
Supplementary Information - Gold-standard solutions
to the Schrödinger equation using deep learning: How

much physics do we need?

A Absolute energies

Table 1: Ground-state energy in Ha for various methods grouped into best variational energy,
lowest overall and this work. The lowest variational energy is highlighted with bold letters and the
lowest overall energy by an underscore. As reference we included methods with the best energy
approximation found in the literature and if not found elsewhere own computations based on a MRCI
method were performed. a: FermiNet VMC [1, 2], b: FermiNet DMC [3], c: Diffusion Monte
Carlo [4, 5, 6], d: MRCI-F12, e: CCSD(T)/ CBS [1], f: CAS + experimental corrections [7], g:
MRCI-F12(Q), h: experiment [8].

Category System Lowest
Variational Lowest All This work

50k epochs
This work

100k epochs

2nd row
atoms

O −75.0666 a −75.0673 f −75.0669 −75.0670
F −99.7329 a −99.7339 f −99.7337 −99.7337
Ne −128.9366 c −128.9376 f −128.9375 −128.9376

3rd row
atoms

P −341.2578 a −341.259 f −341.2578 −341.2584
S −398.1082 a −398.110 f −398.1082 −398.1097
Cl −460.1477 a −460.148 f −460.1473 −460.1485
Ar −527.5405 a −527.5405 a −527.5406 −527.5419

4th row
atoms

K −599.7847 d −599.8238 g −599.9178 −599.9195
Fe −1263.4281 d −1263.4947 g −1263.633 −1263.650

Small
molecules

N2, d = 2.068 −109.5416 b −109.5425 e −109.5408 −109.5414
Ethene −78.5844 a −78.5888 e −78.5868 −78.5871
H2O −76.4368 c −76.4376 h −76.4382 −76.4382
CO −113.3218 a −113.3255 e −113.3239 −113.3242
NH3 −56.5630 a −56.5644 e −56.5635 −56.5638

Larger
molecules

Cyclobutadiene −154.6770 b −154.67700 b −154.6757 −154.6791
Benzene −232.2370 b −232.2370 b −232.2168 -232.2267
Glycine −284.1741 d −284.3639 g −284.4201 −284.4328

B Computational settings

Neural network The main hyperparameters used in this work can be found in Tab. 2 with minor
changes for larger systems. For the third and fourth row atoms we increased as in [2] the single
electron stream to 512. For K and Fe we choose a higher damping for the second-order optimizer
KFAC with 4× 10−3 to stabilize the optimization. Additionally, we observed that with increasing
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nuclear charge Z the MCMC stepsize tends to decrease because of a high probability peak around
the core resulting in two distinct length scales for the core and valence electrons. To circumvent high
correlation between samples we increased the number of decorrelation steps to 60 for Fe. We observed
for larger systems that 1000 pretraining steps is not sufficiently close to a Hartree-Fock solution and
therefore increased for glycine, benzene, cyclobutadiene, K and Fe the number of pretraining steps
to 4000. For glycine and benzene the batch size and number of MCMC walkers was decreased to
1700 allowing us to use a single NVIDIA A100 GPU and for glyzine, benzene and cyclobutadiene
no envelope initialization at the beginning of optimization was performed. All computations were
computed on either a single NVIDIA A100 or A40 GPU. We use separate 10k evaluation steps in
which we do not update the neural network parameters to compute all final energies, to ensure fully
unbiased energies.

Table 2: Hyperparameter settings used in this work

Orbitals
# determinants 32
Pretraining basis set 6-311G
Pretraining steps 1000

Embedding

# determinants ndet 32
# hidden layers Aone, Aσi,j , Aion,
Bion, Bσi,j , Cion, Cσi,j

0

# neurons per layer Aone 256
# neurons per layer Aσi,j

, Aion,
Bion, Bσi,j , Cion, Cσi,j

32

# iterations L 4
activation function tanh

Markov Chain
Monte Carlo

# walkers 2048
# decorrelation steps 20
Target acceptance probability 50%

Optimization

Optimizer KFAC
Damping 1× 10−3

Norm constraint 3× 10−3

Batch size 2048
Initial learning rate lr0 5× 10−5

Learning rate decay lr(t) = lr0(1 + t/6000)−1

Optimization steps 50,000 - 100,000

Reference calculation with MRCI We carried out reference calculations for several small
molecules (see Table 3) and atoms (see Table 4) using the MOLPRO package [9, 10]. On the
one hand, as single-reference method, we tested coupled cluster with single and double excitations
including perturbative triple excitations in its explicitly correlated F12 formulation (CCSD(T)-F12)
[11], which requires a restricted Hartree-Fock (HF) calculation in the employed implementation.
On the other hand, as multi-reference methods, we used multi-reference configuration interaction in
its explicitly correlated F12 formulation (MRCI-F12), which necessitates a complete active space
self-consistent field (CASSCF) calculation. We also carried out perturbative Davidson corrections on
the MRCI-F12 values (abbreviated as MRCI-F12(Q)). Among all of these methods, HF, CASSCF (as
used here in its state-specific variant) and MRCI-F12 are variational. In contrast, CCSD(T)-F12 and
MRCI-F12(Q) contain perturbative contributions to the ground-state energy and, thus, do not obey
the variational principle.

The active spaces for the molecules and atoms is denoted here in the format multiplicity(number of
electrons, number of orbitals) and was chosen as: H2O 1(8,6), cyclobutadiene 1(4,4), benzene 1(6,6),
glycine 1(6,4), K 2(1,6), Fe 5(8,6). For the molecules, the correlation-consistent quadruple-zeta
basis set cc-pVQZ-F12 [12] was employed together with the recommnended parameter GEM_BETA
= 1.5 a−1

0 [13] (which lead to convergence problems for the benzene multi-reference calculation).
In order to judge the basis set convergence, also calculations with the smaller triple-zeta basis set
cc-pVTZ-F12 was carried out together with GEM_BETA = 1.4 a−1

0 . These basis sets were not
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available for the atoms and the def2-QZVPP basis set together with the corresponding density-fitting
def2-QZVPP-JKfit basis were employed instead [14].

Table 3: Ground-state energies of selected small molecules computed with various combinations of
methods and basis sets, as indicated.

Molecule Basis set EHF ECASSCF ECCSD(T)-F12 EMRCI-F12 EMRCI-F12(Q)

H2O cc-pVQZ-F12 -76.0673 -76.1208 -76.3766 -76.4210 -76.4352
cc-pVTZ-F12 -76.0669 -76.1189 -76.3752 -76.4183 -76.4324

Cyclo-
butadiene

cc-pVQZ-F12 -153.7060 -153.7598 -154.4607 -154.5288 -154.6380
cc-pVTZ-F12 -153.7054 -153.7574 -154.4597 -154.5250 -154.6340

Benzene cc-pVQZ-F12 -230.7970 – -231.9115 – –
cc-pVTZ-F12 -230.7960 -230.8580 -231.9099 -231.9584 -232.1483

Glycine cc-pVQZ-F12 -282.9740 -282.9902 -284.1623 -284.1741 -284.3639
cc-pVTZ-F12 -282.9730 -282.9847 -284.1587 -284.1671 -284.3570

Table 4: Ground-state energies of selected atoms computed with the indicated methods in combination
with a def2-QZVPP basis set and the corresponding density-fitting def2-QZVPP-JKfit basis set.

Atom ECASSCF EMRCI-F12 EMRCI-F12(Q)

K -599.1645 -599.7847 -599.8238
Fe -1262.4459 -1263.4281 -1263.4947

C Computational cost

For a better comparison of the computational cost of our proposed architecture to FermiNet we report
in Tab. 5 the runtime per optimization epoch and the number of all trainable parameters for all settings
tested in Sec. 4. The majority of the runtime per epoch is due to the second derivative for the kinetic
energy of the Hamiltonian. Comparing runtime for the K atom we are ∼ 40% faster per epoch then
FermiNet with a block determinant structure and even ∼ 60% faster when using a full determinant.
The option of full determinant comes not free of costs and increases substantially the number of total
trainable parameters and a slightly more expensive optimization iteration for FermiNet. This effects
is compensated by a faster convergence as has been seen in Fig. 6. To enable a full like-for-like
comparison we compare all runtimes vs. our own implementation of FermiNet, which achieves the
same runtime as the original code. Additionally, we state in Tab. 6 the improvements and speed-ups
compared to previously published FermiNet results. Speed-ups are a product of a lower number of
training iterations times the faster runtime per optimization epoch (cf. Tab. 5). Energy improvements
are obtained by taking the ratio of each methods’ energy error with respect to a ground truth solution.
In three cases the ground-truth is represented by our computations. We used approximately 50k
GPUh in total for this work (10k on A100 GPUs, 40k on A40 GPUs).

Table 5: Comparing the architectures from Fig. 6 with respect to runtime per optimization epoch and
number of trainable parameters. All timings were performed using a single NVIDIA A100 GPU.

System Architecture Setting Runtime
per opt. epoch

Number
of parameters

K atom

FermiNet isotropic (our implementation) 5.1 s 2, 784, 672
Dense Determinant 6.0 s 3, 097, 184
Hyperparameters 3.1 s 3, 097, 184
SchNet-like embedding 3.8 s 3, 175, 492
Local input features 3.6 s 3, 175, 108
Envelope initialization (This work) 3.6 s 3, 175, 108
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Table 6: Energy improvements and speed-ups compared to FermiNet. Energy improvements are
computed with respect to the best estimate. For three systems our method improves the best estimate
and therefore the best estimate is our calculated energy. Speed ups are computed as factor of faster
convergence due to fewer training epochs times a 40% (5.1s/3.6s) faster single epoch (cf. Tab. 5).

System FermiNet epochs This work, 50k epochs This work, 100k epochs
accuracy gain speed-up accuracy gain speed-up

F 200,000 61% 6x 63% 3x
Ne 200,000 94% 6x 100% 3x
P 350,000 -4% 10x 46% 5x
S 350,000 0% 10x 85% 5x
Cl 350,000 -48% 10x 100% 5x
Ar 350,000 11% 10x 100% 5x
NH3 200,000 38% 6x 57% 3x
CO 200,000 45% 6x 53% 3x
N2 200,000 52% 6x 69% 3x
C2H4 200,000 53% 6x 61% 3x
C4H4 200,000 71% 6x 100% 3x

D Run-to-run variation

Due to the stochastic nature of initialization and Monte Carlo sampling, our results show small
run-to-run variations, depending on the initialization of the random number generator. To estimate
the extent of the variation we repeated each experiment in the ablation study two times, and depicted
mean and standard deviation of these two runs in Fig. 6. To further quantify this uncertainty, we
repeated the optimization of an N2 molecule 10 times. We used two different settings (our proposed
approach and FermiNet using dense-determinants, before applying our improvements) and optimized
for 50k epochs. We find a standard deviation of 0.2 mHa for our approach and 0.8 mHa for the
FermiNet approach. We attribute the lower spread of our approach to the fact that our results are
already converged after 50k epochs (with the remaining uncertainty primarily caused by Monte Carlo
evaluation uncertainty), while the unconverged FermiNet results depend more strongly on the random
initialization.

E Broader impact

Advancements in computational chemistry may prompt new discoveries in chemistry and biology,
which could include positive outcomes such as the development of new drugs or materials. Like every
computational chemistry method, our work could hypothetically also be misused for the development
of chemical weapons or other potential risks to humanity. As of now, this seems highly unlike due to
basic nature of our research.

References
[1] David Pfau et al. “Ab initio solution of the many-electron Schrödinger equation with

deep neural networks”. In: Phys. Rev. Res. 2 (3 Sept. 2020), p. 033429. DOI: 10.1103/
PhysRevResearch . 2 . 033429. URL: https : / / link . aps . org / doi / 10 . 1103 /
PhysRevResearch.2.033429.

[2] James S. Spencer et al. Better, Faster Fermionic Neural Networks. 2020. DOI: 10.48550/
ARXIV.2011.07125. URL: https://arxiv.org/abs/2011.07125.

[3] Weiluo Ren, Weizhong Fu, and Ji Chen. Towards the ground state of molecules via diffusion
Monte Carlo on neural networks. 2022. DOI: 10.48550/ARXIV.2204.13903. URL: https:
//arxiv.org/abs/2204.13903.

[4] P. Seth, P. López Ríos, and R. J. Needs. “Quantum Monte Carlo study of the first-row atoms
and ions”. In: The Journal of Chemical Physics 134.8 (2011), p. 084105. DOI: 10.1063/1.
3554625. eprint: https://doi.org/10.1063/1.3554625. URL: https://doi.org/10.
1063/1.3554625.

4

https://doi.org/10.1103/PhysRevResearch.2.033429
https://doi.org/10.1103/PhysRevResearch.2.033429
https://link.aps.org/doi/10.1103/PhysRevResearch.2.033429
https://link.aps.org/doi/10.1103/PhysRevResearch.2.033429
https://doi.org/10.48550/ARXIV.2011.07125
https://doi.org/10.48550/ARXIV.2011.07125
https://arxiv.org/abs/2011.07125
https://doi.org/10.48550/ARXIV.2204.13903
https://arxiv.org/abs/2204.13903
https://arxiv.org/abs/2204.13903
https://doi.org/10.1063/1.3554625
https://doi.org/10.1063/1.3554625
https://doi.org/10.1063/1.3554625
https://doi.org/10.1063/1.3554625
https://doi.org/10.1063/1.3554625


[5] Norbert Nemec, Michael D. Towler, and R. J. Needs. “Benchmark all-electron ab initio
quantum Monte Carlo calculations for small molecules”. In: The Journal of Chemical Physics
132.3 (Jan. 2010). Publisher: American Institute of Physics, p. 034111. ISSN: 0021-9606.
DOI: 10.1063/1.3288054. URL: http://aipscitation.org/doi/full/10.1063/1.
3288054 (visited on 04/12/2022).

[6] Bryan K. Clark et al. “Computing the energy of a water molecule using multideterminants:
A simple, efficient algorithm”. In: The Journal of Chemical Physics 135.24 (Dec. 2011).
Publisher: American Institute of Physics, p. 244105. ISSN: 0021-9606. DOI: 10.1063/1.
3665391. URL: http://aipscitation.org/doi/full/10.1063/1.3665391 (visited on
05/31/2022).

[7] Subhas J. Chakravorty et al. “Ground-state correlation energies for atomic ions with 3 to 18
electrons”. In: Phys. Rev. A 47 (5 May 1993), pp. 3649–3670. DOI: 10.1103/PhysRevA.47.
3649. URL: https://link.aps.org/doi/10.1103/PhysRevA.47.3649.

[8] Bruce J. Rosenberg and Isaiah Shavitt. “Ab initio SCF and CI studies on the ground state of the
water molecule. I. Comparison of CGTO and STO basis sets near the Hartree–Fock limit”. In:
The Journal of Chemical Physics 63.5 (Sept. 1975). Publisher: American Institute of Physics,
pp. 2162–2174. ISSN: 0021-9606. DOI: 10.1063/1.431596. URL: http://aipscitation.
org/doi/10.1063/1.431596 (visited on 05/31/2022).

[9] H.-J. Werner et al. “MOLPRO: a general-purpose quantum chemistry program package”. In:
Wiley Interdiscip. Rev. Comput. Mol. Sci. 2 (2012), 242–253.

[10] H.-J. Werner et al. MOLPRO, version 2012.1, a package of ab initio programs. see
https://www.molpro.net. Cardiff, UK, 2012.

[11] Thomas B. Adler, Gerald Knizia, and Hans-Joachim Werner. “A simple and efficient CCSD(T)-
F12 approximation”. In: J. Chem. Phys. 127.22 (2007), p. 221106. DOI: 10.1063/1.2817618.
eprint: https://doi.org/10.1063/1.2817618. URL: https://doi.org/10.1063/1.
2817618.

[12] Kirk A. Peterson, Thomas B. Adler, and Hans-Joachim Werner. “Systematically convergent
basis sets for explicitly correlated wavefunctions: The atoms H, He, B–Ne, and Al–Ar”.
In: J. Chem. Phys. 128.8 (2008), p. 084102. DOI: 10.1063/1.2831537. eprint: https:
//doi.org/10.1063/1.2831537. URL: https://doi.org/10.1063/1.2831537.

[13] J. Grant Hill, Shivnath Mazumder, and Kirk A. Peterson. “Correlation consistent basis sets
for molecular core-valence effects with explicitly correlated wave functions: The atoms B–Ne
and Al–Ar”. In: J. Chem. Phys. 132.5 (2010), p. 054108. DOI: 10.1063/1.3308483. eprint:
https://doi.org/10.1063/1.3308483. URL: https://doi.org/10.1063/1.
3308483.

[14] Florian Weigend, Filipp Furche, and Reinhart Ahlrichs. “Gaussian basis sets of quadruple zeta
valence quality for atoms H–Kr”. In: J. Chem. Phys. 119.24 (2003), pp. 12753–12762. DOI:
10.1063/1.1627293. URL: https://doi.org/10.1063/1.1627293.

5

https://doi.org/10.1063/1.3288054
http://aipscitation.org/doi/full/10.1063/1.3288054
http://aipscitation.org/doi/full/10.1063/1.3288054
https://doi.org/10.1063/1.3665391
https://doi.org/10.1063/1.3665391
http://aipscitation.org/doi/full/10.1063/1.3665391
https://doi.org/10.1103/PhysRevA.47.3649
https://doi.org/10.1103/PhysRevA.47.3649
https://link.aps.org/doi/10.1103/PhysRevA.47.3649
https://doi.org/10.1063/1.431596
http://aipscitation.org/doi/10.1063/1.431596
http://aipscitation.org/doi/10.1063/1.431596
https://doi.org/10.1063/1.2817618
https://doi.org/10.1063/1.2817618
https://doi.org/10.1063/1.2817618
https://doi.org/10.1063/1.2817618
https://doi.org/10.1063/1.2831537
https://doi.org/10.1063/1.2831537
https://doi.org/10.1063/1.2831537
https://doi.org/10.1063/1.2831537
https://doi.org/10.1063/1.3308483
https://doi.org/10.1063/1.3308483
https://doi.org/10.1063/1.3308483
https://doi.org/10.1063/1.3308483
https://doi.org/10.1063/1.1627293
https://doi.org/10.1063/1.1627293

	Absolute energies
	Computational settings
	Computational cost
	Run-to-run variation
	Broader impact

