
A Proof of Theorem 1

We first define some notations that will be used in our proof. Given an input x, we define the following
two random variables:

X = x+ ϵ ∼ N (x, σ2I), (11)

Y = x+ δ + ϵ ∼ N (x+ δ, σ2I), (12)

where ϵ ∼ N (0, σ2I) and δ is an adversarial perturbation that has the same size with x. The random
variables X and Y represent random inputs obtained by adding isotropic Gaussian noise to the input x
and its perturbed version x+ δ, respectively. Cohen et al. [12] applied the standard Neyman-Pearson
lemma [33] to the above two random variables, and obtained the following two lemmas:
Lemma 1 (Neyman-Pearson lemma for Gaussian with different means). Let X ∼ N (x, σ2I),
Y ∼ N (x+ δ, σ2I), and F : Rd −→ {0, 1} be a random or deterministic function. Then, we have
the following:

(1) If W = {w ∈ Rd : δTw ≤ β} for some β and Pr(F (X) = 1) ≥ Pr(X ∈ W ), then
Pr(F (Y) = 1) ≥ Pr(Y ∈W ).

(2) If W = {w ∈ Rd : δTw ≥ β} for some β and Pr(F (X) = 1) ≤ Pr(X ∈ W ), then
Pr(F (Y) = 1) ≤ Pr(Y ∈W ).
Lemma 2. Given an input x, a real number q ∈ [0, 1], as well as regionsA and B defined as follows:

A = {w : δT (w − x) ≤ σ ∥δ∥2 Φ
−1(q)}, (13)

B = {w : δT (w − x) ≥ σ ∥δ∥2 Φ
−1(1− q)}, (14)

we have the following:

Pr(X ∈ A) = q, (15)
Pr(X ∈ B) = q, (16)

Pr(Y ∈ A) = Φ(Φ−1(q)−
∥δ∥2
σ

), (17)

Pr(Y ∈ B) = Φ(Φ−1(q) +
∥δ∥2
σ

). (18)

Proof. Please refer to [12].

Next, we first generalize the Neyman-Pearson lemma to the case of multiple functions and then derive
the lemmas that will be used in our proof.
Lemma 3. Let X, Y be two random variables whose probability densities are respectively Pr(X =
w) and Pr(Y = w), where w ∈ Rd. Let F1, F2, · · · , Ft : Rd −→ {0, 1} be t random or deterministic
functions. Let k′ be an integer such that:

t∑
i=1

Fi(1|w) ≤ k′,∀w ∈ Rd, (19)

where Fi(1|w) denotes the probability that Fi(w) = 1. Then, we have the following:

(1) If W = {w ∈ Rd : Pr(Y = w)/Pr(X = w) ≤ µ} for some µ > 0 and
∑t

i=1 Pr(Fi(X)=1)

k′ ≥
Pr(X ∈W ), then

∑t
i=1 Pr(Fi(Y)=1)

k′ ≥ Pr(Y ∈W ).

(2) If W = {w ∈ Rd : Pr(Y = w)/Pr(X = w) ≥ µ} for some µ > 0 and
∑t

i=1 Pr(Fi(X)=1)

k′ ≤
Pr(X ∈W ), then

∑t
i=1 Pr(Fi(Y)=1)

k′ ≤ Pr(Y ∈W ).

Proof. We first prove part (1). For convenience, we denote the complement of W as W c. Then, we
have the following:∑t

i=1 Pr(Fi(Y) = 1)

k′
− Pr(Y ∈W ) (20)
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=

∫
Rd

∑t
i=1 Fi(1|w)

k′
· Pr(Y = w)dw −

∫
W

Pr(Y = w)dw (21)

=

∫
W c

∑t
i=1 Fi(1|w)

k′
· Pr(Y = w)dw +

∫
W

∑t
i=1 Fi(1|w)

k′
· Pr(Y = w)dw −

∫
W

Pr(Y = w)dw

(22)

=

∫
W c

∑t
i=1 Fi(1|w)

k′
· Pr(Y = w)dw −

∫
W

(1−
∑t

i=1 Fi(1|w)

k′
) · Pr(Y = w)dw (23)

≥µ · [
∫
W c

∑t
i=1 Fi(1|w)

k′
· Pr(X = w)dw −

∫
W

(1−
∑t

i=1 Fi(1|w)

k′
) · Pr(X = w)dw] (24)

=µ · [
∫
W c

∑t
i=1 Fi(1|w)

k′
· Pr(X = w)dw +

∫
W

∑t
i=1 Fi(1|w)

k′
· Pr(X = w)dw −

∫
W

Pr(X = w)dw]

(25)

=µ · [
∫
Rd

∑t
i=1 Fi(1|w)

k′
· Pr(X = w)dw −

∫
W

Pr(X = w)dw] (26)

=µ · [
∑t

i=1 Pr(Fi(X) = 1)

k′
− Pr(X ∈W )] (27)

≥0. (28)

We have Equation 24 from 23 due to the fact that Pr(Y = w)/Pr(X = w) ≤ µ,∀w ∈ W ,
Pr(Y = w)/Pr(X = w) > µ, ∀w ∈ W c, and 1 −

∑t
i=1 Fi(1|w)

k′ ≥ 0. Similarly, we can prove the
part (2). We omit the details for conciseness reason.

We apply the above lemma to random variables X and Y, and obtain the following lemma:

Lemma 4. Let X ∼ N (x, σ2I), Y ∼ N (x+ δ, σ2I), F1, F2, · · · , Ft : Rd −→ {0, 1} be t random
or deterministic functions, and k′ be an integer such that:

t∑
i=1

Fi(1|w) ≤ k′,∀w ∈ Rd, (29)

where Fi(1|w) denote the probability that Fi(w) = 1. Then, we have the following:

(1) If W = {w ∈ Rd : δTw ≤ β} for some β and
∑t

i=1 Pr(Fi(X)=1)

k′ ≥ Pr(X ∈ W ), then∑t
i=1 Pr(Fi(Y)=1)

k′ ≥ Pr(Y ∈W ).

(2) If W = {w ∈ Rd : δTw ≥ β} for some β and
∑t

i=1 Pr(Fi(X)=1)

k′ ≤ Pr(X ∈ W ), then∑t
i=1 Pr(Fi(Y)=1)

k′ ≤ Pr(Y ∈W ).

By leveraging Lemma 2, Lemma 3, and Lemma 4, we derive the following lemma:

Lemma 5. Suppose we have an arbitrary base multi-label classifier f , an integer k′, an input x,
an arbitrary set denoted as O, two label probability bounds pO and pO that satisfy pO ≤ pO =∑

i∈O Pr(i ∈ fk′(X)) ≤ pO, as well as regions AO and BO defined as follows:

AO = {w : δT (w − x) ≤ σ ∥δ∥2 Φ
−1(

pO

k′
)} (30)

BO = {w : δT (w − x) ≥ σ ∥δ∥2 Φ
−1(1− pO

k′
)} (31)

Then, we have:

Pr(X ∈ AO) ≤
∑

i∈O Pr(i ∈ fk′(X))

k′
≤ Pr(X ∈ BO) (32)

Pr(Y ∈ AO) ≤
∑

i∈O Pr(i ∈ fk′(Y))

k′
≤ Pr(Y ∈ BO) (33)
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Proof. We know Pr(X ∈ AO) =
pO

k′ based on Lemma 2. Moreover, based on the condition
pO ≤

∑
i∈O Pr(i ∈ fk′(X)), we obtain the first inequality in Equation 32. Similarly, we can obtain

the second inequality in Equation 32. We define Fi(w) = I(i ∈ fk′(w)),∀i ∈ O, where I is indicator
function. Then, we have Pr(X ∈ AO) ≤

∑
i∈O Pr(i∈fk′ (X))

k′ =
∑

i∈O Pr(Fi(X)=1)

k′ . Note that there
are k′ elements in fk′(w),∀w ∈ Rd, therefore, we have

∑
i∈O Fi(1|w) =

∑
i∈O I(i ∈ fk′(w)) ≤

k′,∀w ∈ Rd. Then, we can apply Lemma 4 and we have the following:

Pr(Y ∈ AO) ≤
∑

i∈O Pr(Fi(Y) = 1)

k′
=

∑
i∈O Pr(i ∈ fk′(Y))

k′
, (34)

which is the first inequality in Equation 33. Similarly, we can obtain the second inequality in
Equation 33.

Based on Lemma 1 and Lemma 2, we derive the following lemma:
Lemma 6. Suppose we have an arbitrary base multi-label classifier f , an integer k′, an input
x, an arbitrary label which is denoted as l, two label probability bounds pl and pl that satisfy
pl ≤ pl = Pr(l ∈ fk′(X)) ≤ pl, and regions Al and Bl defined as follows:

Al = {w : δT (w − x) ≤ σ ∥δ∥2 Φ
−1(pl)} (35)

Bl = {w : δT (w − x) ≥ σ ∥δ∥2 Φ
−1(1− pl)} (36)

Then, we have:

Pr(X ∈ Al) ≤ Pr(l ∈ fk′(X)) ≤ Pr(X ∈ Bl) (37)
Pr(Y ∈ Al) ≤ Pr(l ∈ fk′(Y)) ≤ Pr(Y ∈ Bl) (38)

Proof. We know Pr(X ∈ Al) = pl based on Lemma 2. Moreover, based on the condition pl ≤
Pr(l ∈ fk′(X)), we obtain the first inequality in Equation 37. Similarly, we can obtain the second
inequality in Equation 37. We define F (w) = I(l ∈ fk′(w)). Based on the first inequality in
Equation 37, we know Pr(X ∈ Al) ≤ Pr(l ∈ fk′(X)) = Pr(F (X) = 1). Then, we apply Lemma 1
and we have the following:

Pr(Y ∈ Al) ≤ Pr(F (Y) = 1) = Pr(l ∈ fk′(Y)), (39)

which is the first inequality in Equation 38. The second inequality in Equation 38 can be obtained
similarly.

Next, we formally show our proof for Theorem 1.

Proof. We leverage the law of contraposition to prove our theorem. Roughly speaking, if we have a
statement: P → Q, then, it’s contrapositive is: ¬Q→ ¬P , where ¬ denotes negation. The law of
contraposition claims that a statement is true if, and only if, its contrapositive is true. We define the
predicate P as follows:

max{Φ(Φ−1(pae)−
R

σ
),

d−e+1
max
u=1

k′

u
· Φ(Φ−1(

pΓu

k′
)− R

σ
)}

>min{Φ(Φ−1(pbs) +
R

σ
),

k−e+1
max
v=1

k′

v
· Φ(Φ−1(

pΛv

k′
) +

R

σ
)}. (40)

We define the predicate Q as follows:

min
δ,∥δ∥2≤R

|L(x) ∩ gk(x+ δ)| ≥ e. (41)

We will first prove the statement: P → Q. To prove it, we consider its contrapositive, i.e., we prove
the following statement: ¬Q→ ¬P .

Deriving necessary condition: Suppose ¬Q is true, i.e., minδ,∥δ∥2≤R |L(x) ∩ gk(x+ δ)| < e. On
the one hand, this means there exist at least d−e+1 elements in L(x) do not appear in gk(x+δ). For
convenience, we use Ur ⊆ L(x) to denote those elements, a subset of L(x) with r elements where
r = d−e+1. On the other hand, there exist at least k−e+1 elements in {1, 2, · · · , c}\L(x) appear
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in gk(x + δ). We use Vs ⊆ {1, 2, · · · , c} \ L(x) to denote them, a subset of {1, 2, · · · , c} \ L(x)
with s = k − e+ 1 elements. Formally, we have the following:

∃ Ur ⊆ L(x),Ur ∩ gk(x+ δ) = ∅ (42)
∃ Vs ⊆ {1, 2, · · · , c} \ L(x),Vs ⊆ gk(x+ δ), (43)

In other words, there exist sets Ur and Vs such that the adversarially perturbed label probability p∗i ’s
for elements in Vs are no smaller than these for the elements in Ur. Formally, we have the following
necessary condition if |L(x) ∩ gk(x+ δ)| < e:

min
Ur

max
i∈Ur

Pr(i ∈ fk′(Y)) ≤ max
Vs

min
j∈Vs

Pr(j ∈ fk′(Y)) (44)

Bounding maxi∈Ur
Pr(i ∈ fk′(Y)) and minj∈Vs

Pr(j ∈ fk′(Y)) for given Ur and Vs: For
simplicity, we assume Ur = {w1, w2, · · · , wr}. Without loss of generality, we assume pw1 ≥ pw2 ≥
· · · ≥ pwr

. Similarly, we assume Vs = {z1, z2, · · · , zs} and pzs ≥ · · · ≥ pz2 ≥ pz1 . For an arbitrary
element i ∈ Ur, we define the following region:

Ai = {w : δT (w − x) ≤ σ ∥δ∥2 Φ
−1(pi)} (45)

Then, we have the following for any i ∈ Ur:

Pr(i ∈ fk′(Y)) ≥ Pr(Y ∈ Ai) = Φ(Φ−1(pi)−
∥δ∥2
σ

) (46)

We obtain the first inequality from Lemma 6, and the second equality from Lemma 2. Similarly, for
an arbitrary element j ∈ Vs, we define the following region:

Bj = {w : δT (w − x) ≥ σ ∥δ∥2 Φ
−1(1− pj)} (47)

Then, based on Lemma 6 and Lemma 2, we have the following:

Pr(j ∈ fk′(Y)) ≤ Pr(Y ∈ Bj) = Φ(Φ−1(pj) +
∥δ∥2
σ

) (48)

Therefore, we have the following:

max
i∈Ur

Pr(i ∈ fk′(Y)) (49)

≥max
i∈Ur

Φ(Φ−1(pi)−
∥δ∥2
σ

) = max
i∈{w1,w2,··· ,wr}

Φ(Φ−1(pi)−
∥δ∥2
σ

) = Φ(Φ−1(pw1)−
∥δ∥2
σ

)

(50)
min
j∈Vs

Pr(j ∈ fk′(Y)) (51)

≤min
j∈Vs

Φ(Φ−1(pj) +
∥δ∥2
σ

) = min
j∈{z1,z2,··· ,zs}

Φ(Φ−1(pj) +
∥δ∥2
σ

) = Φ(Φ−1(pz1) +
∥δ∥2
σ

) (52)

Next, we consider all possible subsets of Ur and Vs. We denote Γu ⊆ Ur, a subset of u elements in
Ur, and denote Λv ⊆ Vs, a subset of v elements in Vs. Then, we have the following:

max
i∈Ur

Pr(i ∈ fk′(Y)) ≥ max
Γu⊆Ur

max
i∈Γu

Pr(i ∈ fk′(Y)) (53)

min
j∈Vs

Pr(j ∈ fk′(Y)) ≤ min
Λv⊆Vs

min
j∈Λv

Pr(j ∈ fk′(Y)) (54)

We define the following quantities:

pΓu =
∑
i∈Γu

pi and pΛv
=

∑
j∈Λv

pj (55)

Given these quantities, we define the following region based on Equation 30:

AΓu
= {w : δT (w − x) ≤ σ ∥δ∥2 Φ

−1(
pΓu

k′
)} (56)

BΛv
= {w : δT (w − x) ≥ σ ∥δ∥2 Φ

−1(1−
pΛv

k′
)} (57)
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Then, we have the following: ∑
i∈Γu

Pr(i ∈ fk′(Y))

k′
(58)

≥Pr(Y ∈ AΓu) (59)

=Φ(Φ−1(
pΓu

k′
)−
∥δ∥2
σ

) (60)

We have Equation 59 from 58 based on Lemma 5, and we have Equation 60 from 59 based on
Lemma 2. Therefore, we have the following:

max
i∈Γu

Pr(i ∈ fk′(Y)) (61)

≥
∑

i∈Γu
Pr(i ∈ fk′(Y))

u
(62)

=
k′

u
· Φ(Φ−1(

pΓu

k′
)−
∥δ∥2
σ

) (63)

We have Equation 62 from 61 because the maximum value is no smaller than the average value.
Similarly, we have the following:

min
j∈Λv

Pr(j ∈ fk′(Y)) ≤ k′

v
· Φ(Φ−1(

pΛv

k′
) +
∥δ∥2
σ

) (64)

Recall that we have pw1
≥ pw2

≥ · · · ≥ pwr
for Ur. By taking all possible Γu with u elements into

consideration, we have the following:

max
i∈Ur

Pr(i ∈ fk′(Y)) ≥ max
Γu⊆Ur

max
i∈Γu

Pr(i ∈ fk′(Y)) ≥ max
Γu={w1,··· ,wu}

k′

u
· Φ(Φ−1(

pΓu

k′
)−
∥δ∥2
σ

)

(65)

In other words, we only need to consider Γu = {w1, · · · , wu}, i.e., a subset of u elements in Ur
whose label probability upper bounds are the largest, where ties are broken uniformly at random. The
reason is that Φ(Φ−1(

pΓu

k′ )− ∥δ∥2

σ ) increases as pΓu increases. Combining with Equations 49, we
have the following:

max
i∈Ur

Pr(i ∈ fk′(Y)) ≥ max{Φ(Φ−1(pw1
)−
∥δ∥2
σ

), max
Γu={w1,··· ,wu}

k′

u
· Φ(Φ−1(

pΓu

k′
)−
∥δ∥2
σ

)}

(66)

Similarly, we have the following:

min
j∈Vs

Pr(j ∈ fk′(Y)) ≤ min{Φ(Φ−1(pz1) +
∥δ∥2
σ

), min
Λv={z1,··· ,zv}

k′

v
· Φ(Φ−1(

pΛv

k′
) +
∥δ∥2
σ

)}

(67)

Bounding minUr maxi∈Ur Pr(i ∈ fk′(Y)) and maxVs minj∈Vs Pr(j ∈ fk′(Y)): We have the
following:

min
Ur

max
i∈Ur

Pr(i ∈ fk′(Y)) (68)

≥min
Ur

max{ max
i∈{w1,w2,··· ,wr}

Φ(Φ−1(pi)−
∥δ∥2
σ

), max
Γu={w1,··· ,wu}

k′

u
· Φ(Φ−1(

pΓu

k′
)−
∥δ∥2
σ

)}

(69)

≥max{ max
i∈{ae,ae+1,··· ,ak}

Φ(Φ−1(pi)−
∥δ∥2
σ

), max
Γu={ae,··· ,ae+u−1}

k′

u
· Φ(Φ−1(

pΓu

k′
)−
∥δ∥2
σ

)}

(70)

=max{Φ(Φ−1(pae)−
∥δ∥2
σ

), max
Γu={ae,··· ,ae+u−1}

k′

u
· Φ(Φ−1(

pΓu

k′
)−
∥δ∥2
σ

)} (71)

=max{Φ(Φ−1(pae
)−
∥δ∥2
σ

),
d−e+1
max
u=1

k′

u
· Φ(Φ−1(

pΓu

k′
)−
∥δ∥2
σ

)}, (72)
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Algorithm 1: Computing the Certified Intersection Size
Input: f , x, L(x), R, k′, k, n, σ, and α.
Output: Certified intersection size.
x1,x2, · · · ,xn ← RANDOMSAMPLE(x, σ)
counts[i]←

∑n
t=1 I(i ∈ f(xt)), i = 1, 2, · · · , c.

pi, pj ← PROBBOUNDESTIMATION(counts, α), i ∈ L(x), j ∈ {1, 2, · · · , c} \ L(x)
e← BINARYSEARCH(σ, k′, k, R, {pi|i ∈ L(x)}, {pj |j ∈ {1, 2, · · · , c} \ L(x)})
return e

where Γu = {ae, · · · , ae+u−1}. We have Equation 70 from 69 because
max{maxi∈{w1,w2,··· ,wr} Φ(Φ

−1(pi) −
∥δ∥2

σ ),maxΓu={w1,··· ,wu}
k′

u · Φ(Φ
−1(

pΓu

k′ ) − ∥δ∥2

σ )}
reaches the minimal value when Ur contains r elements with smallest label probability lower bounds,
i.e., Ur = {ae, ae+1, · · · , ad}, where r = d− e+ 1. Similarly, we have the following:

max
Vs

min
j∈Vs

Pr(j ∈ fk′(Y)) ≤ min{Φ(Φ−1(pbs) +
∥δ∥2
σ

),
s

min
v=1

k′

v
· Φ(Φ−1(

pΛv

k′
) +
∥δ∥2
σ

)}, (73)

where Λv = {bs−v+1, · · · , bs} and s = k − e+ 1.

Applying the law of contraposition: Based on necessary condition in Equation 44, if we have
|T ∩ gk(x+ δ)| < e, then, we must have the following:

max{Φ(Φ−1(pae
)−
∥δ∥2
σ

),
d−e+1
max
u=1

k′

u
· Φ(Φ−1(

pΓu

k′
)−
∥δ∥2
σ

)} (74)

≤min
Ur

max
i∈Ur

Pr(i ∈ fk′(Y)) (75)

≤max
Vs

min
j∈Vs

Pr(j ∈ fk′(Y)) (76)

≤min{Φ(Φ−1(pbe) +
∥δ∥2
σ

),
k−e+1
min
v=1

k′

v
· Φ(Φ−1(

pΛv

k′
) +
∥δ∥2
σ

)}, (77)

We apply the law of contraposition and we obtain the statement: if we have the following:

max{Φ(Φ−1(pae)−
∥δ∥2
σ

),
d−e+1
max
u=1

k′

u
· Φ(Φ−1(

pΓu

k′
)−
∥δ∥2
σ

)}

>min{Φ(Φ−1(pbs) +
∥δ∥2
σ

),
k−e+1
max
v=1

k′

v
· Φ(Φ−1(

pΛv

k′
) +
∥δ∥2
σ

)}, (78)

Then, we must have |L(x)∩ gk(x+ δ)| ≥ e. From Equation 8, we know that Equation 78 is satisfied
for ∀ ∥δ∥2 ≤ R. Therefore, we reach our conclusion.
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(a) Certified top-k precision@R
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(b) Certified top-k recall@R
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(c) Certified top-k f1-score@R

Figure 2: Comparing MultiGuard with with Jia et al. [22] on MS-COCO (first row) and NUS-
WIDE (second row) dataset.
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Figure 3: Impact of k′ on the certified top-k precision@R, certified top-k recall@R, and
certified top-k f1-score@R on MS-COCO (first row) and NUS-WIDE (second row) dataset.
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Figure 4: Impact of k on the certified top-k precision@R, certified top-k recall@R, and certified
top-k f1-score@R on MS-COCO (first row) and NUS-WIDE (second row) dataset.
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Figure 5: Impact of σ on the certified top-k precision@R, certified top-k recall@R, and certified
top-k f1-score@R on MS-COCO (first row) and NUS-WIDE (second row) dataset.
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Figure 6: Training the base multi-label classifier with vs. without noise on Pascal VOC (first
row), MS-COCO (second row) and NUS-WIDE (third row) datasets.
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