old model to provide auxiliary supervisory signals for the unlabeled
regions. Following the work of [25], exploiting multiple BCE losses for CISS is recently introduced
to train classifiers for novel classes individually [6]. This approach enables training a model without
auxiliary supervisory signals for unlabeled regions. It however freezes a feature extractor to alleviate
catastrophic forgetting, constraining the plasticity of classifiers for novel classes excessively. On the
contrary, our method trains both a feature extractor and classifiers, together with novel DKD and
initialization techniques, achieving a better trade-off in terms of plasticity and rigidity.

3 Approach

We train a CISS model continually with training samples Dt at each training step t, where t ∈
{1, ..., T} and T is a total number of steps. The training dataset Dt contains pairs of an image
and a corresponding ground-truth mask y. We denote by Ct and C1:t−1 sets of novel and old
object/stuff classes at the step t, respectively. Note that the sets are disjoint, i.e., C1:t−1 ∩ Ct = ∅.
Note also that regions for background and old classes are labeled as unknown in a current step t.
Namely, a ground-truth label at position i, y(i), is either one of the classes in Ct or the unknown
class cu, i.e., y(i) ∈ Ct ∪ {cu}, at the step t.

3

3.1 Overview

We show in Fig. 1 an overview of our framework. For each step t, we train a CISS model together
with an auxiliary classifier Ht. Our framework mainly consists of a feature extractor Ft and a
set of classifiers Gt predicting pixel-level semantic labels for previous and novel classes at the
step t (Fig. 1(a)). In a next step t+ 1, we initialize a feature extractor Ft+1 and classifiers for old
classes C1:t with the previous ones from the step t to preserve knowledge for old classes. Classifiers
for novel classes at the step t+ 1 and a new auxiliary classifierHt+1 are initialized with the previous
oneHt (Fig. 1(b)).

We exploit four loss terms for training (Fig. 1(a)): Multiple binary cross-entropy (mBCE), knowledge
distillation (KD), decomposed knowledge distillation (DKD), and auxiliary classifier (AC) losses.
The first three terms are used to train a CISS model at every step, while the last one is for the auxiliary
classifier Ht. Specifically, the mBCE term encourages the model to learn knowledge from novel
classes. The KD and DKD terms, on the other hand, help to preserve the discriminative ability for
old classes. The AC term enables transferring knowledge of negatives to the next step for classifiers
of novel classes.

3.2 Training

We train our framework using an objective as follows:

L = Lmbce + αLkd + βLdkd + Lac, (1)

where Lmbce, Lkd, Ldkd, and Lac are mBCE, KD, DKD, and AC terms, respectively, balanced by the
hyperparameters of α and β. In the following, we describe each term in detail.

mBCE loss. Given an input image, we first obtain a feature map ft at a step t. We then compute
class logits, zt ∈ RHW×|C1:t|, with classifiers Gt, where H and W are the height and width of the
input image, respectively, and | · | is the cardinality of a given set. Concretely, the class logit is
obtained by computing the dot product between features and weights for corresponding classifiers,
followed by adding a bias:

zt(i, c) = ft(i)
>wt(c) + bt(c), (2)

where we denote by wt(c) and bt(c) weights and a bias of a classifier for a class c, respectively, and
ft(i) is a feature at position i. To learn novel classes of Ct, current CISS methods typically exploit
a CE loss computing softmax probabilities w.r.t all classes, Ct and C1:t−1, at a step t. This could
lower the softmax probabilities for the old classes C1:t−1, causing catastrophic forgetting [1, 23]. We
instead exploit a mBCE loss, and apply it to train classifiers for the novel classes Ct only as follows:

Lmbce = −
1

HW

HW∑
i=1

∑
c∈Ct

γ1[y(i) = c] logpt(i, c) + 1[y(i) 6= c] log
(
1− pt(i, c)

)
, (3)

where

pt(i, c) =
1

1 + e−zt(i,c)
, (4)

and 1[·] is an indicator function that outputs 1 if the argument is true, and 0 otherwise. Following [3,
28], we use a weighting strategy with a balance parameter of γ to handle the imbalance between two
terms in (3).

KD loss. We adopt a KD term to prevent our model from changing abruptly, mitigating the
catastrophic forgetting problem, defined as follows:

Lkd = − 1

HW

HW∑
i=1

∑
c∈C1:t−1

pt−1(i, c) logpt(i, c) +
(
1− pt−1(i, c)

)
log
(
1− pt(i, c)

)
, (5)

where pt−1 is similarly computed as in (4) with zt−1, i.e., class logits predicted by a previous model
at the step t− 1. This term encourages our model to provide class logits similar to the ones obtained
from the previous model, namely, zt(i, c) ≈ zt−1(i, c), for old classes, c ∈ C1:t−1, at the step t.

4

positive element negative element

Figure 2: Comparison of KD and DKD. KD uses a logit zt, while DKD exploits positive and negative
reasoning scores, z+t and z−t . The DKD term encourages our model to output the reasoning scores
of z+t and z−t , similar to the ones of z+t−1 and z−t−1, respectively, obtained from a previous model.

DKD loss. Based on that the dot product is the sum of element-wise multiplication between vectors,
we decompose the class logit in (2) as follows:

zt(i, c) = z+t (i, c) + z−t (i, c), (6)

where z+t (i, c) is the sum of positive elements chosen from the result of element-wise multiplication
between ft(i) and wt(c), and z−t (i, c) is similarly defined using negative elements (Fig. 2 right).
We omit the bias of the classifier for ease of notation. We call z+t (i, c) and z−t (i, c) as positive
and negative reasoning scores, respectively, which quantify how likely and unlikely an input belongs
to the class c. In this context, the KD technique retains the relative difference between positive and
negative reasoning scores only, suggesting that each reasoning score itself is not preserved (Fig. 2
left). For example, if one of the reasoning scores increases, the other one would decrease accordingly
in order to maintain the sum of reasoning scores, i.e., the class logit. To address this problem, we
propose a decomposed knowledge distillation (DKD) loss as follows:

Ldkd = L+
dkd + L

−
dkd, (7)

where

L+
dkd = − 1

HW

HW∑
i=1

∑
c∈C1:t−1

p+
t−1(i, c) logp

+
t (i, c) +

(
1− p+

t−1(i, c)
)
log
(
1− p+

t (i, c)
)
, (8)

and
p+
t (i, c) =

1

1 + e−z
+
t (i,c)

. (9)

L−dkd is similarly defined using the negative reasoning score z−t . Note that L+
dkd and L−dkd are anal-

ogous to the KD term in (5), but they compute losses with the reasoning scores, z+t and z−t , sepa-
rately, instead of exploiting a class logit zt directly. That is, the DKD term encourages our model
to provide positive and negative reasoning scores similar to the ones obtained from a previous
model, i.e., z+t (i, c) ≈ z+t−1(i, c) and z−t (i, c) ≈ z−t−1(i, c), for the old classes c ∈ C1:t−1. This
explicit constraint on each reasoning score improves the rigidity of our model, enabling it to preserve
the discriminative ability for old classes effectively.

AC loss. The datasetDt at a step t provides training images mainly depicting one of novel classes Ct.
This suggests that the number of negative samples for the novel classes Ct, e.g., images containing
objects for old classes C1:t−1 as well, would not be sufficient in the dataset Dt. We conjecture that
training samples in the step t can serve as good negative examples for novel classes Ct+1 in the next
step t + 1, as C1:t ∩ Ct+1 = ∅. Based on this, we propose to exploit an auxiliary classifier Ht to
encode knowledge of the negatives for the novel classes Ct+1 in advance of the step t+ 1. To this
end, we train the classifierHt with the AC term as follows:

Lac(p
′
t) = −

1

HW

HW∑
i=1

log
(
1− p′t(i)

)
, (10)

where p′t(i) = 1/(1 + e−z
′
t(i)), and z′t ∈ RHW×1 is a logit from the auxiliary classifier Ht. That

is, the classifier Ht is trained to classify all pixels in the images of Dt as negatives for the next
step t+ 1. Note that training images at a step t might contain objects/stuff for novel classes in the
future. However, we assume that noisy training signals in the step t can be compensated in the future
by using sufficient training images for those objects/stuff classes. Note also that the AC term is used
to train the auxiliary classifierHt only, and thus a feature extractor does not receive any gradients
from this term.

5

3.3 Initialization

At the beginning of a step t+ 1, we initialize our model, including a feature extractor and classifiers,
using the model at the step t to transfer previously learned knowledge (Fig. 1(b)). Note that classifiers
for novel classes are newly added to predict logits for corresponding classes at the step t+ 1. Note
also that the number of negative samples for novel classes might not be sufficient in a dataset Dt+1.
In this context, exploiting a random initialization technique for the new classifiers is not effective,
degrading the discriminative ability of classifiers for the negatives. To address this, we propose to
initialize new classifiers using an auxiliary classifier in a previous step,Ht. The auxiliary classifier
Ht contains prior knowledge of negatives for novel classes. Concretely, we initialize classifiers Gt+1

in the step t+ 1, as follows:

{wt+1(c),bt+1(c)} =
{
{w′t,b′t} if c ∈ Ct+1

{wt(c),bt(c)} otherwise,
(11)

where we denote by w′t and b′t weights and a bias of the auxiliary classifier, respectively. That is, the
parameters of new classifiers for novel classes Ct+1 are initialized with the ones from the previous
auxiliary classifierHt, and those for other classifiers are initialized with the counterparts from the
previous step.

3.4 Inference

We predict pixel-level semantic labels at a step t, using class probabilities pt, as follows:

ŷ(i) =

{
cbg maxc∈C1:t pt(i, c) < τ

argmaxc pt(i, c) otherwise,
(12)

where τ is a threshold, empirically set to 0.5, and we denote by cbg a background class. We assign a
class label to each pixel, only when one of class probabilities for the pixel is at least larger than the
threshold τ . Otherwise, the pixel is assigned as a background class.

4 Experiments

4.1 Implementation details

Datasets. We use PASCAL VOC [11] and ADE20K [30] datasets for evaluation. PASCAL
VOC [11] consists of 10, 582 training and 1, 449 validation images for 20 object and background
classes. ADE20K [30] provides 20, 210 and 2, 000 images for training and validation, respectively,
with 150 object and stuff classes. Following the protocol in [5], we use official validation splits for
evaluation. We also exclude 20% of training sets, and use them to tune hyper-parameters.

Experimental protocols. We follow the experimental protocols in [5]. First, we evaluate our model
for various incremental scenarios. Specifically, we split all object/stuff classes into base and novel
ones. We train the model for base classes in an initial step, and update it sequentially for novel
classes in each of the following training steps. We denote by (Nb-Nn) the incremental scenario,
where Nb and Nn are the numbers of base and novel classes, respectively. For example, given
20 object classes in PASCAL VOC [11], for an incremental scenario of (15-1), we learn 15 base
classes initially, and add a single novel class sequentially, which requires 6 training steps in total.
Second, we train our model under two configurations: Disjoint and overlapped settings. The disjoint
setting uses a unique set of training samples for each training step. Training images in the set depict
object/stuff classes belonging to one of categories to learn in a current step. The disjoint setting
however excludes the images if they have any pixels regarding novel classes to be presented in the
future. The overlapped setting leverages all training images that contain at least a single instance
of classes to learn in a current step. Note that the overlapped setting is more realistic in practice,
since the disjoint setting assumes that novel classes to learn in the future are known in advance at
each training step. We perform experiments on PASCAL VOC on both disjoint and overlapped
settings with incremental scenarios of (19-1), (15-5), and (15-1). For ADE20K [30], we evaluate
our model under the overlapped setting only, with the scenarios of (100-50), (100-10), and (50-50),
following [6, 9].

6

Table 1: Quantitative results on the validation split of PASCAL VOC [11] for disjoint and overlapped
settings. All numbers are obtained by averaging results over five runs with standard deviations in
parenthesis.

19-1 (2 steps) 15-5 (2 steps) 15-1 (6 steps)

mIoUb mIoUn hIoU mIoUall mIoUb mIoUn hIoU mIoUall mIoUb mIoUn hIoU mIoUall

D
is

jo
in

t

MiB [5] 69.60 25.60 37.43 67.40 71.80 43.30 54.02 64.70 46.20 12.90 20.17 37.90
SDR [22] 69.90 37.30 48.64 68.40 73.50 47.30 57.56 67.20 59.20 12.90 21.18 48.10
PLOP [9] 75.37 38.89 51.31 73.64 71.00 42.82 53.42 64.29 57.86 13.67 22.12 46.48
SSUL [6] 77.38 22.43 34.78 74.76 76.44 45.60 57.12 69.10 73.97 32.15 44.82 64.01
RCIL [29] - - - - 75.00 42.80 54.50 67.30 66.10 18.20 28.54 54.70
Ours 77.43 43.56 55.72 75.81 77.56 54.13 63.76 71.98 76.34 39.36 51.92 67.54

(±0.07) (±2.43) (±2.00) (±0.15) (±0.26) (±0.87) (±0.65) (±0.36) (±0.55) (±2.07) (±1.89) (±0.82)

RECALL [18] 65.00 47.10 54.62 65.40 69.20 52.90 59.96 66.30 67.60 49.20 56.95 64.30
SSUL-M [6] 77.58 43.89 56.06 75.98 76.47 48.55 59.39 69.83 76.46 43.37 55.35 68.58

Ours-M 77.62 56.86 65.63 76.64 77.71 55.43 64.70 72.40 77.25 48.20 59.36 70.33
(±0.12) (±1.71) (±1.16) (±0.17) (±0.21) (±0.69) (±0.52) (±0.29) (±0.20) (±1.15) (±0.86) (±0.28)

O
ve

rl
ap

pe
d

MiB [5] 70.20 22.10 33.62 67.80 75.50 49.40 59.72 69.00 35.10 13.50 19.50 29.70
SDR [22] 69.10 32.60 44.30 67.40 75.40 52.60 61.97 69.90 44.70 21.80 29.31 39.20
PLOP [9] 75.35 37.35 49.94 73.54 75.73 51.71 61.46 70.09 65.12 21.11 31.88 54.64
SSUL [6] 77.73 29.68 42.96 75.44 77.82 50.10 60.96 71.22 77.31 36.59 49.67 67.61
RCIL [29] - - - - 78.80 52.00 62.65 72.40 70.60 23.70 35.49 59.40
Ours 77.76 41.45 54.03 76.03 78.83 58.23 66.98 73.93 78.09 42.72 55.21 69.67

(±0.18) (±2.91) (±2.49) (±0.24) (±0.23) (±0.45) (±0.31) (±0.21) (±0.32) (±1.58) (±1.33) (±0.49)

RECALL [18] 68.10 55.30 61.04 68.60 67.70 54.30 60.26 65.60 67.80 50.90 58.15 64.80
SSUL-M [6] 77.83 49.76 60.71 76.49 78.40 55.80 65.20 73.02 78.36 49.01 60.30 71.37

Ours-M 77.98 57.66 66.27 77.01 79.13 60.59 68.63 74.72 78.84 52.36 62.91 72.53
(±0.11) (±2.29) (±1.51) (±0.14) (±0.23) (±0.42) (±0.25) (±0.17) (±0.21) (±1.67) (±1.22) (±0.42)

Joint 77.57 77.80 77.68 77.58 79.48 71.52 75.29 77.58 79.48 71.52 75.29 77.58

Table 2: Quantitative results on the validation split of ADE20K [30] for an overlapped setting. All
numbers are obtained by averaging results over five runs with standard deviations in parenthesis.

100-50 (2 steps) 100-10 (6 steps) 50-50 (3 steps)

mIoUb mIoUn hIoU mIoUall mIoUb mIoUn hIoU mIoUall mIoUb mIoUn hIoU mIoUall

MiB [5] 40.52 17.17 24.12 32.79 38.21 11.12 17.23 29.24 45.57 21.01 28.76 29.31
PLOP [9] 41.87 14.89 21.97 32.94 40.48 13.61 20.37 31.59 48.83 20.99 29.36 30.40
SSUL [6] 41.28 18.02 25.09 33.58 40.20 18.75 25.57 33.10 48.38 20.15 28.45 29.56
RCIL [29] 42.30 18.80 26.03 34.50 39.30 17.60 24.31 32.10 48.30 25.00 32.95 32.95

Ours 42.41 22.89 29.74 35.95 41.56 19.51 26.55 34.26 48.84 26.28 34.17 33.90
(±0.42) (±0.37) (±0.40) (±0.38) (±0.36) (±0.35) (±0.32) (±0.24) (±0.34) (±0.60) (±0.52) (±0.43)

SSUL-M [6] 42.79 17.54 24.88 34.37 42.86 17.66 25.01 34.46 49.12 20.10 28.53 29.77

Ours-M 42.43 22.95 29.79 35.98 41.74 20.11 27.14 34.58 48.84 26.31 34.19 33.92
(±0.43) (±0.36) (±0.39) (±0.39) (±0.33) (±0.27) (±0.26) (±0.25) (±0.28) (±0.59) (±0.51) (±0.41)

Joint 43.16 30.03 35.42 38.81 43.16 30.03 35.42 38.81 49.35 33.44 39.86 38.81

Training. We use the DeepLabV3 [7] architecture using ResNet-101 [13] pretrained on Ima-
geNet [26] as a backbone network. Following [5, 6, 9, 22], we adopt different training strategies
for each dataset. For PASCAL VOC [11], we train our model with 60 epochs for both initial and
incremental steps, with a batch size of 32. We adopt a polynomial learning rate scheduler, where
learning rates are set to 0.001 and 0.0001 for initial and incremental steps, respectively. We em-
pirically set γ to 2 during an initial step and 1 for others. For ADE20K [30], we train our model
for 100 epochs with a batch size of 24. Following [6], we adopt the poly learning rate scheduler
with a linear warm-up [12], where learning rates are set to 0.0025 for an initial step and 0.00025
for incremental ones, respectively. We set γ to 35 for all training steps. For both datasets, we adopt
the SGD optimizer with momentum of 0.9, and set α and β to 5. We implement our model using
PyTorch [24] and train it with four NVIDIA RTX A5000 GPUs.

Evaluation metrics. Following [5, 6, 9, 22], we report mIoUb, mIoUn, and mIoUall scores, that is,
intersection-over-union (IoU) scores averaged over base, novel and all classes, respectively. Simply
averaging the IoU score over all classes (i.e., mIoUall) is not appropriate to evaluate the performance
of CISS models, especially for the case that the number of novel classes is relatively small compared
to that of base ones. Accordingly, we also report a harmonic mean (hIoU) of mIoUb and mIoUn
scores, which is less susceptible to the imbalance between base and novel classes.

7

1 2 3 4 5 6
Steps

40

50

60

70

80

m
Io

U
 (%

)
Ours
SSUL
PLOP
MiB

(a) Base classes.

1 2 3 4 5 6
Steps

0

10

20

30

40

Io
U

 (%
)

(b) Potted plant.

1 2 3 4 5 6
Steps

20

30

40

50

60

Io
U

 (%
)

(c) Sheep.

1 2 3 4 5 6
Steps

10

20

30

40

Io
U

 (%
)

(d) Sofa.

1 2 3 4 5 6
Steps

20

30

40

50

60

Io
U

 (%
)

(e) Train.

Figure 3: mIoU comparisons of state-of-the-art CISS methods [5, 6, 9] over training steps. We train
CISS models for 15 base classes initially, and add a single novel class for each incremental step (i.e.,
15-1 setting with 6 steps). We show variations of mIoU scores for base classes (a) and for individual
novel classes separately (b-e).

Input image. Step 1. Step 2.
(potted plant)

Step 3.
(sheep)

Step 4.
(sofa)

Step 5.
(train)

Step 6.
(tv)

Ground truth.

Figure 4: Qualitative results for the 15-1 overlapped setting on PASCAL VOC [11]. chair, dog, and
person belong to base classes.

4.2 Results

We show in Tables 1 and 2 quantitative comparisons between ours and state-of-the-art CISS meth-
ods [5, 6, 9, 22] on PASCAL VOC [11] and ADE20K [30], respectively. To better demonstrate the
effectiveness of our approach, we also report results for joint training that serve as upper bounds. For
fair comparison with SSUL-M [6] exploiting an external memory, we also report the results (Ours-M)
obtained using previous training samples, following the official implementation provided by the
authors.

We can observe from Tables 1 and 2 three things: (1) CISS methods using a BCE term [6] to learn
novel classes, including ours, perform better than other approaches [5, 9, 22] employing a softmax
CE term, demonstrating the drawback of the softmax function for CISS. (2) Among competitive
methods without using an external memory, our method achieves a new state of the art for all cases
in terms of mIoUall and hIoU scores. This suggests that ours preserves knowledge learned from
base classes, while learning novel ones effectively, compared to other methods, achieving a better
compromise between rigidity and plasticity for CISS. We can also see that our method outperforms
others in terms of a hIoU score for all cases by a significant margin. (3) The external memory provides
complementary information, and this brings additional performance gains. Our method (Ours-M)
clearly outperforms SSUL-M in terms of mIoUall and hIoU scores. Note that SSUL and SSUL-M
also exploit an off-the-shelf saliency detector [15], pretrained on additional training samples [17],
which requires more computational power and memory for training.

8

Table 3: Quantitative comparisons for variants of our method under the overlapped setting on
PASCAL VOC [11]. All numbers are obtained by averaging results over five runs with standard
deviations.

Baseline
(Lmbce + Lkd)

Initialization Ldkd 15-1 (6 steps)

Random Ours L+
dkd L−dkd mIoUb mIoUn hIoU mIoUall

3 3 76.04±0.82 35.16±1.53 48.07±1.48 66.30±0.83
3 3 3 3 77.97±0.32 36.53±1.18 49.74±1.10 68.10±0.42

3 3 74.43±1.15 39.41±1.51 51.53±1.53 66.09±1.19
3 3 3 77.94±0.35 42.47±1.54 54.80±1.31 69.45±0.51
3 3 3 75.92±1.00 40.27±1.46 52.62±1.42 67.43±1.04
3 3 3 3 78.09±0.32 42.72±1.58 55.21±1.33 69.67±0.49

0 250 500 750 1000
Iterations

0.0

0.5

1.0

1.5
w/o DKD
w/ DKD

(a) ‖z+t − z+t−1‖.

0 250 500 750 1000
Iterations

0
1
2
3
4
5
6

w/o DKD
w/ DKD

(b) ‖z−t − z−t−1‖.

0 250 500 750 1000
Iterations

0

1

2

3

4

5
w/o DKD
w/ DKD

(c) ‖zt − zt−1‖.

Figure 5: Quantitative comparisons of our model trained with and without the DKD term. We plot
values of ‖z+t − z+t−1‖, ‖z

−
t − z−t−1‖, and ‖zt − zt−1‖ over iterations. We obtain the results for the

single incremental step under a 19-1 scenario on PASCAL VOC [11].

We also compare in Fig. 3 our method with the state of the art, including MiB [5], PLOP [9] and
SSUL [6], over training steps in terms of mIoU. We can see that our method avoids catastrophic
forgetting effectively, maintaining mIoU scores for both base and novel classes over a number of
steps. In contrast, other methods often fail to preserve the mIoU scores of old classes in later steps.
Except for the novel class at the fourth incremental step in Fig. 3(d), where SSUL [6] is slightly better
than ours, our approach outperforms the state of the art for all training steps by a significant margin.

We show in Fig. 4 qualitative results on the PASCAL VOC [11]. We can see that our method
successfully learns novel classes incrementally without forgetting previously learned classes. More
qualitative results can be found in the supplement.

4.3 Discussion

We show in Table 3 an ablation analysis of our approach. The baseline model in the first row uses
mBCE and KD terms only. Note that the baseline already performs comparable to state-of-the-art
methods [5, 6, 9, 22], confirming once more the significance of employing the BCE loss for CISS.
The last row shows that exploiting the DKD loss along with our initialization technique achieves the
best performance for all metrics. We further provide a detailed analysis for the two components in
the following.

DKD. From the first and the second rows in Table 3, we can see that the DKD term boosts the
performance for both base and novel classes, as it helps to retain knowledge even after incremental
steps. Moreover, the second row shows that adopting the DKD term performs significantly better,
compared to freezing a feature extractor as in SSUL [6], in terms of mIoUb score (See the result in
Table 1). This suggests that our DKD technique is more effective for maintaining the rigidity of a
CISS model. We plot in Fig. 5 numerical values of ‖z+t − z+t−1‖, ‖z

−
t − z−t−1‖, and ‖zt − zt−1‖

over iterations, where ‖ · ‖ is the L2 norm. As positive and negative reasoning scores, z+t and z−t ,
are similar to previous ones, z+t−1 and z−t−1, respectively, ‖z+t − z+t−1‖ and ‖z−t − z−t−1‖ becomes
smaller. We can see from Figs. 5(a) and (b) that the model trained without the DKD term does not
preserve the reasoning scores effectively. On the contrary, the DKD term prevents abrupt changes
of the scores. Note that ‖zt − zt−1‖ quantifies the consistency of predictions before and after an
incremental step, suggesting that minimizing ‖zt − zt−1‖ is also crucial to alleviate catastrophic
forgetting. We can observe in Fig. 5(c) that the DKD term helps to further minimize ‖zt − zt−1‖.
These results verify that the DKD term improves the rigidity of a CISS model together with KD.

9

(a) Input and ground truth. (b) w/o initialization. (c) w/ initialization.

Figure 6: Visual comparisons of activation maps and segmentation results for the 15-1 overlapped
setting of PASCAL VOC [11]. We show activation maps for train and predictions using our model
with and without the initialization technique. Our model learns a train class in the 4-th incremental
step, after learning potted plant, sheep, and sofa incrementally. car, bus, person, chair belong to base
classes.

Initialization. The first and third rows in Table 3 demonstrate that our initialization technique itself
provides a considerable performance gain for novel classes in terms of the mIoUn score, verifying
that properly initializing classifier weights for novel classes is crucial for CISS. The initialization
technique alleviates the problem, caused by a lack of negatives at each incremental step, and provides
strong prior knowledge to learn novel classes. Note that our model in the third row already gives
competitive results compared to SSUL [6] in terms of the mIoUn score, even without exploiting an
off-the-shelf saliency detector [15]. We provide in Fig. 6 visual comparisons of activation maps for a
novel class (i.e., train), and segmentation labels for all target classes (i.e., 15 base classes and the
incremental ones of potted plant, sheep, sofa, train). We obtain the results using classifiers trained
with and without our initialization technique. We can see that the classifiers without our initialization
often activates incorrectly on background regions (Fig. 6(b) bottom) or previous classes (i.e., bus in
Fig. 6(b) top). This distracts classifiers for previous classes, resulting in incorrect semantic labels in
the regions. On the contrary, the classifiers initialized with our technique successfully suppresses
false class probabilities for those regions, providing better segmentation results.

Note that we train an auxiliary classifier in advance of learning novel classes for incremental steps.
This suggests that the initialization technique can be adopted only when segmentation models are
trained from scratch, and thus pre-trained off-the-shelf segmentation models could not be exploited
directly. Other techniques including mBCE and DKD in Sec. 3.2 can be applied to the off-the-shelf
models, which brings significant performance gains, compared to current CISS methods [5, 9, 22,
29] (See Tables 1 and 3).

Note also that the auxiliary classifier makes segmentation models aware of the fact that novel classes
will be added in the future. This increment-aware continual learning achieves a new state of the art on
standard CISS benchmarks with negligible computational overhead for training, and it will provide a
novel paradigm for CIL.

5 Conclusion
We have presented a novel framework that shows a good trade-off between rigidity and plasticity for
class-incremental semantic segmentation (CISS). In particular, we have introduced a new learning
paradigm, decompose to distill knowledge, to improve the rigidity, and have proposed a novel
initialization technique to learn novel classes better. Finally, we have shown that our framework
achieves a new state of the art on standard CISS benchmarks.

Acknowledgments and Disclosure of Funding
This work was partly supported by Institute of Information & communications Technology Plan-
ning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.RS-2022-00143524,
Development of Fundamental Technology and Integrated Solution for Next-Generation Automatic
Artificial Intelligence System) and the KIST Institutional Program (Project No.2E31051-21-203).

10

References
[1] Hongjoon Ahn, Jihwan Kwak, Subin Lim, Hyeonsu Bang, Hyojun Kim, and Taesup Moon. SS-IL:

Separated softmax for incremental learning. In ICCV, 2021.

[2] Eden Belouadah and Adrian Popescu. IL2M: Class incremental learning with dual memory. In ICCV,
2019.

[3] Sergi Caelles, Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Laura Leal-Taixé, Daniel Cremers, and Luc
Van Gool. One-shot video object segmentation. In CVPR, 2017.

[4] Francisco M Castro, Manuel J Marín-Jiménez, Nicolás Guil, Cordelia Schmid, and Karteek Alahari.
End-to-end incremental learning. In ECCV, 2018.

[5] Fabio Cermelli, Massimiliano Mancini, Samuel Rota Bulo, Elisa Ricci, and Barbara Caputo. Modeling the
background for incremental learning in semantic segmentation. In CVPR, 2020.

[6] Sungmin Cha, YoungJoon Yoo, Taesup Moon, et al. SSUL: Semantic segmentation with unknown label
for exemplar-based class-incremental learning. In NeurIPS, 2021.

[7] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous convolution
for semantic image segmentation. arXiv preprint arXiv:1706.05587, 2017.

[8] Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng, Ziyan Wu, and Rama Chellappa. Learning without
memorizing. In CVPR, 2019.

[9] Arthur Douillard, Yifu Chen, Arnaud Dapogny, and Matthieu Cord. PLOP: Learning without forgetting for
continual semantic segmentation. In CVPR, 2021.

[10] Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas Robert, and Eduardo Valle. PODNet: Pooled
outputs distillation for small-tasks incremental learning. In ECCV, 2020.

[11] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. The
pascal visual object classes (VOC) challenge. IJCV, 88(2):303–338, 2010.

[12] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew
Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv
preprint arXiv:1706.02677, 2017.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In CVPR, 2016.

[14] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

[15] Qibin Hou, Ming-Ming Cheng, Xiaowei Hu, Ali Borji, Zhuowen Tu, and Philip HS Torr. Deeply supervised
salient object detection with short connections. In CVPR, 2017.

[16] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier
incrementally via rebalancing. In CVPR, 2019.

[17] Tie Liu, Zejian Yuan, Jian Sun, Jingdong Wang, Nanning Zheng, Xiaoou Tang, and Heung-Yeung Shum.
Learning to detect a salient object. IEEE TPAMI, 33(2):353–367, 2010.

[18] Andrea Maracani, Umberto Michieli, Marco Toldo, and Pietro Zanuttigh. RECALL: Replay-based
continual learning in semantic segmentation. In ICCV, 2021.

[19] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential
learning problem. Psychology of learning and motivation, 24:109–165, 1989.

[20] Martial Mermillod, Aurélia Bugaiska, and Patrick Bonin. The stability-plasticity dilemma: Investigating
the continuum from catastrophic forgetting to age-limited learning effects. Frontiers in psychology, 4:504,
2013.

[21] Umberto Michieli and Pietro Zanuttigh. Incremental learning techniques for semantic segmentation. In
ICCVW, 2019.

[22] Umberto Michieli and Pietro Zanuttigh. Continual semantic segmentation via repulsion-attraction of sparse
and disentangled latent representations. In CVPR, 2021.

11

[23] Sudhanshu Mittal, Silvio Galesso, and Thomas Brox. Essentials for class incremental learning. In CVPRW,
2021.

[24] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.

[25] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. iCaRL: Incre-
mental classifier and representation learning. In CVPR, 2017.

[26] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge.
IJCV, 115(3):211–252, 2015.

[27] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu. Large
scale incremental learning. In CVPR, 2019.

[28] Saining Xie and Zhuowen Tu. Holistically-nested edge detection. In ICCV, 2015.

[29] Chang-Bin Zhang, Jia-Wen Xiao, Xialei Liu, Ying-Cong Chen, and Ming-Ming Cheng. Representation
compensation networks for continual semantic segmentation. In CVPR, 2022.

[30] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene parsing
through ADE20K dataset. In CVPR, 2017.

12

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Section 1.
(b) Did you describe the limitations of your work? [Yes] See Section 4.3.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No] But our code
and models is available online.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 4.1.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Section 4.2.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 4.1.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 4.1
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

	Introduction
	Related work
	Class incremental image classification
	Class incremental semantic segmentation

	Approach
	Overview
	Training
	Initialization
	Inference

	Experiments
	Implementation details
	Results
	Discussion

	Conclusion

