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Abstract

Great efforts have been devoted to causal discovery from observational data, and
it is well known that introducing some background knowledge attained from
experiments or human expertise can be very helpful. However, it remains unknown
that what causal relations are identifiable given background knowledge in the
presence of latent confounders. In this paper, we solve the problem with sound
and complete orientation rules when the background knowledge is given in a local
form. Furthermore, based on the solution to the problem, this paper proposes a
general active learning framework for causal discovery in the presence of latent
confounders, with its effectiveness and efficiency validated by experiments.

1 Introduction

Causality has attracted tremendous attention in recent years, for its application on explainability [1],
fairness [2, 3, 4], decision [5, 6, 7, 8, 9], and so on. In Pearl’s causality framework [10], one important
problem is causal discovery, i.e., learning a causal graph to denote the causal relations among all
the variables [11, 12, 13, 14, 15, 16]. Generally, we cannot identify all the causal relations from
observational data, unless we make some additional functional assumptions [17, 18, 19] or exploit
the abundant information in multiple or dynamic environments [20, 21].

In light of the uncertainty of the causal relations, a common practice to reveal them is introducing
background knowledge, which is called BK for short. BK can be attained from experiments or human
expertise. When experiments are available, we can collect interventional data to learn additional
causal relations [22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. And if in the causal discovery task, there are
some variables familiar to humans, it is also possible that the human expertise can be helpful [32].
For example, if we study the causal relations among some variables including sales and prices, the
causal relations such as price causes sales can be obtained directly according to human expertise.

When BK is available in addition to observational data, a fundamental problem is: what causal
relations are identifiable in the presence of latent variables? This problem is fundamental for its
implication on the maximally identifiable causal knowledge with the observational data and BK.
Its difficulty results from the fact that, in addition to the BK itself, some other causal relations can
also be learned when incorporating BK. For example, they can be identified on the basis of some
restrictions, such as the causal relations are acyclic. It is quite challenging to find the complete
characterization for such additional causal knowledge in the presence of latent variables, and the
complete characterization is necessarily accompanied with theoretical guarantee for the existence
of causal graphs consistent to the observational data and local BK that have exactly different causal
relations for the unidentifiable ones. Unfortunately, the problem remains open.

In this paper, we solve the problem with sound and complete orientation rules when the background
knowledge is given in a local form. In the presence of latent variables, a partial ancestral graph (PAG)
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can be learned by FCI algorithm from observational data [33, 34, 35]. PAG can imply the existence
of causal relation between any two variables but not necessarily imply the causal direction. We say
BK is local, if when the BK contains the causal information with respect to a variable X , for each
variable adjacent to X in the PAG, the BK implies whether X causes it or not. The local BK is
common in real tasks no matter it is from experiments or human expertise. For example, when we
make experiments and collect the data under intervention on X , for each variable V that has a causal
relation with X , the interventional data can tell whether X causes V ; and businessman often has
enough domain knowledge about price, thus they usually know whether price causes other variables
or not, such as price causes sales and number of customers, and price is not caused by stocks. Given
a PAG and local BK, we propose a set of orientation rules to determine some causal directions in the
PAG. We prove that the rules are sound and complete, which state that all the causal relations that
are identifiable given available information are exactly those determined by the proposed rules, thus
closing the problem given local BK.

The establishment of orientation rules compatible with local BK makes causal discovery by inter-
ventions possible in the presence of latent variables. We propose the first general active learning
framework for causal discovery, with the target of identifying a maximal ancestral graph (MAG),
which implies the causal relations when there are latent variables. Considering that intervention is
expensive in reality, we hope to achieve the target with as few interventions as possible. Hence we
present a baseline maximal entropy criterion, equipped with Metropolis-Hastings sampling, to select
the intervention variable such that we can learn more causal relations by each intervention. Our
contributions in this paper are twofold:

(1) We show what causal relations are identifiable given local background knowledge in the
presence of latent confounders with sound and complete orientation rules.

(2) We give the first active learning framework for causal discovery that is applicable when
latent variables exist, where maximal entropy criterion equipped with Metropolis-Hastings
sampling is introduced to select intervention variables.

Related works. In the literature, Meek [36] established sound and complete rules, generally called
Meek rules, for causal identification given BK under the causal sufficiency assumption. The as-
sumption requires that there are no latent variables that cause more than one observed variable
simultaneously. However, causal sufficiency is untestable in practice. When we apply causality in
subjects such as biology, sociology, and economics, it is quite often that there are latent variables.
For example, the macroeconomic policy influences purchase price, the population of customers, and
advertising cost, but it is hard to evaluate it, thereby a latent confounder. Andrews et al. [37] showed
that FCI algorithm is complete given tiered BK, where all variables are partitioned into disjoint sets
with explicit causal order. While in many cases, e.g., when BK is revealed by interventions, BK is
not tiered. And Jaber et al. [28] investigated the complete algorithm to learn a graph when there are
additional interventional distribution, while such knowledge is not needed in our paper.

2 Preliminary

A graph G = (V,E) consists of a set of vertices V = {V1, · · · , Vp} and a set of edges E. For any
subset V′ ⊆ V, the subgraph induced by V′ is GV′ = (V′,EV′), where EV′ is the set of edges in
E whose both endpoints are in V′. For a graph G, V(G) denotes the set of vertices in G. G is a
complete graph if there is an edge between any two vertices. The subgraph induced by an empty set is
also a complete graph. G[−V′] denotes the subgraph GV\V′ induced by V\V′. Usually, bold letter
(e.g., V) denotes a set of vertices and normal letter (e.g., V ) denotes a vertex. A graph is chordal
if any cycle of length four or more has a chord, which is an edge joining two vertices that are not
consecutive in the cycle. If G = (V,E) is chordal, the subgraph of G induced by V′ ⊆ V is chordal.

A graph G is mixed if the edges in G are either directed → or bi-directed ↔. The two ends of
an edge are called marks and have two types arrowhead or tail. A graph is a partial mixed graph
(PMG) if it contains directed edges, bi-directed edges, and edges with circles (◦). The circle implies
that the mark here could be either arrowhead or tail but is indefinite. Vi is adjacent to Vj in G
if there is an edge between Vi and Vj . A path in a graph G is a sequence of distinct vertices
〈V0, · · · , Vn〉 such that for 0 ≤ i ≤ n − 1, Vi and Vi+1 are adjacent in G. An edge in the form
of Vi ◦−◦ Vj is a circle edge. The circle component in G is the subgraph consisting of all the
◦−◦ edges in G. Denote the set of vertices adjacent to Vi in G by Adj(Vi, G). A vertex Vi is a
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parent of a vertex Vj if there is Vi → Vj . A directed path from Vi to Vj is a path comprised of
directed edges pointing to the direction of Vj . A possible directed path from Vi to Vj is a path
without an arrowhead at the mark near Vi on every edge in the path. Vi is an ancestor/possible
ancestor of Vj if there is a directed path/possible directed path from Vi to Vj or Vi = Vj . Vi is a
descendant/possible descendant of Vj if there is a directed path/possible directed path from Vj to Vi
or Vj = Vi. Denote the set of parent/ancestor/possible ancestor/descendant/possible descendant of
Vi in G by Pa(Vi, G)/Anc(Vi, G)/PossAn(Vi, G)/De(Vi, G)/PossDe(Vi, G). If Vi ∈ Anc(Vj , G) and
Vi ← Vj /Vi ↔ Vj , it forms a directed cycle/almost directed cycle. ∗ is a wildcard that denotes any of
the marks (arrowhead, tail, and circle). We make a convention that when an edge is in the form of
◦−∗, the ∗ here cannot be a tail since in this case the circle can be replaced by an arrowhead due to the
assumption of no selection bias.

A non-endpoint vertex Vi is a collider on a path if the path contains ∗→ Vi ←∗. A path p from Vi
to Vj is a collider path if Vi and Vj are adjacent or all the passing vertices are colliders on p. p is a
minimal path if there are no edges between any two non-consecutive vertices. A path p from Vi to Vj
is a minimal collider path if p is a collider path and there is not a proper subset V′ of the vertices in p
such that there is a collider path from Vi to Vj comprised of V′. A triple 〈Vi, Vj , Vk〉 on a path is
unshielded if Vi and Vk are not adjacent. p is an uncovered path if every consecutive triple on p is
unshielded. A path p is a minimal possible directed path if p is minimal and possible directed.

A mixed graph is an ancestral graph if there is no directed or almost directed cycle (since we assume
no selection bias, we do not consider undirected edges in this paper). An ancestral graph is a maximal
ancestral graph (MAG, denoted byM) if it is maximal, i.e., for any two non-adjacent vertices, there
is a set of vertices that m-separates them [33]. A path p between X and Y in an ancestral graph G is
an inducing path if every non-endpoint vertex on p is a collider and meanwhile an ancestor of either
X or Y . An ancestral graph is maximal if and only if there is no inducing path between any two
non-adjacent vertices [33].

In an MAG, a path p = 〈X, · · · ,W, V, Y 〉 is a discriminating path for V if (1) X and Y are not
adjacent, and (2) every vertex between X and V on the path is a collider on p and a parent of Y .
Two MAGs are Markov equivalent if they share the same m-separations. A class comprised of all
Markov equivalent MAGs is a Markov equivalence class (MEC). We use a partial ancestral graph
(PAG, denoted by P) to denote an MEC, where a tail/arrowhead occurs if the corresponding mark is
tail/arrowhead for all Markov equivalent MAGs, and a circle occurs otherwise.

For a PMG M that is obtained from a PAG P by orienting some circles to either arrowheads or tails,
an MAGM is consistent to the PMG M if (1) the non-circle marks in M are also inM, and (2)M
is in the MEC represented by P . Sometimes we will omit the PAG P and just directly say a PMG M
(obtained from the PAG P) since in this paper we study the rules to incorporate local BK to a PAG.
We say an MAGM is consistent to the BK ifM is with the orientations dictated by the BK.

3 Sound and Complete Rules

In this section, we present the sound and complete orientation rules to orient a PAG P with local
background knowledge (BK), where P is learned by observational data [11, 35] and V(P) =
{V1, V2, · · · , Vd}. The local BK regarding X means that the BK directly implies and only directly
implies all the true marks at X , denoted by BK(X). We assume the absence of selection bias and
that the BK is correct. The correctness indicates that there exists an MAG consistent to P and the BK.
Without loss of generality, we suppose the local BK is regarding V1, V2, · · · , Vk, 1 ≤ k ≤ d. That is,
for any vertex X ∈ V1, V2, · · · , Vk, all the marks at X are known according to the local BK; and for
any vertex X ∈ Vk+1, · · · , Vd, the local BK does not directly imply any marks at X .

First, we show the orientation rules to incorporate local BK. They follow the rules of Zhang [35] for
learning a PAG but with one replacement and one addition. Due to the page limit, we do not list them
here but the replaced and additional ones. See Appendix A for the rules proposed by Zhang [35].

R′4: If 〈K, · · · , A,B,R〉 is a discriminating path between K and R for B, and B ◦−∗ R, then
orient B ◦−∗R as B → R.

R11: If A−∗B, then A→ B.
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Algorithm 1: Update a PMG with local background knowledge
Input: A PMG Mi, BK(X)

Output: Updated graph Mi+1

1 For any K ∈ PossDe(X,Mi[−C]) and any T ∈ C such that K ◦−∗ T in Mi, orient K ←∗T (the
mark at T remains); for all K ∈ PossDe(X,Mi[−C]) such that X ◦−∗K, orient X → K;

2 Orient the subgraph Mi[PossDe(X,Mi[−C])\{X}] as follows until no feasible updates: for any
two vertices Vl and Vj such that Vl ◦−◦ Vj , orient it as Vl → Vj if (i) FVl

\FVj
6= ∅ or (ii)

FVl
= FVj as well as there is a vertex Vm ∈ PossDe(X,Mi[−C])\{X} not adjacent to Vj

such that Vm → Vl ◦−◦ Vj ;
3 Apply the orientation rules until the graph is closed under the orientation rules.

Prop. 1 implies the soundness ofR′4 to orient a PAG P or a PMG obtained from P with local BK. See
Appendix A for the proof. R11 is immediate due to no selection bias assumption. In the following,
we make a convention that when we say the orientation rules, they refer to R1 − R3,R8 − R10

of Zhang [35] and R′4,R11. A PMG is closed under the orientation rules if the PMG cannot be
oriented further by the orientation rules.

Proposition 1. Given a PAG P , for any PMG M that is obtained from P by orienting some circles
in P (or M = P),R′4 is sound to orient M with local background knowledge.

Proof sketch: If there is B ←∗R in an MAG consistent with the case ofR′4, there must be a minimal
collider path between K and R across B, in which case B ←∗R should have been identified in the
PAG according to Zhao et al. [38], Zhang [35], contradiction. �

Next, we will prove the completeness of the proposed orientation rules. It is somewhat complicated.
We first give a roadmap for the proof process. There are mainly two parts. The first is that we present
a complete algorithm to orient P with the local BK regarding V1, V2, · · · , Vk. The second part is
to prove that the algorithm orient the same marks as the proposed orientation rules. Combining
these two parts, we conclude the orientation rules are complete to orient a PAG. The construction
of the algorithm and the corresponding proof for the completeness of the algorithm in the first step
is the most difficult part. To achieve the construction, we divide the whole process of orienting a
PAG with BK regarding V1, V2, · · · , Vk into k steps. Beginning from the PAG P (P is also denoted
by M0), in the (i+ 1)-th (0 ≤ i ≤ k − 1) step we obtain a PMG Mi+1 from Mi by incorporating
BK(Vi+1) and orienting some other circles further. To obtain the updated graph in each step, we
propose an algorithm orienting a PMG with local BK incorporated in this step. Repeat this process by
incorporating BK(V1), BK(V2), . . . , BK(Vk) sequentially, we obtain the PMG with incorporated
BK regarding V1, · · · , Vk. We will prove that the k-step algorithm to orient PAG with local BK
regarding V1, · · · , Vk is complete, by an induction step that if the first i-step algorithm is complete
to update the PAG P with BK regarding V1, · · · , Vi, then the (i+ 1)-step algorithm is complete to
update P with BK regarding V1, · · · , Vi+1. Hence the proof in the first part completes. In the second
part, we show that the k-step algorithm orients the same marks as the proposed orientation rules.
We thus conclude that the orientation rules are sound and complete for causal identification in the
presence of latent variables given local BK.

We present Alg. 1 to obtain Mi+1 from Mi by incorporating BK(Vi+1). For brevity, we denote Vi+1

byX , and introduce a set of vertices C defined as C = {V ∈ V(P) | V ∗→ X ∈ BK(X)} to denote
the vertices whose edges with X will be oriented to ones with arrowheads at X according to BK(X)
directly. In Mi+1, there is X ←∗V for V ∈ C and X−∗V for V ∈ {V ∈ V(P) | V ∗−◦X in Mi}\C
oriented directly according to BK(X). We define FMi

Vl
= {V ∈ C ∪ {X} | V ∗−◦ Vl in Mi} for

any Vl ∈ PossDe(X,Mi[−C])\{X}, which is denoted by FVl
for short. FVl

denotes the vertices in
C ∪ {X} whose edges with Vl are oriented to ones with arrowheads at Vl in the first step of Alg. 1.

In the first step of Alg. 1, the orientation at X follows BK(X), and the orientation at the vertices
apart of X is motivated as the necessary condition for the ancestral property. Speaking roughly, if
there is an oriented edge K → T in the case of the first step, then no matter how we orient the other
circles, there will be a directed or almost directed cycle, unless we introduce new unshielded colliders
(which takes new conditional independences relative to those in P), both of which are evidently
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Figure 1: An example to demonstrate the implementation of each step of Alg. 1. Fig. 1(a) depicts a
PMG Mi. Suppose the local BK is in the form of V1 ←∗V2, V1−∗V5, V1−∗V4. The Fig. 1(b)/1(c)/1(d)
displays the graph obtained after the first/second/third step of Alg. 1. The edges oriented by each step
are denoted by red dashed lines.

invalid to obtain an MAG in the MEC represented by P . And the orientation in the second step is
motivated as the necessary condition for that there are no new unshielded colliders in the oriented
graph relative to the PAG P . If there is an MAG where there is an inconsistent edge with the edge
oriented in this step, then there must be new unshielded colliders relative to P , which implies that the
MAG is not consistent to P . The third step orients some other circles based on the updated structure.

Example 1. See the example in Fig. 1. Suppose the input PMG Mi in Alg. 1 is the graph shown in
Fig. 1(a). And there is local BK regardingX = V1, which is in the form of V1 ←∗V2, V1−∗V5, V1−∗V4.
Hence C = {V2}. In this case, PossDe(X,Mi[−C]) = PossDe(V1,Mi[−V2]) = {V1, V3, V4, V5}.
And FV3

= {V2}, FV4
= {V1}, FV5

= {V1, V2}. When we implement Alg. 1, in the first step, the
edges denoted by red dashed lines in Fig. 1(b) are oriented. Among them, V1◦−◦V2/V1◦−◦V5/V1◦→ V4
is transformed to V1 ←◦V2/V1 → V5/V1 → V4 due to V1 = X,V2 ∈ C, V4, V5 ∈ {V ∈ V(P) | V ∗−◦
X in Mi}\C; and V2◦→ V5/V2◦→ V3 is oriented due to V2 ∈ C and V3, V5 ∈ PossDe(X,Mi[−C]).
In the second step of Alg. 1, the edge denoted by red dashed line in Fig. 1(c) is oriented due to (1) a
circle edge V3 ◦−◦ V5 after the first step, where V3, V5 ∈ PossDe(X,Mi[−C]); (2) FV3

= {V2} ⊂
{V1, V2} = FV5 . In the third step of Alg. 1, the edges denoted by red dashed lines in Fig. 1(d) is
oriented byR1 of the orientation rules.

Then, we present the key induction result in Thm. 1 for the graph obtained by Alg. 1 in each step.
Due to the page limit, we only show a proof sketch, with a detailed version in Appendix B. Then
with Thm. 1, we directly conclude that k-step algorithm is complete to orient the PAG with the local
BK regarding V1, . . . , Vk in Cor. 1.

Theorem 1. Given i, suppose Ms,∀s ∈ {0, 1, . . . , i} satisfies the five following properties:

(Closed) Ms is closed under the orientation rules.

(Invariant) The arrowheads and tails in Ms are invariant in all the MAGs consistent to P and BK
regarding V1, . . . , Vs.

(Chordal) The circle component in Ms is chordal.

(Balanced) For any three vertices A,B,C in Ms, if A∗→ B ◦−∗C, then there is an edge between
A and C with an arrowhead at C, namely, A∗→ C. Furthermore, if the edge between A and B is
A→ B, then the edge between A and C is either A→ C or A◦→ C (i.e., it is not A↔ C).

(Complete) For each circle at vertex A on any edge A◦−∗B in Ms, there exist MAGsM1 andM2

consistent to P and BK regarding V1, . . . , Vs with A←∗B ∈ E(M1) and A→ B ∈ E(M2).

Then the PMG Mi+1 obtained from Mi with BK(Vi+1) by Alg. 1 also satisfies the five properties.

Proof sketch: For brevity, we denote Vi+1 by X . (A) The closed property holds due to the third step
of Alg. 1.(B) The invariant property holds because all the orientations in Alg. 1 either follow BK(X)
or are motivated as the necessary condition for the ancestral property and the fact that there cannot be
new unshielded colliders introduced relative to Mi. (C) The chordal property is proved based on the
fact that only the first two steps of Alg. 1 possibly introduce new arrowheads, while the third step will
only transform the edges as A◦→ B to A→ B, which is proved in Lemma 12 in Appendix B. With
this fact, it suffices to prove that the circle component in the graph obtained after the first two steps is
chordal. Denote the graph after the first two steps by M̄i+1. We can prove that the circle components
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in M̄i+1[PossDe(X,Mi[−C])] and in M̄i+1[−PossDe(X,Mi[−C])] are chordal, respectively. Since
there are no circle edges connecting PossDe(X,Mi[−C]) and V\PossDe(X,Mi[−C]) (otherwise it
has been oriented in the first step of Alg. 1), we conclude the desired result. (D) The balanced property
of Mi+1 is proved based on three facts that (1) in Alg. 1, if we transform a circle to arrowhead at
V , then V ∈ PossDe(X,Mi[−C]); (2) if there is A ∈ PossDe(X,Mi[−C]) and A ◦−∗ B, B 6∈ C,
in Mi+1, then B ∈ PossDe(X,Mi[−C]); (3) Mi satisfies the balanced property. We can prove
that it is impossible that there is a sub-structure Vi∗→ Vj ◦−∗ Vk where Vi is not adjacent to Vk or
there is Vi ∗−◦ Vk in Mi+1 by discussing whether Vi, Vj , Vk belongs to PossDe(X,Mi[−C]). (E)
The completeness property is proved by showing two results: (1) for edge circle edge A ◦−◦B and
C◦→ D in Mi+1, C◦→ D can be transformed to C → D and the circle edge can be oriented as both
A→ B andA← B in the MAGs consistent to P and local BK regarding V1, · · · , Vi+1; (2) in Mi+1,
each edge A◦→ B can be oriented as A ↔ B in an MAG consistent to P and local BK regarding
V1, · · · , Vi+1. In this part, the most difficult part is to prove the first result, with which the second
result can be proved directly following the proof process of Thm. 3 of Zhang [35]. In the proof for
the first result, we show that any MAG obtained from Mi+1 by transforming the edges as A◦→ B
to A→ B and the circle component into a DAG without new unshielded colliders is consistent to
P and local BK regarding V1, . . . , Vi+1. If not, we can always find an MAG obtained from Mi by
transforming the edges as A◦→ B to A → B and the circle component into a DAG without new
unshielded colliders that is not consistent to P and local BK regarding V1, . . . , Vi. By induction,
there is an MAG obtained from P by transforming the edges as A◦→ B to A → B and the circle
component into a DAG without new unshielded colliders that is not consistent to P , contradiction
with Thm. 2 of Zhang [35]. We conclude the first result. �

Corollary 1. The k-step algorithm from M0(= P) to Mk is sound and complete. That is, the
non-circle marks in Mk are invariant in all the MAGs consistent to P and BK regarding V1, . . . , Vk.
And for each circle in Mk, there exist both MAGs with an arrowhead and MAGs with a tail here that
are consistent to P and BK regarding V1, . . . , Vk.

Proof. Previous studies [34, 35] show that the last four properties in Thm. 1 are fulfilled in PAG, the
case inR′4 will never happen in P because such circles have been oriented byR4 in the process of
learning P , and the case inR11 is never triggered by the rules to learn P . Hence P satisfies the five
properties. With the induction step implied by Thm 1, we directly conclude that Mk satisfies the five
properties, thereby satisfying the invariant and complete property.

Theorem 2. The orientation rules are sound and complete to orient a PAG with the local background
knowledge regarding V1, . . . , Vk.

Proof. The soundness ofR′4 is shown by Prop. 1. The soundness of other rules immediately follows
Thm. 4.1 of Ali et al. [34] and Thm. 1 of Zhang [35]. We do not show the details. Roughly speaking,
the violation of these rules will lead to that there are new unshielded colliders or directed or almost
directed cycles in the oriented graph relative to P . The main part is to prove the completeness.

According to Cor. 1, it suffices to prove that in each step by Alg. 1 to incorporate BK(X) into a PMG
Mi, the orientations in Alg. 1 either follow BK(X) directly, or can be achieved by the proposed
orientation rules. The orientation in the second step of Alg. 1 can be achieved by R1, because no
matter FVl

\FVj
6= ∅ or Vm → Vl ◦−◦ Vj , there is F ∈ FVl

\FVj
or F = Vm respectively such that

F∗→ Vl ◦−◦ Vj where F is not adjacent to Vj . The orientation in the third step naturally follows the
orientation rules. For the orientation in the first step, X ←∗V for V ∈ C is dictated by BK(X), and
X → V for V ∈ {V ∈ V(P) | X ◦−∗ V }\C is obtained from X −∗V dictated by BK(X) andR11.
The remaining part is to prove for K ∈ PossDe(X,Mi[−C])\{X} and T ∈ C, if there is K ◦−∗ T
in Mi, K ←∗T can be oriented by the proposed orientation rules when we incorporate BK(X).

Due to K ∈ PossDe(X,Mi[−C])\{X}, there is a possible directed path from X to K that does
not go through C. According to Lemma 2 in Appendix B, there is a minimal possible directed path
p = 〈X(= F0), F1, . . . ,K(= Ft)〉, t ≥ 1 where each vertex does not belong to C. Hence X → F1

is oriented by BK(X) and R11 unless X → F1 has been in Mi. Hence, X → F1 → · · · → Ft

can be oriented by R1 after incorporating BK(X) unless they have been in Mi. If t = 1, there is
T∗→ X → K, thus K ←∗T can be oriented byR2. Next, we consider the case when t ≥ 2.

We first prove that for any Fm ∈ F1, . . . , Ft, t ≥ 2, Fm is adjacent to T , and there is not Fm →
T in Mi. Suppose Fm is not adjacent to T , there must be a sub-structure of Mi induced by
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Figure 2: Fig. 2(a) depicts a PAG P , with the local BK regarding V1 in the form of V1 ←∗V2, V1 ←
∗V5, V1−∗V4 and the local BK regarding V2 in the form of V2 ←∗V1, V2−∗V3, V2−∗V5. The connected
circle components are denoted by shaded area. The edges oriented by the orientation rules are denoted
by red dashed lines.

Fm−s, Fm−s+1, . . . , Fm+l, T , 1 ≤ s ≤ m, 1 ≤ l ≤ t−m, such that T is only adjacent to Fm−s and
Fm+l in this sub-structure. There are at least four vertices in this sub-structure. Hence there must be
an unshielded collider (denoted by UC for short) in this sub-structure in P , otherwise no matter how
we orient the circle there is either a new UC relative to P or a directed or almost directed cycle there.
Since p is possibly directed, the UC is at either Fm+l or T (i.e., ∗→ Fm+l( or T )←∗). If there is a UC
at Fm+l, T∗→ Fm+l and Fm+l−1∗→ Fm+l are identified in P . Thus Fm+l → Fm+l+1 · · · → Ft is
identified in P . Due to the completeness of FCI algorithm to learn P , there is K ←∗T in P , because
there is not an MAG with K → T (there has been T∗→ Fm+l → · · · → K in P). Hence there is
K ←∗T in Mi, contradicting with K ◦−∗ T in Mi. If there is not a UC at Fm+l, UC can only be at T .
Thus Fm−s∗→ T ←∗Fm+l is identified in P . Since p is possibly directed, Fm+l−1 is not adjacent
to T , and there is not a UC at Fm+l in the sub-structure, there cannot be Fm+l ↔ T in P . Hence
the path 〈Fm−s, Fm−s+1, . . . , Fm+l, T 〉 in P is an uncovered possible directed path, Fm−s → T is
identified in P (otherwise R9 applies). When incorporating BK(X), there is a (almost) directed
cycle T∗→ X → · · · → Fm−s → T , contradicting with the correctness of BK. Hence, Fm is
adjacent to T . Similarly, if Fm → T in Mi, there is T∗→ X → · · · → Fm → T , impossibility.

Finally, since F1 is adjacent to T , and T∗→ X → F1 is oriented according to BK(X), there is
T∗→ F1 oriented by R2 unless T∗→ F1 has been in Mi. Hence there is always T∗→ F1 by the
orientation rules. Consider T∗→ F1 → F2, there is T∗→ F2 oriented by R2 unless T∗→ F2 has
been in Mi. Repeat the process for F3, F4, . . . , Ft(= K), we can prove that if there is Ft(= K)◦−∗T
in Mi, there is T∗→ Ft(= K) oriented byR2. The rules thus orient the same marks as Alg. 1.

Example 2. We give an example in Fig. 2. Suppose we obtain a PAG as Fig. 2(a) with observational
data and have the local BK regarding V1, V2. We divide the whole process of obtaining a PMG from
P with the local BK into obtaining M1 from P with BK(V1) by Alg. 1 and then obtaining M2 from
M1 with BK(V2) by Alg. 1. M1 and M2 are shown in Fig. 2(b) and 2(c), respectively. It is not hard
to verify that all of P , M1, M2 satisfy the closed, chordal, and balanced properties defined in Thm 1.
Note if we do not considerR′4, the edge colored red in Fig. 2(b) cannot be oriented. Fig. 2(a) also
shows a case where BK(V1) is not tiered [37]. The reason is that the vertices V1, V4, V5 cannot
partitioned into disjoint subsets with explicit causal order because V1 and V4 belong to different
subsets according to BK(V1) but V5 has ancestor relation with neither V1 nor V4.

4 Active Causal Discovery Framework

The establishment of the orientation rules for causal identification with local BK makes causal
discovery by interventions possible in the presence of latent variables. Hence, on the basis of the
theoretical results, we propose an active learning framework for causal discovery in the presence of
latent variables, with the target of learning the MAG with as fewer interventions as possible. The
framework is comprised of three stages. In Stage 1, we learn a PAG with observational data. In Stage
2, we select a singleton variable X ∈ V1, . . . , Vd to intervene and collect the interventional data. In
Stage 3, we learn causal relations with the data. For each edge X ◦−∗Vi, the circle at X can be learned
by a two-sample test on whether the interventional distribution of Vi equals to the observational one.
There is X ←∗Vi learned if they are equal, and X −∗Vi otherwise. Hence, the knowledge taken by the
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Algorithm 2: Intervention variable selection based on maximum entropy criterion with MH alg.
Input: A PMG Mi oriented based on P and BK regarding V1, . . . , Vi, number of MAGs L
Output: The selected intervention variable X

1 Obtain an MAGM0 based on Mi by transforming ◦→ to→ and the circle component into a
DAG without new unshielded colliders;

2 for t = 1, 2, . . . , L′ do
3 Sample an MAGM′ from S(Mt−1);
4 ρ = min(1, |S(Mt−1)|

|S(M′)| );
5 Sample u from uniform distribution U [0, 1];
6 if u ≤ ρ then Mt =M′ else Mt =Mt−1 ;
7 S = {Mt,1≤t≤L′ | Mt has the non-circle marks in Mi} . The set of MAGs consistent to Mi;
8 s← 0, X ← ∅;
9 for Vj = Vi+1, . . . , Vd do

10 Denote V(Vj) = {V ∈ V(Mi) | Vj ◦−∗ V in Mi}, L = |S|;
11 For each possible local structure Lk of Vj , 1 ≤ k ≤ 2|V(Vj)|, we count the number Nk of the

appearance of Lk in the L MAGs from S;

12 s′ = −
∑2|V(Vj)|

k=1
Nk

L log Nk

L ;
13 if s ≤ s′ then X ← Vj , s← s′;
14 return X .

interventional data is local. We repeat the second and third stages until we identify the MAG. Since
the orientation rules are complete, the graph can be updated completely by each intervention. The
only remaining problem is how to select the intervention variable in Stage 2.

Considering that the whole process is sequential, we only focus on the intervention variable selection
in one round. Without loss of generality, suppose we have obtained a PMG Mi by i interventions on
V1, V2, . . . , Vi, and will select a variable from {Vi+1, . . . , Vd} to intervene. We adopt the maximum
entropy criterion [22]. For Mi, we select the variable X that maximizes

HX = −
M∑
j=1

lj
L

log
lj
L
, (1)

where j is an index for a local structure of X (a local structure of X denotes a definite orientation of
the marks at X), M denotes the number of different local structures, lj denotes the number of MAGs
consistent to Mi which has the j-th local structure of X , and L denotes the total number of MAGs
consistent to Mi. Intuitively, the maximum entropy criterion is devoted to selecting the intervention
variable X such that there is a similar number of MAGs with each local structure of X and as more
as possible local structures of X . A justification for intervening on such a variable is that we hope to
have a small space of MAGs after the intervention no matter what the true local structure of X is.

However, it is hard to count the number of MAGs consistent to Mi with each definite local structure.
Even in causal sufficiency setting, implementing such operation (generally called counting maximally
oriented partial DAGs) is #P-complete [39]. Considering DAG is a special case for MAG, the
counting of MAGs is harder. Hence, we adopt a sampling method based on Metropolis-Hastings
(MH) algorithm [40], to uniformly sample from the space of MAGs. The algorithm begins from an
MAG consistent to Mi, and in each round we transform the MAG to a candidate MAG and decide to
accept or reject it with some probability. Here, we introduce an important result of Zhang and Spirtes
[41] for MAGs transformation in Prop. 2.
Proposition 2 (Zhang and Spirtes [41], Tian [42]). LetM be an arbitrary MAG, and A → B an
arbitrary directed edge inM. LetM′ be the graph identical toM except that the edge between A
and B is A↔ B.M′ is an MAG Markov equivalent toM if and only if

(1) there is no directed path from A to B other than A→ B inM;

(2) for any C → A inM, C → B is also inM; and for any D ↔ A inM, either D → B or
D ↔ B is inM;

(3) there is no discriminating path for A on which B is the endpoint adjacent to A inM.
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In the MAG sampling algorithm, in each step we transform the current MAG to a new MAG by
converting a directed edge to bi-directed edge or a bi-directed one to directed one, where we use
Prop. 2 to determine whether an MAG Markov equivalent to the current MAG can be obtained by
the conversion. For MH algorithm, a stationary distribution equal to the desired distribution can
be obtained if any two states can be transformed to each other in limited steps [43]. As implied by
Theorem 3 of Zhang and Spirtes [41], any MAG can be transformed to another Markov equivalent
MAG in a limited number of transformations above. Hence, MH algorithm is valid to sample MAGs
uniformly from the space of MAGs consistent to P . Then, we only remain the MAGs that have the
same non-circle marks as Mi. In this way, we obtain a set of MAGs which are uniformly sampled
from the space of MAGs consistent to Mi.

Given an MAGM, let S(M) denote the set of MAGs that can be obtained fromM by transforming
one bi-directed edge to directed edge or one directed edge to bi-directed edge according to Prop. 2.
Denote the cardinality of S(M) by |S(M)|. We set the probability Q(M′ | M) of an MAGM
transformed to another MAGM′ ∈ S(M) as 1/|S(M)|. Hence, the acceptance ratio ρ that is used
to decide whether to accept or reject the candidate is

ρ = min

(
1,
p(M′)Q(M |M′)
p(M)Q(M′ | M)

)
= min

(
1,
|S(M)|
|S(M′)|

)
.

We propose Alg. 2 to select the intervention variable X . As shown by Lemma 15.1 in Appendix B,
the graphM0 is an MAG consistent to Mi. From Line 2-Line 6, we execute MH algorithm to sample
L′ MAGs. Then, we select the MAGs among them which are consistent to Mi on Line 7. Finally, we
estimate the entropy by (1) and select X from Line 9-Line 14.

5 Experiments

In this section, we conduct a simple simulation of the three-stage active learning framework. We
generate 100 Erdös-Rényi random DAGs for each setting, where the number of variables d = 10
and the probability of including each edge p ∈ {0.1, 0.15, 0.2, 0.25, 0.3}. The weight of each edge
is drawn from U [1, 2]. We generate 10000 samples from the linear structural equations, and take
three variables as latent variables and the others as observed ones. In the implementation of the MH
algorithm in Alg. 2, we discard the first 500 sampled MAGs and collect the following 1000 MAGs.
For each intervention variable X , we collect 10000 samples under do(X = 2), and learn the circles
at X by two-sample test with a significance level of 0.05.

We compare the maximum entropy criterion with a baseline random criterion where we randomly
select one variable with circles to intervene in each round. We show the results in Tab. 1. # int. denotes
the number of interventions to achieve MAG identification. The effectiveness of the maximum entropy
criterion is verified by noting that the number of interventions with maximum entropy criterion is
fewer than that with random criterion. Further, we evaluate the three stages respectively. In Stage 1,
we obtain a PAG by running FCI algorithm with a significance level of 0.05. In Stage 2, we adopt
the two criteria to select intervention variables. In Stage 3, we learn the marks with corresponding
interventional data and orientation rules. We evaluate the performance of Stage 1 by # correct PAG/#
wrong PAG. # correct PAG/# wrong PAG denotes the number of edges that are correctly/wrongly
identified by FCI. An edge is correctly/wrongly identified by FCI if the edge learned by FCI is
identical/not identical to the true PAG. The performance of Stage 2 is evaluated by # int.. And we
evaluate the performance of Stage 3 by # correct int./# wrong int., where # correct int./# wrong int.
denotes the number of edges whose direction are correctly/wrongly identified by interventions. An
edge is correctly/wrongly identified by interventions if its existence is correctly identified in P but the
direction is uncertain, and after interventions we learn its direction correctly/wrongly. We evaluate
the performance of the whole process by Norm. SHD and F1. Norm. SHD denotes the normalized
structural hamming distance (SHD), which is calculated by dividing SHD by d(d− 1)/2. F1 score is
calculated by the confusion matrix to indicate whether the edge between any two vertices is correctly
learned. According to the SHD and F1 score, the active framework can learn the MAG accurately
when p is not large. And as shown by the evaluations of Stage 1 and Stage 3, the marks are learned
accurately in Stage 3, and most of the mistakes are generated in Stage 1. Hence, in the active learning
framework, the PAG estimation in the first stage is the bottleneck of having a good performance.
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Table 1: Number of interventions, normalized SHD, F1 score, number of correctly/ wrongly learned
marks by interventions, and number of correctly/wrongly learned marks in PAG over 100 simulations
with d = 10 and varying p in the format of mean ± std.

Strategy-p # int. Norm. SHD F1 # correct int. # wrong int. # correct PAG # wrong PAG

Random-0.10 2.88 ± 1.28 0.02 ± 0.04 0.85 ± 0.29 3.92 ± 2.40 0.11 ± 0.53 4.78 ± 3.11 0.39 ± 0.82MCMC-0.10 2.77 ± 1.19 0.02 ± 0.04 0.85 ± 0.29 4.00 ± 2.40 0.03 ± 0.22

Random-0.15 3.30 ± 1.15 0.02 ± 0.05 0.91 ± 0.17 5.17 ± 2.62 0.10 ± 0.41 7.21 ± 3.85 0.40 ± 0.92MCMC-0.15 3.20 ± 1.03 0.02 ± 0.04 0.92 ± 0.16 5.25 ± 2.66 0.02 ± 0.14

Random-0.20 3.59 ± 1.22 0.04 ± 0.06 0.91 ± 0.15 6.26 ± 2.75 0.19 ± 0.61 9.26 ± 3.94 0.59 ± 1.30MCMC-0.20 3.42 ± 1.16 0.03 ± 0.06 0.92 ± 0.15 6.38 ± 2.70 0.07 ± 0.33

Random-0.25 3.47 ± 1.34 0.08 ± 0.14 0.89 ± 0.18 7.08 ± 3.37 0.06 ± 0.34 11.92 ± 4.01 1.59 ± 2.85MCMC-0.25 3.22 ± 1.19 0.08 ± 0.14 0.89 ± 0.18 7.05 ± 3.39 0.09 ± 0.35

Random-0.30 3.64 ± 1.32 0.14 ± 0.15 0.83 ± 0.18 7.03 ± 3.33 0.36 ± 1.01 12.59 ± 4.08 2.63 ± 3.19MCMC-0.30 3.55 ± 1.37 0.14 ± 0.15 0.83 ± 0.18 7.25 ± 3.50 0.14 ± 0.43

6 Conclusion

In this paper, we show what causal relations are identifiable in the presence of latent variables given
local background knowledge with sound and complete orientation rules. Based on the theoretical
results, we give the first active learning framework for causal discovery in the presence of latent
variables. In the future, we will investigate the causal relations identifiability with general background
knowledge. It is also worthy to study how our research may help some recent novel decision-making
methodology [44].
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