
EcoFormer: Energy-Saving Attention
with Linear Complexity

Jing Liu∗ Zizheng Pan∗ Haoyu He Jianfei Cai Bohan Zhuang†

Department of Data Science & AI, Monash University, Australia

Abstract

Transformer is a transformative framework for deep learning which models se-
quential data and has achieved remarkable performance on a wide range of tasks,
but with high computational and energy cost. To improve its efficiency, a popular
choice is to compress the models via binarization which constrains the floating-
point values into binary ones to save resource consumption owing to cheap bitwise
operations significantly. However, existing binarization methods only aim at mini-
mizing the information loss for the input distribution statistically, while ignoring
the pairwise similarity modeling at the core of the attention mechanism. To this
end, we propose a new binarization paradigm customized to high-dimensional
softmax attention via kernelized hashing, called EcoFormer, to map the original
queries and keys into low-dimensional binary codes in Hamming space. The ker-
nelized hash functions are learned to match the ground-truth similarity relations
extracted from the attention map in a self-supervised way. Based on the equiv-
alence between the inner product of binary codes and the Hamming distance as
well as the associative property of matrix multiplication, we can approximate the
attention in linear complexity by expressing it as a dot-product of binary codes.
Moreover, the compact binary representations of queries and keys in EcoFormer
enable us to replace most of the expensive multiply-accumulate operations in atten-
tion with simple accumulations to save considerable on-chip energy footprint on
edge devices. Extensive experiments on both vision and language tasks show that
EcoFormer consistently achieves comparable performance with standard attentions
while consuming much fewer resources. For example, based on PVTv2-B0 and
ImageNet-1K, EcoFormer achieves a 73% reduction in on-chip energy footprint
with only a slight performance drop of 0.33% compared to the standard attention.
Code is available at https://github.com/ziplab/EcoFormer.

1 Introduction

Recently, Transformers [57] have shown rapid and exciting progress in natural language processing
(NLP) [15, 14] and computer vision (CV) [17, 56] due to its extraordinary representational power.
Compared with convolutional neural networks (CNNs) [30], Transformer models are generally more
scalable to massive amounts of data and better at capturing long-dependency global information with
less inductive bias, thus achieving better performance in many tasks [26, 38]. However, the efficiency
bottlenecks, especially the high energy consumption, greatly hamper the massive deployment of
Transformer models to resource-constrained edge devices, such as mobile phones and unmanned
aerial vehicles, for solving a variety of real-world applications.

∗Authors contributed equally.
†Corresponding author. Email: bohan.zhuang@monash.edu

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/ziplab/EcoFormer


{𝐪!}!"#$

{𝐤!}!"#$

{𝐯!}!"#$

𝒪(𝑁!)

(") softmax

𝒪(𝑁!)

(")

{𝐪!}!"#$

{𝐤!}!"#$

{𝐯!}!"#$

𝜙(")

𝒪(𝑁)

(")𝜙(")
(")
𝒪(𝑁)

(a) Attention (b) Kernel-based Linear Attention (c) EcoFormer

Addition onlyMultiply-accumulate

{𝐪!}!"#$

{𝐤!}!"#$

{𝐯!}!"#$

𝐻(")

𝒪(𝑁)

(")𝐻(")
(")
𝒪(𝑁)

binary codes

binary codes

Figure 1: Computational graphs for standard attention (left), kernel-based linear attention (middle)
and the proposed EcoFormer based on kernelized hashing (right).

Table 1: Energy cost for different operations (on 45nm CMOS technology) [21, 22, 32].
Operation 16-bit FP Add 16-bit FP Mult 32-bit FP Add 32-bit FP Mult

Energy (pJ) 0.4 1.1 0.9 3.7
Area (µm2) 1,360 1,640 4,184 7,700

To reduce the energy consumption, quantization has been actively studied to lower the bit-width
representation of network weights [11, 52, 66] and/or activations [25, 68, 67]. With the most
aggressive bit-width, binary quantization [49, 2, 46] has attracted much attention since it enables
efficient bit-wise operations by representing values with a single bit (e.g., +1 or -1). When we
only binarize weights in analogous to BinaryConnect [11], as shown in Table 1, it brings great
benefits to dedicated hardware by replacing a large number of energy-hungry multiply-accumulate
operations with simple energy-efficient accumulations, which saves significant on-chip area and
energy required to run inference with Transformers, making them feasible to be deployed on mobile
platforms with limited resources. However, the conventional binarization process typically targets at
minimizing quantization errors between the original full-precision data distribution and the quantized
Bernoulli distribution statistically. In other words, each token is binarized separately, where the binary
representations may not well preserve the original similarity relations among tokens. This motivates
us to customize the binarization process to softmax attention, the core mechanism in Transformer
that encodes the pairwise similarity between tokens. To this end, we can adapt the well-established
hashing methods, to map the high-dimensional queries and keys into compact binary codes (e.g.,
16-bits) that are able to preserve the similarity relations in Hamming space. A simple solution is to
use the locality-sensitive hashing (LSH) [1] to substitute the binary quantization counterparts.

Nevertheless, another energy bottleneck exists in Transformers. Specially, given a sequence of tokens,
the softmax attention obtains the attention weights by computing the inner product between a query
token and all key tokens, leading to the quadratic time complexity O

(
N2

)
regarding the number

of tokens N , as shown in Figure 1 (a). This problem is even worse for a long sequence length
N , especially for high resolution images in dense prediction tasks. To reduce the complexity of
the softmax attention, some prior works propose to express the attention as a linear dot product of
kernelized feature embeddings [45, 9]. With the associative property of matrix multiplication, the
attention operation can be approximated in linear complexity O(N), as illustrated by Figure 1 (b).

Based on the hashing mechanism and kernel-based formulation of attention, we devise a simple yet
effective energy-saving attention, called EcoFormer, which is shown in Figure 1 (c). In particular, we
propose to use kernelized hashing with RBF kernel to map the queries and keys to compact binary
codes. The resulting codes are valid for similarity preserving based on the good property that the
codes’ inner product (i.e., Hamming affinity) and Hamming distance have one-to-one correspondence
[36]. Thanks to the associative property of the linear dot-product between the binary codes, the
kernelized hashing attention is in linear complexity with significant energy saving. Moreover, the
pairwise similarity matrix in attention can be directly used to obtain the supervision labels for hash
function learning, delivering a novel self-supervised hashing paradigm. By maximizing the Hamming
affinity on the similar pairs of tokens and simultaneously minimizing on the dissimilar pairs of tokens,
the pairwise similarity relations between tokens can be preserved. With low-dimensional binary
queries and keys, we can replace most of the energy-hungry floating-point multiplications in attention
with simple additions, which greatly saves the on-chip energy footprint.

To sum up, we make three main contributions: 1) We propose a new binarization paradigm to
better preserve the pairwise similarity in softmax attention. In particular, we present EcoFormer, an
energy-saving attention with linear complexity powered by kernelized hashing to map the queries
and keys into compact binary codes. 2) We learn the kernelized hash functions based on the ground-

2



truth Hamming affinity extracted from the attention scores in a self-supervised way. 3) Extensive
experiments on CIFAR-100, ImageNet-1K and Long Range Arena show that EcoFormer is able to
significantly reduce the on-chip energy cost while preserving the accuracy. For example, based on
PVTv2-B0 and ImageNet-1K, EcoFormer achieves a 73% reduction in on-chip energy footprint with
only a marginal performance drop of 0.33% compared to the standard attention.

2 Related Work

Efficient attention mechanisms. To alleviate the quadratic computational cost for vanilla attention
with respect to the number of tokens, much work has endeavored developing efficient attentions.
One line of research performs attention only on the part of the tokens [38, 61, 4, 29, 60, 12, 58,
54]. For instance, Reformer [29], SMYRF [12], Fast Transformers [58] and LHA [54] restrict the
attention to the most similar token pairs via hashing and reduces the computational complexity to
O(N logN). Linformer [60] approximates the attention with low-rank factorization that reduces
the length of the key and value. However, the computational complexity is dependent on the design
for reducing tokens. Another line of research speeds up the vanilla attention with kernel-based
methods [9, 64, 41, 28, 47]. For example, Performer [9] approximates the softmax operation with
orthogonal random features. Nyströmformer [64] and SOFT [41] approximate the full self-attention
matrix via matrix decomposition. Although impressive achievements have been achieved, how to
develop attention that is highly energy-efficient remains under-explored, as multiplications dominate
the on-chip energy consumption. AdderNet variants [8, 53] replace the energy-hungry multiplication-
based similarity measurement with the energy-efficient addition-based L1 distance and argue that
additions can also provide powerful feature representations. Nevertheless, this heuristic approach
brings a drastic performance drop. In contrast, we are from the perspective of binarization and
propose to learn kernel-based hash functions using attention scores to map the original features into
compact similarity-preserving binary codes in Hamming distance, which is energy-efficient and in
linear complexity O(N). With the low-dimensional binary queries and keys, our EcoFormer is able
to replace most of the multiplications with simple accumulations.

Hashing. Hashing is an efficient nearest neighbor search method by embedding the high-dimensional
data into a similarity preserving low-dimensional binary codes, based on the intuition that highly
similar data should be assigned the same hash key. Hashing methods can be roughly categorized
into data-independent and data-dependent schemes. The former focuses on building random hash
functions and locally sensitive hashing (LSH) [19, 7] is arguably the most representative one, which
guarantees the sub-linear time similarity search and is followed by non-linear extensions such as
hashing with kernels [31] or on manifolds [63]. The latter can be further divided into unsupervised
[37, 20, 35], semi-supervised [44, 59] and supervised hashing [36, 71, 65]. When it comes to
Transformers, as self-attention encodes the pairwise similarity among tokens, hashing is thus a natural
choice to efficiently retrieve similar keys given a query. Reformer is such a pioneering work, which
proposes to group similar tokens in a single hash bucket to form sparse self-attention. Our EcoFormer
is fundamentally different from Reformer in three aspects: 1) Reformer relies on local attention
lookups to reduce the complexity while our EcoFormer is designed from a numerical perspective,
where the low-dimensional binary codes are used to save the multiplications; 2) Reformer is built
upon LSH with linear mapping, which cannot deal with the kernel-based formulation of attention to
scale linearly with the sequence length; 3) Our hash functions are self-supervised by the pairwise
affinity labels in attention, which are optimized in conjunction with network parameters and more
accurate than unsupervised random projections.

Binary quantization. Binarization, an extreme quantization scheme, seeks to represent the vectors
by binary codes. As a result, the computationally heavy matrix multiplications become light-weight
bitwise operations (i.e., xnor and popcount), yielding promising memory saving and acceleration.
In general, to make binary neural networks [24] reliable in accuracy, current research targets at
tackling two main challenges. The first challenge is to minimize the quantization error, basically
based on learning the scaling factors [49, 6], parameterizing the quantization range and/or intervals
[27, 18], and ensembling multiple binary bases [34, 72], etc. Another category of studies focus on
solving the non-differentiable optimization problem due to the discretization process via training
with regularization [16], knowledge distillation [43, 46], relaxed optimization [23, 3], appending
full-precision branches [39, 42] and so on. Apart from CNNs, there are some recent pioneering
attempts targeting on binarizing Transformers. For example, BinaryBERT [2] proposes to push
Transformer quantization to the limit by weight binarization. BiBERT [46] quantizes both weights,

3



embeddings and activations of BERT [15] to 1-bit and achieves considerable savings on FLOPs
and model size, but still has obvious performance drop. In contrast, we propose to customize the
binarization paradigm to softmax attention from the hashing perspective, preserving high-fidelity
pairwise similarity information in compact binary codes which are used to deliver linear-complexity,
energy-efficient self-attention.

3 Preliminaries

3.1 Attention Mechanism

Let X ∈ RN×D be the input sequence into a standard multi-head self-attention (MSA) layer, where
N is the length of the input sequence and D is the number of hidden dimensions. A standard MSA
layer calculates a sequence of query, key and value vectors with three learnable projection matrices
Wq,Wk,Wv ∈ RD×Dp , which can be formulated as

{qt}Nt=1 = XWq, {kt}Nt=1 = XWk, {vt}Nt=1 = XWv, (1)

where Dp refers to the number of dimensions for each head. For each query vector, the attention
output is a weighted-sum over all value vectors as

Attention(qt, {ki}, {vi}) =
∑
i

exp(qt · ki/τ)∑
j exp(qt · kj/τ)

vi, (2)

where τ is the temperature for controlling the flatness of softmax and exp(⟨· , ·⟩) is an exponential
function. With N token, the computation of attention has a quadratic complexity of O(N2) in both
space and time, which results in huge computational cost when dealing with long sequences.

3.2 Kernel-based Linear Attention

The idea behind kernel-based linear attention is to express the similarity measure in Eq. (2) as a linear
dot-product of kernel embeddings, such as polynomial kernel, exponential or RBF kernel. A particular
choice is to employ the finite random mapping [48] ϕ(·) to approximate the infinite dimensional
RBF kernel. Then, according to the theorem from Rahimi [48], the inner product between a pair of
transformed vectors x and y with ϕ(·) can approximate a Guassian RBF kernel. This gives rise to an
unbiased estimation to exp(⟨· , ·⟩) in Eq. (2), which can be expressed as

exp
(
x · y/σ2

)
= exp

(
∥x∥2 /2σ2 + ∥y∥2 /2σ2

)
exp

(
−∥x− y∥2 /2σ2

)
≈ exp

(
∥x∥2 /2σ2 + ∥y∥2 /2σ2

)
ϕ (x)

⊤
ϕ (y) .

(3)

Assume that the queries and keys are unit vectors, then the attention computation in Eq. (2) can be
approximated by

Attention(qt, {ki}, {vi}) ≈
∑
i

ϕ (qt)
⊤
ϕ (ki)vi∑

j ϕ (qt)
⊤
ϕ (kj)

(4a)

=
ϕ (qt)

⊤ ∑
i ϕ (ki)⊗ vi

ϕ (qt)
⊤ ∑

j ϕ (kj)
, (4b)

where ⊗ refers to the outer product. Recent works have shown that kernel-based linear attentions
perform favorably against the original softmax attention on machine translation [45] and protein
sequence modeling [9]. However, although the complexity is reduced into linear, the intensive
floating-point multiplications in Eq. (4b) still consume a large amount of energy, which can quickly
drain the batteries on mobile/edge platforms.

3.3 Binary Quantization

Following [49], binary quantization typically estimates the full-precision u ∈ Rn using a binary
û ∈ {+1,−1}n and a scaling factor α ∈ R+ such that u ≈ αû holds. To find an accurate estimation,
existing methods [49, 42, 34, 2, 46] minimize the quantization error as

α∗, û∗ = argmin ∥u− αû∥. (5)

4



By solving Problem (5), we have û = sign(u) and α = 1
n∥u∥ℓ1, where sign(u) returns 1 if u ≥ 0

and -1 if u < 0. Since the sign function is non-differentiable, the straight-through estimator (STE) [5]
is applied to approximate the gradient such as using the gradient of hard tanh [25] or piecewise
polynomial function [39].

4 Proposed Method

To reduce the energy consumption of self-attention, one may perform binary quantization [46, 2] on
the queries {qt}Nt=1 and keys {kt}Nt=1. In this case, we can replace most of the energy-expensive
multiplications with the energy-efficient bit-wise operations. However, existing binary quantization
methods only focus on minimizing the quantization error between the original full-precision values
and the binary ones as in Eq. (5), which fails to preserve the pairwise semantic similarity between
different tokens in attention, leading to performance degradation.

Note that the attention can be seen as applying kernel smoother over pairwise tokens where the kernel
scores denote the similarity of the token pairs, as mentioned in Section 3.2. Motivated by this, we
propose a new binarization method that applies kernelized hashing with Gaussian RBF to map the
original high-dimensional queries/keys to low-dimensional similarity-preserving binary codes in
Hamming space. The proposed framework, which we dub EcoFormer, is depicted in Figure 1 (c).
To maintain the semantic similarity in attention, we learn the hash functions in a self-supervised
manner. By exploiting the associative property of the linear dot-product between binary codes and
the equivalence between the code inner products (i.e., Hamming affinity) and the Hamming distances,
we are able to approximate the self-attention in linear time with low energy cost. In the following, we
first introduce the kernelized hashing attention in Section 4.1 and then show how to learn the hash
functions in a self-supervised way in Section 4.2.

4.1 Kernelized Hashing Attention

Before applying hash functions, we let the queries {qt}Nt=1 and keys {kt}Nt=1 to be identical follow-
ing [29, 41]. In this way, we can then apply kernelized hash functions H : RDp 7→ {1,−1}b without
explicitly applying transformation ϕ(·) mentioned in Section 3.2 to map qi and kj into b-bit binary
codes H(qi) and H(kj), respectively (see Section 4.2). In this case, the Hamming distance between
them can be defined as

D (H(qi), H(kj)) =
∑b

r=1 1{Hr(qi) ̸= Hr(kj)}, (6)
where Hr(·) is the r-th bit of the binary codes; 1{A} is an indicator function that returns 1 if A is
satisfied and otherwise returns 0. With D (H(qi), H(kj)), the codes inner product between H(qi)
and H(kj) can be formulated as

H(qi)
⊤H(kj) =

b∑
r=1

1{Hr(qi) = Hr(kj)} −
b∑

r=1

1{Hr(qi) ̸= Hr(kj)}

= b− 2

b∑
r=1

1{Hr(qi) ̸= Hr(kj)} = b− 2D (H(qi), H(kj)) .

(7)

Importantly, Eq. (7) shows the equivalence between the Hamming distance and the codes inner
product since there is a one-to-one correspondence. By substituting with the hashed queries and keys
in Eq. (4a), we can approximate the self-attention as

Attention(qt, {ki}, {vi}) ≈
∑
i

H(qt)
⊤H(ki)vi∑

j H(qt)⊤H(kj)
. (8)

Note that H(qt)
⊤H(kj) ∈ [−b, b]. To avoid zero in denominator, we introduce a bias term 2c to

each inner product so that H(qt)
⊤H(kj)+ 2c > 0, having no effect on the similarity measure. Here,

we can simply set c to ⌈log2(b+ 1)⌉ where ⌈u⌉ returns the least integer greater than or equal to u.
Using the associative property of matrix multiplication, we approximate the self-attention as

Attention(qt, {ki}, {vi}) ≈
∑
i

(
H(qt)

⊤H(ki) + 2c
)
vi∑

j (H(qt)⊤H(kj) + 2c)

=
H(qt)

⊤ ∑
i H(ki)⊗ vi +

∑
i 2

cv⊤
i

H(qt)⊤
∑

j H(kj) + 2cN
.

(9)

5



In practice, the multiplications between the binary codes and the full-precision values in Eq. (9) can
be replaced by simple additions and subtractions, which greatly reduce the computational overhead
in terms of on-chip energy footprint. Moreover, the multiplications with a powers-of-two 2c can also
be implemented by efficient bit-shift operations. As a result, the only multiplications come from the
element-wise divisions between the numerator and denominator.

4.2 Self-supervised Hash Function Learning

Given queries Q = {q1, . . . ,qN} ⊂ RDp , we seek to learn a group of hash functions h : RDp 7→
{1,−1}. Instead of explicitly applying the transformation function ϕ(·) mentioned in Section 3.2,
we compute the hash functions with a kernel function κ(qi,qj) : RDp × RDp 7→ R. Given
Q = [q1, · · · ,qN ]

⊤ ∈ RN×Dp , we randomly sample m queries q(1), . . . ,q(m) from Q as support
samples following the kernel-based supervised hashing (KSH) [36] and define a hash function h as

h(Q) = sign
(∑m

j=1

(
κ
(
q(j),Q

)
− µj

)
aj

)
= sign (g(Q)a) , (10)

where a = [a1, · · · , am]⊤ is the weight of h, µj = 1
n

∑N
i=1 κ

(
q(j),qi

)
is to normalize

the kernel function to zero-mean, and g : RDp 7→ Rm is a mapping defined by g(Q) =[
κ
(
q(1),Q

)
− µ1, . . . , κ(q(m),Q)− µm

]
∈ RN×m. Then, we define the kernelized hash func-

tion H(·) as

H(Q) = [h1(Q), · · · , hb(Q)] =

[
h1(q1), · · · , hb(q1)

· · · · · ·
h1(qN ), · · · , hb(qN )

]
= sign (g(Q)A) , (11)

where A = [a1, · · · ,ab] ∈ Rm×b, and hr(Q) = sign (g(Q)ar) is the hash function for the r-th bit.

To guide the learning of the binary codes, we hope that similar token pairs will have the mini-
mal Hamming distance while dissimilar token pairs will have the maximal distance. Nevertheless,
directly optimizing the Hamming distance is difficult due to the non-convex and non-smooth for-
mulation in Eq. (6). Utilizing the equivalence between the code inner products and the Hamming
distances in Eq. (7), we instead conduct optimization based on the Hamming affinity to minimize the
reconstruction error as

minA
∥∥H(Q)H(Q)⊤ − bY

∥∥2
F
= minA

∥∥∥∑b
r=1 hr(Q)hr(Q)⊤ − bY

∥∥∥2
F
, (12)

where ∥·∥F is the Frobenius norm and Y ∈ RN×N is the target Hamming affinity matrix. To preserve
the similarity relations between queries and keys, we use the attention scores as the self-supervised
information to construct Y. Let S and U be the similar and dissimilar pairs of tokens. We obtain
S and U by selecting the token pairs with the Top-l largest and smallest attention scores. We then
construct pairwise labels Y as

Yij =


1, (qi,qj) ∈ S
−1, (qi,qj) ∈ U
0, otherwise.

(13)

However, Problem (12) is NP-hard. To solve it efficiently, we adapt discrete cyclic coordinate descent
to learn binary codes sequentially. Specifically, we only solve ar once the previous a1, · · · ,ar−1 have
been optimized. Let Ŷr−1 = bY −

∑r−1
t=1 ht(Q)ht(Q)⊤ be the residual matrix, where Ŷ0 = bY.

Then, we can minimize the following objective to obtain ar

minar

∥∥∥hr(Q)hr(Q)⊤ − Ŷr−1

∥∥∥2
F
= minar −2hr(Q)⊤Ŷr−1hr(Q) + C, (14)

where C =
(
hr(Q)⊤hr(Q)

)2
+ tr

(
Ŷr−1

)
is a constant. Note that Ŷr−1 is a symmetric matrix.

Therefore, Problem (14) is a standard binary quadratic programming problem, which can be efficiently
solved by many existing methods, such as the LBFGS-B solver [69] and block graph cuts [33]. To
learn ar in conjunction with network parameters, we propose to solve Problem (14) using the gradient-
based methods. For the non-differentiable sign function, we use STE [5] to approximate the gradient
using hard tanh as mentioned in Section 3.3. Note that learning the hash functions for each epoch is
computationally expensive yet unnecessary. We only learn the hash functions per τ epoch.

6



Table 2: Main results on ImageNet-1K. The number of multiplications, additions, as well as on-chip
energy consumption are calculated based on an image of resolution 224× 224. The throughput is
measured with a mini-batch size of 32 on a single NVIDIA RTX 3090 GPU.

Model Method #Mul. (B) #Add. (B) Energy (B pJ) Throughput (images/s) Top-1 Acc. (%)

PVTv2-B0 [62]
MSA 2.02 1.99 9.25 850 70.77
Ours 0.54 0.56 2.49 1379 70.44

PVTv2-B1
MSA 5.02 5.00 23.07 621 78.83
Ours 2.03 2.09 9.39 874 78.38

PVTv2-B2
MSA 8.64 8.60 39.71 404 81.82
Ours 3.85 3.97 17.82 483 81.28

PVTv2-B3
MSA 11.86 11.82 54.56 310 82.26
Ours 6.54 6.72 30.25 325 81.96

PVTv2-B4
MSA 15.97 15.93 73.43 247 82.42
Ours 9.57 9.82 44.25 249 81.90

Twins-SVT-S [10]
MSA 5.96 5.91 27.36 426 81.66
Ours 2.72 2.81 12.59 576 80.22

5 Experiments

5.1 Comparisons on ImageNet-1K

To investigate the effectiveness of the proposed method, we conduct experiments on ImageNet-
1K [30], a large-scale image classification dataset that contains ∼1.2M training images from 1K
categories and 50K validation images. We compare our kernelized hashing attention with standard
MSA by adapting the two attention approaches into two popular vision Transformer frameworks
PVTv2 [62] and Twins [10]. We measure model performance by the Top-1 accuracy. Furthermore,
as FLOPs cannot accurately reflect the computational cost in our proposed method, we measure
the model complexity by the number of multiplications and additions, separately, as done in [53].
Specifically, we calculate FLOPs following [61], where we count the multiply-accumulate operations
for all layers. In this case, each multiply-accumulate operation consists of an addition and a multipli-
cation. We also count the multiplications in the scaling operations. Moreover, we report the on-chip
energy consumption according to Table 1 and the throughput with a mini-batch size of 32 on a single
NVIDIA RTX 3090 GPU.

Implementation details. All training images are resized to 256× 256, and 224× 224 patches are
randomly cropped from an image or its horizontal flip, with the per-pixel mean subtracted. To obtain
the MSA baselines, we first replace the original attention layers in PVTv2 [62] and Twins [10] with
standard MSAs and initialize the models with the pretrained weights on ImageNet-1K. Next, we
finetune each model on ImageNet-1K with 100 epochs. Based the pretrained MSA weights, we then
apply our approach to each model and finetune on ImageNet-1K with 30 epochs. All models in this
experiment are trained on 8 V100 GPUs with a total batch size of 256. We set the initial learning
rate to 2.5 × 10−5 for PVTv2 and 1.25 × 10−4 for Twins. We use AdamW optimizer [40] with a
cosine decay learning rate scheduler. All other hyperparameters are the same as in PVTv2. Also note
that recent hierarchical ViTs [62, 38, 10] have multiple stages to incorporate pyramid feature maps.
At the last stage, they usually apply standard MSAs due to the comparably low-resolution feature
maps. This design is also adopted in PVTv2 and Twins. Therefore, we follow the common practice
and do not modify the attention layers at the last stage. For the hash functions learning, we set the
number of support samples m and update interval τ to 25 and 30, respectively. The hyper-parameter
l in constructing pairwise labels Y is set to 10. We set the hash bit b to 16.

Results analysis. We report the results in Table 2. In general, our baseline MSA has more multiplica-
tions than additions. In contrast, our EcoFormer replaces most of the floating-point multiplications
in attention with simple additions. Therefore, there are more additions than multiplications in our
EcoFormer. Compared to MSA, our method achieves lower computational complexity, less energy
consumption and higher throughput with comparable performance. For example, based on PVTv2-B0,
our method saves around 73% multiplications and 72% additions, as well as reducing 73% on-chip
energy consumption, which demonstrates the energy-efficiency of our approach. With more efficient
accumulation implementation, the throughput of our EcoFormer can be further improved. Besides, a
larger model comes with a larger proportion of computational and on-chip energy cost dominated by
FFNs, as shown in Figure 2. In this case, as our approach focuses on the attention layers, the energy-

7



B0 B1 B2 B3 B4
Model

0

20

40

60

80

100

FL
O

P
s 

Pe
rc

e
n
ta

g
e
 (

%
)

81.0%

19.0%

70.5%

29.5%

66.4%

33.6%

58.8%

41.2%

54.8%

45.2%

B0 B1 B2 B3 B4
Model

0

20

40

60

80

100

E
n
e
rg

y
 P

e
rc

e
n
ta

g
e
 (

%
)

81.1%

18.9%

70.5%

29.5%

66.5%

33.5%

58.9%

41.1%

54.8%

45.2%

Attn

FFN

Figure 2: FLOPs and on-chip energy footprint percentage of attention layers (Attn) and feed-forward
layers (FFN) in different variants of PVTv2 with standard MSAs. For a bigger model, FFN takes a
larger proportion of the computational cost and on-chip energy footprint.

saving from larger models is comparably less than smaller models (e.g., PVTv2-B0 vs. PVTv2-B4).
Nonetheless, we still reduce significant computational cost and on-chip energy consumption. For
example, on PVTv2-B4, we save around 40% on-chip energy consumption. Compared with PVTv2,
the performance drop of our method is slightly larger on Twins. One possible reason is that our
method may be sensitive to the conditional positional encodings in Twins.

5.2 Comparisons on Long Range Arena

To evaluate the performance of different efficient attentions under long-context scenarios, we train
our EcoFormer on two tasks, Text and Retrieval from the Long Range Arena (LRA) benchmark [55]
following the settings of [70]. Our implementations are based on the released code of [64]. We
use the same hyper-parameters m, τ and b as in ImageNet-1K experiments. We show the results in
Table 3. From the table, our EcoFormer achieves comparable performance with much lower on-chip
energy consumption. For example, on Text, compared with MSA, our method saves around 94.6%
multiplications and 93.7% additions as well as 94.5% on-chip energy consumption, which is more
efficient than existing attention mechanisms.
Table 3: Comparisons of different methods on Long Range Arena (LRA). We report the classification
accuracy (%) for Text as well as Retrieval and average accuracy across two tasks. ∗ denotes that we
obtain the results from the original paper.

Method #Mul. (B) #Add. (B) Energy (B pJ) Text (4K) Retrieval (4K) Average
Transformer 4.63 4.57 21.25 64.87 79.62 72.25
Performer [9] 0.83 0.84 3.83 64.82 79.08 71.95
Linformer [60] 0.81 0.81 3.74 57.03 78.11 67.57
Reformer [29] 0.54 0.54 2.49 65.19 79.46 72.33
Combiner∗ [50] 0.51 0.51 2.34 64.36 56.10 60.23
EcoFormer 0.25 0.29 1.17 64.79 78.67 71.73

5.3 Ablation Study

In this section, we evaluate the effectiveness of our EcoFormer by comparing it with different
binarization approaches and efficient attention mechanisms. By default, we train each model from
scratch on CIFAR-100 with 2 GPUs for 300 epochs. The total batch size is 64. The initial learning
rate is 6.25× 10−6. For the hash functions learning, we set update interval τ to 300. All the other
hyperparameters are the same as in ImageNet-1K experiments.

Table 4: Performance comparisons with different binarization methods on CIFAR-100.
Model Method #Mul. (B) #Add. (B) Energy (B pJ) Top-1 Acc. (%)

PVTv2-B0
FP-EcoFormer 0.94 0.94 4.33 70.78
Bi-EcoFormer 0.63 0.83 3.09 70.06
EcoFormer 0.54 0.56 2.49 71.23

Twins-SVT-S
FP-EcoFormer 5.96 5.91 27.36 80.04
Bi-EcoFormer 3.01 3.59 14.38 80.04
EcoFormer 2.72 2.81 12.58 80.31

Quantization vs. hashing. To investigate the effect of different binarization methods, we compare
our EcoFormer with the following methods: FP-EcoFormer: Based on EcoFormer, we do not

8



binarize queries and keys in attentions. Bi-EcoFormer: Relying on EcoFormer, we use the same
binary quantization [25] as BinaryBERT [2] and BiBERT [46] to obtain binarized queries and keys
instead of our proposed hash functions. For fair comparisons, the attention operations in the compared
method are in linear complexity. We apply different methods to PVTv2-B0 and Twins-SVT-S and
report the results in Table 4. We observe that our EcoFormer consistently outperforms Bi-EcoFormer
on different frameworks. For example, based on PVTv2-B0, our EcoFormer surpasses Bi-EcoFormer
by 1.17% in terms of the Top-1 accuracy. Compared with binary quantization, our proposed self-
supervised hash functions preserve the pairwise similarity of attention, leading to better performance.
Moreover, our EcoFormer does not need to explicitly compute transformation ϕ(·) as in Eq. (4b).
Therefore, the energy cost of our EcoFormer is lower than Bi-EcoFormer.

Table 5: Performance comparisons with different hash functions regarding PVTv2-B0 on CIFAR-100.
Method #Mul. (B) #Add. (B) Energy (B pJ) Top-1 Acc. (%)
LSH-EcoFormer 0.68 0.69 3.12 70.18
KLSH-EcoFormer 0.54 0.56 2.49 70.66
EcoFormer 0.54 0.56 2.49 71.23

Effect of different hash functions. To investigate the effect of different hash functions, we include
the following methods for comparisons: LSH-EcoFormer: Relying on EcoFormer, we use Locality-
Sensitive Hashing (LSH) [13] rather than our proposed kernelized hash function. KLSH-EcoFormer:
Based on EcoFormer, we replace the proposed hash function with Kernelized Locality-Sensitive
Hashing (KLSH) [31]. We report the results in Table 5. We can observe that KLSH-EcoFormer
outperforms LSH-EcoFormer by 0.48% in terms of the Top-1 accuracy with less on-chip energy
consumption. The reason can be attributed to that LSH is based on random linear projection, which
can not deal with the non-linear softmax attention well. Critically, our EcoFormer further improves
the performance by 0.57% on the Top-1 accuracy. Compared with random hashing in KLSH, our
EcoFormer learns the hash functions with additional self-supervised information. Therefore, our
learned binary codes are better at preserving the token similarity.
Table 6: Comparison with other efficient attention methods regarding PVTv2-B0 [62] on CIFAR-100.

Method #Mul. (B) #Add. (B) Energy (B pJ) Top-1 Acc. (%)
Transformer 2.02 1.99 9.25 71.44
Performer [9] 0.94 0.94 4.33 70.78
Linformer [60] 0.69 0.69 3.18 71.17
Reformer [29] 1.62 1.63 7.44 70.56
EcoFormer 0.54 0.56 2.49 71.23

Table 7: Latency and energy comparisons with dif-
ferent attention methods. We measure the latency
and energy of an attention layer with a batch size of
16, a sequence length of 3,136 and an embedding
dimension of 32 on a BitFusion [51] simulator.

Method Latency (ms) Energy (pJ)
Transformer 0.0036 85,692.18
Performer [9] 0.0019 41,113.64
Linformer [60] 0.0018 45,770.61
Reformer [29] 0.0024 57,305.47
EcoFormer 0.0010 24,990.75

Comparing with other efficient attention
mechanisms. To compare EcoFormer with
different attention mechanisms, we conduct ex-
periments on CIFAR-100 based on PVTv2-B0
in Table 6. In our experiments, we directly re-
place the attention layers with each compared
method in PVTv2-B0 [62]. In general, com-
pared to other efficient attention mechanisms,
EcoFormer saves more computations and re-
duces more on-chip energy consumption while
achieving better performance. Particularly, ben-
efiting from the multiplication-saving operations
and low-dimensional binary queries and keys, EcoFormer saves more on-chip energy than Performer.
Also note that since the proposed kernelized hash function H(·) does not need to explicitly apply
transformation ϕ(·) to the queries and keys as in Eq. (4b), EcoFormer simultaneously reduces more
multiplications and additions than Performer. Besides, Linformer achieves competitive results. How-
ever, as the size of the learnable low-rank projection parameters depends on the length of the input
sequence, Linformer is not scalable to different image resolutions, whereas EcoFormer with sufficient
bits is agnostic to the sequence length.

Latency and energy on BitFusion [51]. To show the actual energy consumption and latency, we
test different methods on a simulator of BitFusion, a bit-flexible microarchitecture synthesized in 45
nm technology. From Table 7, EcoFormer shows much lower latency and on-chip energy than the
other efficient attention methods, which further verifies the advantage of EcoFormer.

9



Effect of training from scratch on ImageNet-1K. To explore the effect of training from scratch,
we apply EcoFormer to PVTv2-B0 and PVTv2-B1. We follow the experimental settings mentioned
in Section 5.1 except that we train the model from scratch with 300 epochs. The initial learning rate
is set to 2.5× 10−4. From Table 8, EcoFormer achieves comparable performance while significantly
reducing the computational complexity and on-chip energy consumption. The accuracy drop from
discretization comes from the gradient approximation for the non-differentiable sign function, which
can be mitigated by more advanced optimization methods, such as regularization [16], knowledge
distillation [43, 46], relaxed optimization [23, 3], appending full-precision branches [39, 42], etc.

Table 8: Performance comparisons of different methods on ImageNet-1K. All the models are
trained from scratch. The number of multiplications, additions, and on-chip energy consumption are
calculated based on an image of resolution 224× 224.

Model Method #Mul. (B) #Add. (B) Energy (B pJ) Top-1 Acc. (%)

PVTv2-B0
MSA 2.02 1.99 9.25 69.72
Ours 0.54 0.56 2.49 68.70

PVTv2-B1
MSA 5.02 5.00 23.07 78.34
Ours 2.03 2.09 9.39 77.49

Effect of different m. To investigate the effect of different numbers of support samples m, we
train EcoFormer with different m based on PVTv2-B0. We report the results on CIFAR-100 in
Table 9. As we increase m, the performance becomes better along with the increase in on-chip energy
consumption. For example, the model obtained with m = 15 outperforms that of m = 10 by 0.19%
on the Top-1 accuracy with little additional energy cost. We speculate that, with more support samples,
we can capture more accurate statistics in Eq. (10) and hence lead to better performance. Since our
EcoFormer achieves the best performance with m = 25, we use it by default in our experiments.

Table 9: Performance comparisons with different #support samples m. We report the results of
PVTv2-B0 on CIFAR-100.

m #Mul. (B) #Add. (B) Energy (B pJ) Top-1 Acc. (%)
10 0.53 0.55 2.46 70.73
15 0.53 0.56 2.47 70.92
20 0.53 0.56 2.48 70.81
25 0.54 0.56 2.49 71.23

6 Conclusion and Future Work
In this paper, we have presented a novel energy-saving attention mechanism with linear complexity to
save the vast majority of multiplications from a new binarization perspective, making the deployment
of Transformer models at scale feasible on edge devices. We are inspired by the fact that conventional
binarization methods are built upon statistical quantization error minimization without considering to
preserve the pairwise similarity relations between tokens. To this end, we customize binarization to
softmax attention by mapping the original token features into compact binary codes in Hamming
space using a set of kernel-based hash functions, where the similarity can be measured by codes
dot product. The hash functions for queries/keys are learned to encourage the Hamming affinity of
a token pair to be close to the target obtained from the attention scores, in a self-supervised way.
Extensive experiments have demonstrated that EcoFormer saves significant on-chip energy footprint
while achieving comparable performance with standard attentions on ImageNet-1K, Long Range
Arena and CIFAR-100. In terms of the future work, we can further binarize the value vectors in
attention, multi-layer perceptrons and non-linearities in Transformer to make it fully binarized for
more significant on-chip energy-saving. We may also extend EcoFormer to other NLP tasks such as
machine translation and speech analysis tasks to make it more impactful to wider communities.

Limitations and societal impact. We have shown that EcoFormer is more energy-efficient compared
to the standard attention. However, in practice, the addition operations between binary codes and
floating-point numbers will require specialized GPU kernels (e.g., customized CUDA operators) for
further acceleration. Moreover, for the short sequence scenario, our EcoFormer suffers from severe
performance drop due to the limited representational capability. Our work potentially brings some
negative societal impacts that training large Transformer models requires extensive computations,
resulting in financial and environmental costs. A promising solution is to jointly optimize training
and inference efficiency.

10



References
[1] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and L. Schmidt. Practical and optimal lsh for angular

distance. In NeurIPS, volume 28, pages 1225–1233, 2015.

[2] H. Bai, W. Zhang, L. Hou, L. Shang, J. Jin, X. Jiang, Q. Liu, M. Lyu, and I. King. Binarybert: Pushing the
limit of bert quantization. In ACL, pages 4334–4348, 2021.

[3] Y. Bai, Y.-X. Wang, and E. Liberty. Proxquant: Quantized neural networks via proximal operators. In
ICLR, pages 1–19, 2019.

[4] I. Beltagy, M. E. Peters, and A. Cohan. Longformer: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

[5] Y. Bengio. Estimating or propagating gradients through stochastic neurons. arXiv preprint arXiv:1305.2982,
2013.

[6] A. Bulat and G. Tzimiropoulos. Xnor-net++: Improved binary neural networks. In BMVC, page 62, 2019.

[7] M. S. Charikar. Similarity estimation techniques from rounding algorithms. In STOC, pages 380–388,
2002.

[8] H. Chen, Y. Wang, C. Xu, B. Shi, C. Xu, Q. Tian, and C. Xu. Addernet: Do we really need multiplications
in deep learning? In CVPR, pages 1468–1477, 2020.

[9] K. M. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane, T. Sarlos, P. Hawkins, J. Q. Davis,
A. Mohiuddin, L. Kaiser, D. B. Belanger, L. J. Colwell, and A. Weller. Rethinking attention with performers.
In ICLR, pages 1–38, 2021.

[10] X. Chu, Z. Tian, Y. Wang, B. Zhang, H. Ren, X. Wei, H. Xia, and C. Shen. Twins: Revisiting the design of
spatial attention in vision transformers. In NeurIPS, pages 9355–9366, 2021.

[11] M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect: Training deep neural networks with binary
weights during propagations. In NeurIPS, volume 28, pages 3123–3131, 2015.

[12] G. Daras, N. Kitaev, A. Odena, and A. G. Dimakis. Smyrf-efficient attention using asymmetric clustering.
In NeurIPS, volume 33, pages 6476–6489, 2020.

[13] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme based on p-stable
distributions. In SoCG, pages 253–262, 2004.

[14] M. Dehghani, S. Gouws, O. Vinyals, J. Uszkoreit, and L. Kaiser. Universal transformers. In ICLR, pages
1–23, 2019.

[15] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training of deep bidirectional transformers for
language understanding. In J. Burstein, C. Doran, and T. Solorio, editors, NAACL-HLT, pages 4171–4186,
2019.

[16] R. Ding, T.-W. Chin, Z. Liu, and D. Marculescu. Regularizing activation distribution for training binarized
deep networks. In CVPR, pages 11408–11417, 2019.

[17] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Min-
derer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16 words: Transformers
for image recognition at scale. In ICLR, pages 1–21, 2021.

[18] S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and D. S. Modha. Learned step size quantization.
In ICLR, pages 1–12, 2020.

[19] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. In Vldb, page
518–529, 1999.

[20] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative quantization: A procrustean approach to
learning binary codes for large-scale image retrieval. TPAMI, 35(12):2916–2929, 2012.

[21] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally. Eie: Efficient inference engine
on compressed deep neural network. ACM SIGARCH Computer Architecture News, 44(3):243–254, 2016.

[22] M. Horowitz. 1.1 computing’s energy problem (and what we can do about it). In ISSCC, pages 10–14,
2014.

11



[23] L. Hou and J. T. Kwok. Loss-aware weight quantization of deep networks. In ICLR, pages 1–16, 2018.

[24] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized neural networks. In NeurIPS,
pages 4107–4115, 2016.

[25] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Quantized neural networks: Training
neural networks with low precision weights and activations. JMLR, 18(1):6869–6898, 2017.

[26] A. Jaegle, F. Gimeno, A. Brock, O. Vinyals, A. Zisserman, and J. Carreira. Perceiver: General perception
with iterative attention. In ICML, pages 4651–4664, 2021.

[27] S. Jung, C. Son, S. Lee, J. Son, J.-J. Han, Y. Kwak, S. J. Hwang, and C. Choi. Learning to quantize deep
networks by optimizing quantization intervals with task loss. In CVPR, pages 4350–4359, 2019.

[28] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. Transformers are rnns: Fast autoregressive
transformers with linear attention. In ICML, pages 5156–5165, 2020.

[29] N. Kitaev, L. Kaiser, and A. Levskaya. Reformer: The efficient transformer. In ICLR, pages 1–12, 2020.

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. In NeurIPS, volume 25, pages 1106–1114, 2012.

[31] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing. TPAMI, 34(6):1092–1104, 2011.

[32] X. Lian, Z. Liu, Z. Song, J. Dai, W. Zhou, and X. Ji. High-performance fpga-based cnn accelerator with
block-floating-point arithmetic. TVLSI, 27(8):1874–1885, 2019.

[33] G. Lin, C. Shen, Q. Shi, A. Van den Hengel, and D. Suter. Fast supervised hashing with decision trees for
high-dimensional data. In CVPR, pages 1963–1970, 2014.

[34] X. Lin, C. Zhao, and W. Pan. Towards accurate binary convolutional neural network. In NeurIPS, pages
344–352, 2017.

[35] W. Liu, C. Mu, S. Kumar, and S.-F. Chang. Discrete graph hashing. In NeurIPS, volume 27, pages
3419–3427, 2014.

[36] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang. Supervised hashing with kernels. In CVPR, pages
2074–2081, 2012.

[37] W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing with graphs. In ICML, pages 1–8, 2011.

[38] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin transformer: Hierarchical vision
transformer using shifted windows. In ICCV, pages 10012–10022, 2021.

[39] Z. Liu, B. Wu, W. Luo, X. Yang, W. Liu, and K.-T. Cheng. Bi-real net: Enhancing the performance of
1-bit cnns with improved representational capability and advanced training algorithm. In ECCV, pages
722–737, 2018.

[40] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In ICLR, pages 1–18, 2019.

[41] J. Lu, J. Yao, J. Zhang, X. Zhu, H. Xu, W. Gao, C. Xu, T. Xiang, and L. Zhang. Soft: Softmax-free
transformer with linear complexity. In NeurIPS, volume 34, pages 21297–21309, 2021.

[42] B. Martinez, J. Yang, A. Bulat, and G. Tzimiropoulos. Training binary neural networks with real-to-binary
convolutions. In ICLR, pages 1–11, 2020.

[43] A. Mishra and D. Marr. Apprentice: Using knowledge distillation techniques to improve low-precision
network accuracy. In ICLR, pages 1–17, 2018.

[44] M. Norouzi and D. J. Fleet. Minimal loss hashing for compact binary codes. In ICML, pages 353–360,
2011.

[45] H. Peng, N. Pappas, D. Yogatama, R. Schwartz, N. Smith, and L. Kong. Random feature attention. In
ICLR, pages 1–19, 2021.

[46] H. Qin, Y. Ding, M. Zhang, Q. YAN, A. Liu, Q. Dang, Z. Liu, and X. Liu. BiBERT: Accurate fully
binarized BERT. In ICLR, pages 1–24, 2022.

[47] Z. Qin, W. Sun, H. Deng, D. Li, Y. Wei, B. Lv, J. Yan, L. Kong, and Y. Zhong. cosformer: Rethinking
softmax in attention. In ICLR, pages 1–15, 2022.

12



[48] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In NeurIPS, volume 20, pages
1177–1184, 2007.

[49] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Imagenet classification using binary
convolutional neural networks. In ECCV, pages 525–542, 2016.

[50] H. Ren, H. Dai, Z. Dai, M. Yang, J. Leskovec, D. Schuurmans, and B. Dai. Combiner: Full attention
transformer with sparse computation cost. In NeurIPS, volume 34, pages 22470–22482, 2021.

[51] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and H. Esmaeilzadeh. Bit fusion: Bit-level
dynamically composable architecture for accelerating deep neural network. In ISCA, pages 764–775, 2018.

[52] S. Shen, Z. Dong, J. Ye, L. Ma, Z. Yao, A. Gholami, M. W. Mahoney, and K. Keutzer. Q-bert: Hessian
based ultra low precision quantization of bert. In AAAI, volume 34, pages 8815–8821, 2020.

[53] H. Shu, J. Wang, H. Chen, L. Li, Y. Yang, and Y. Wang. Adder attention for vision transformer. In NeurIPS,
volume 34, pages 19899–19909, 2021.

[54] Z. Sun, Y. Yang, and S. Yoo. Sparse attention with learning to hash. In ICLR, pages 1–20, 2022.

[55] Y. Tay, M. Dehghani, S. Abnar, Y. Shen, D. Bahri, P. Pham, J. Rao, L. Yang, S. Ruder, and D. Metzler.
Long range arena: A benchmark for efficient transformers. In ICLR, pages 1–19, 2021.

[56] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou. Training data-efficient image
transformers & distillation through attention. In ICML, pages 10347–10357, 2021.

[57] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention is all you need. In NeurIPS, volume 30, pages 5998–6008, 2017.

[58] A. Vyas, A. Katharopoulos, and F. Fleuret. Fast transformers with clustered attention. In NeurIPS,
volume 33, pages 21665–21674, 2020.

[59] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hashing for large-scale search. TPAMI, 34(12):2393–
2406, 2012.

[60] S. Wang, B. Li, M. Khabsa, H. Fang, and H. Ma. Linformer: Self-attention with linear complexity. arXiv
preprint arXiv:2006.04768, 2020.

[61] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, and L. Shao. Pyramid vision
transformer: A versatile backbone for dense prediction without convolutions. In ICCV, pages 568–578,
2021.

[62] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, and L. Shao. Pvtv2: Improved
baselines with pyramid vision transformer. Computational Visual Media, 8(3):415–424, 2022.

[63] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In NeurIPS, volume 21, pages 1–8, 2008.

[64] Y. Xiong, Z. Zeng, R. Chakraborty, M. Tan, G. Fung, Y. Li, and V. Singh. Nyströmformer: A nystöm-based
algorithm for approximating self-attention. In AAAI, volume 35, page 14138, 2021.

[65] C. Yan, B. Gong, Y. Wei, and Y. Gao. Deep multi-view enhancement hashing for image retrieval. TPAMI,
43(4):1445–1451, 2020.

[66] A. H. Zadeh, I. Edo, O. M. Awad, and A. Moshovos. Gobo: Quantizing attention-based nlp models for low
latency and energy efficient inference. In MICRO, pages 811–824, 2020.

[67] O. Zafrir, G. Boudoukh, P. Izsak, and M. Wasserblat. Q8bert: Quantized 8bit bert. In EMC2-NIPS, pages
36–39, 2019.

[68] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou. Dorefa-net: Training low bitwidth convolutional
neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160, 2016.

[69] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale
bound-constrained optimization. ACM TOMS, 23(4):550–560, 1997.

[70] C. Zhu, W. Ping, C. Xiao, M. Shoeybi, T. Goldstein, A. Anandkumar, and B. Catanzaro. Long-short
transformer: Efficient transformers for language and vision. In NeurIPS, volume 34, pages 17723–17736,
2021.

[71] B. Zhuang, G. Lin, C. Shen, and I. Reid. Fast training of triplet-based deep binary embedding networks. In
CVPR, pages 5955–5964, 2016.

[72] B. Zhuang, C. Shen, M. Tan, L. Liu, and I. Reid. Structured binary neural network for accurate image
classification and semantic segmentation. In CVPR, pages 413–422, 2019.

13



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See the abstract and introduction.
(b) Did you describe the limitations of your work? [Yes] See the conclusion in Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See the

conclusion in Section 6.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] We have
included the code and instructions needed in the supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See the implementation details in Section 5.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [No] Error bars are not reported because it would be too
computationally expensive. We use the same random seed as in recent works for fair
comparison.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See the implementation details in
Section 5.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 5.
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

Code is included in the supplementary material.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No] We use public datasets.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14


	Introduction
	Related Work
	Preliminaries
	Attention Mechanism
	Kernel-based Linear Attention
	Binary Quantization

	Proposed Method
	Kernelized Hashing Attention
	Self-supervised Hash Function Learning

	Experiments
	Comparisons on ImageNet-1K
	Comparisons on Long Range Arena
	Ablation Study

	Conclusion and Future Work

