A Proof of Theorem 1

We first define some notations that will be used in our proof. Given an input \mathbf{x}, we define the following two random variables:

$$
\begin{align*}
& \mathbf{X}=\mathbf{x}+\epsilon \sim \mathcal{N}\left(\mathbf{x}, \sigma^{2} I\right) \tag{11}\\
& \mathbf{Y}=\mathbf{x}+\delta+\epsilon \sim \mathcal{N}\left(\mathbf{x}+\delta, \sigma^{2} I\right) \tag{12}
\end{align*}
$$

where $\epsilon \sim \mathcal{N}\left(0, \sigma^{2} I\right)$ and δ is an adversarial perturbation that has the same size with \mathbf{x}. The random variables \mathbf{X} and \mathbf{Y} represent random inputs obtained by adding isotropic Gaussian noise to the input \mathbf{x} and its perturbed version $\mathbf{x}+\delta$, respectively. Cohen et al. [12] applied the standard Neyman-Pearson lemma [33] to the above two random variables, and obtained the following two lemmas:
Lemma 1 (Neyman-Pearson lemma for Gaussian with different means). Let $\mathbf{X} \sim \mathcal{N}\left(\mathbf{x}, \sigma^{2} I\right)$, $\mathbf{Y} \sim \mathcal{N}\left(\mathbf{x}+\delta, \sigma^{2} I\right)$, and $F: \mathbb{R}^{d} \rightarrow\{0,1\}$ be a random or deterministic function. Then, we have the following:
(1) If $W=\left\{\mathbf{w} \in \mathbb{R}^{d}: \delta^{T} \mathbf{w} \leq \beta\right\}$ for some β and $\operatorname{Pr}(F(\mathbf{X})=1) \geq \operatorname{Pr}(\mathbf{X} \in W)$, then $\operatorname{Pr}(F(\mathbf{Y})=1) \geq \operatorname{Pr}(\mathbf{Y} \in W)$.
(2) If $W=\left\{\mathbf{w} \in \mathbb{R}^{d}: \delta^{T} \mathbf{w} \geq \beta\right\}$ for some β and $\operatorname{Pr}(F(\mathbf{X})=1) \leq \operatorname{Pr}(\mathbf{X} \in W)$, then $\operatorname{Pr}(F(\mathbf{Y})=1) \leq \operatorname{Pr}(\mathbf{Y} \in W)$.
Lemma 2. Given an input \mathbf{x}, a real number $q \in[0,1]$, as well as regions \mathcal{A} and \mathcal{B} defined as follows:

$$
\begin{align*}
& \mathcal{A}=\left\{\mathbf{w}: \delta^{T}(\mathbf{w}-\mathbf{x}) \leq \sigma\|\delta\|_{2} \Phi^{-1}(q)\right\} \tag{13}\\
& \mathcal{B}=\left\{\mathbf{w}: \delta^{T}(\mathbf{w}-\mathbf{x}) \geq \sigma\|\delta\|_{2} \Phi^{-1}(1-q)\right\} \tag{14}
\end{align*}
$$

we have the following:

$$
\begin{align*}
& \operatorname{Pr}(\mathbf{X} \in \mathcal{A})=q \tag{15}\\
& \operatorname{Pr}(\mathbf{X} \in \mathcal{B})=q \tag{16}\\
& \operatorname{Pr}(\mathbf{Y} \in \mathcal{A})=\Phi\left(\Phi^{-1}(q)-\frac{\|\delta\|_{2}}{\sigma}\right) \tag{17}\\
& \operatorname{Pr}(\mathbf{Y} \in \mathcal{B})=\Phi\left(\Phi^{-1}(q)+\frac{\|\delta\|_{2}}{\sigma}\right) \tag{18}
\end{align*}
$$

Proof. Please refer to [12].
Next, we first generalize the Neyman-Pearson lemma to the case of multiple functions and then derive the lemmas that will be used in our proof.
Lemma 3. Let \mathbf{X}, \mathbf{Y} be two random variables whose probability densities are respectively $\operatorname{Pr}(\mathbf{X}=$ $\mathbf{w})$ and $\operatorname{Pr}(\mathbf{Y}=\mathbf{w})$, where $\mathbf{w} \in \mathbb{R}^{d}$. Let $F_{1}, F_{2}, \cdots, F_{t}: \mathbb{R}^{d} \rightarrow\{0,1\}$ be t random or deterministic functions. Let k^{\prime} be an integer such that:

$$
\begin{equation*}
\sum_{i=1}^{t} F_{i}(1 \mid \mathbf{w}) \leq k^{\prime}, \forall \mathbf{w} \in \mathbb{R}^{d} \tag{19}
\end{equation*}
$$

where $F_{i}(1 \mid \mathbf{w})$ denotes the probability that $F_{i}(\mathbf{w})=1$. Then, we have the following:
(1) If $W=\left\{\mathbf{w} \in \mathbb{R}^{d}: \operatorname{Pr}(\mathbf{Y}=\mathbf{w}) / \operatorname{Pr}(\mathbf{X}=\mathbf{w}) \leq \mu\right\}$ for some $\mu>0$ and $\frac{\sum_{i=1}^{t} \operatorname{Pr}\left(F_{i}(\mathbf{X})=1\right)}{k^{\prime}} \geq$ $\operatorname{Pr}(\mathbf{X} \in W)$, then $\frac{\sum_{i=1}^{t} \operatorname{Pr}\left(F_{i}(\mathbf{Y})=1\right)}{k^{\prime}} \geq \operatorname{Pr}(\mathbf{Y} \in W)$.
(2) If $W=\left\{\mathbf{w} \in \mathbb{R}^{d}: \operatorname{Pr}(\mathbf{Y}=\mathbf{w}) / \operatorname{Pr}(\mathbf{X}=\mathbf{w}) \geq \mu\right\}$ for some $\mu>0$ and $\frac{\sum_{i=1}^{t} \operatorname{Pr}\left(F_{i}(\mathbf{X})=1\right)}{k^{\prime}} \leq$ $\operatorname{Pr}(\mathbf{X} \in W)$, then $\frac{\sum_{i=1}^{t} \operatorname{Pr}\left(F_{i}(\mathbf{Y})=1\right)}{k^{\prime}} \leq \operatorname{Pr}(\mathbf{Y} \in W)$.

Proof. We first prove part (1). For convenience, we denote the complement of W as W^{c}. Then, we have the following:

$$
\begin{equation*}
\frac{\sum_{i=1}^{t} \operatorname{Pr}\left(F_{i}(\mathbf{Y})=1\right)}{k^{\prime}}-\operatorname{Pr}(\mathbf{Y} \in W) \tag{20}
\end{equation*}
$$

$$
\begin{align*}
& =\int_{\mathbb{R}^{d}} \frac{\sum_{i=1}^{t} F_{i}(1 \mid \mathbf{w})}{k^{\prime}} \cdot \operatorname{Pr}(\mathbf{Y}=\mathbf{w}) d \mathbf{w}-\int_{W} \operatorname{Pr}(\mathbf{Y}=\mathbf{w}) d \mathbf{w} \tag{21}\\
& =\int_{W^{c}} \frac{\sum_{i=1}^{t} F_{i}(1 \mid \mathbf{w})}{k^{\prime}} \cdot \operatorname{Pr}(\mathbf{Y}=\mathbf{w}) d \mathbf{w}+\int_{W} \frac{\sum_{i=1}^{t} F_{i}(1 \mid \mathbf{w})}{k^{\prime}} \cdot \operatorname{Pr}(\mathbf{Y}=\mathbf{w}) d \mathbf{w}-\int_{W} \operatorname{Pr}(\mathbf{Y}=\mathbf{w}) d \mathbf{w} \tag{22}\\
& =\int_{W^{c}} \frac{\sum_{i=1}^{t} F_{i}(1 \mid \mathbf{w})}{k^{\prime}} \cdot \operatorname{Pr}(\mathbf{Y}=\mathbf{w}) d \mathbf{w}-\int_{W}\left(1-\frac{\sum_{i=1}^{t} F_{i}(1 \mid \mathbf{w})}{k^{\prime}}\right) \cdot \operatorname{Pr}(\mathbf{Y}=\mathbf{w}) d \mathbf{w} \tag{23}\\
& \geq \mu \cdot\left[\int_{W^{c}} \frac{\sum_{i=1}^{t} F_{i}(1 \mid \mathbf{w})}{k^{\prime}} \cdot \operatorname{Pr}(\mathbf{X}=\mathbf{w}) d \mathbf{w}-\int_{W}\left(1-\frac{\sum_{i=1}^{t} F_{i}(1 \mid \mathbf{w})}{k^{\prime}}\right) \cdot \operatorname{Pr}(\mathbf{X}=\mathbf{w}) d \mathbf{w}\right] \tag{24}\\
& =\mu \cdot\left[\int_{W^{c}} \frac{\sum_{i=1}^{t} F_{i}(1 \mid \mathbf{w})}{k^{\prime}} \cdot \operatorname{Pr}(\mathbf{X}=\mathbf{w}) d \mathbf{w}+\int_{W} \frac{\sum_{i=1}^{t} F_{i}(1 \mid \mathbf{w})}{k^{\prime}} \cdot \operatorname{Pr}(\mathbf{X}=\mathbf{w}) d \mathbf{w}-\int_{W} \operatorname{Pr}(\mathbf{X}=\mathbf{w}) d \mathbf{w}\right] \tag{25}
\end{align*}
$$

$=\mu \cdot\left[\int_{\mathbb{R}^{d}} \frac{\sum_{i=1}^{t} F_{i}(1 \mid \mathbf{w})}{k^{\prime}} \cdot \operatorname{Pr}(\mathbf{X}=\mathbf{w}) d \mathbf{w}-\int_{W} \operatorname{Pr}(\mathbf{X}=\mathbf{w}) d \mathbf{w}\right]$
$=\mu \cdot\left[\frac{\sum_{i=1}^{t} \operatorname{Pr}\left(F_{i}(\mathbf{X})=1\right)}{k^{\prime}}-\operatorname{Pr}(\mathbf{X} \in W)\right]$
≥ 0.
We have Equation 24 from 23 due to the fact that $\operatorname{Pr}(\mathbf{Y}=\mathbf{w}) / \operatorname{Pr}(\mathbf{X}=\mathbf{w}) \leq \mu, \forall \mathbf{w} \in W$, $\operatorname{Pr}(\mathbf{Y}=\mathbf{w}) / \operatorname{Pr}(\mathbf{X}=\mathbf{w})>\mu, \forall \mathbf{w} \in W^{c}$, and $1-\frac{\sum_{i=1}^{t} F_{i}(1 \mid \mathbf{w})}{k^{\prime}} \geq 0$. Similarly, we can prove the part (2). We omit the details for conciseness reason.

We apply the above lemma to random variables \mathbf{X} and \mathbf{Y}, and obtain the following lemma:
Lemma 4. Let $\mathbf{X} \sim \mathcal{N}\left(\mathbf{x}, \sigma^{2} I\right), \mathbf{Y} \sim \mathcal{N}\left(\mathbf{x}+\delta, \sigma^{2} I\right), F_{1}, F_{2}, \cdots, F_{t}: \mathbb{R}^{d} \rightarrow\{0,1\}$ be t random or deterministic functions, and k^{\prime} be an integer such that:

$$
\begin{equation*}
\sum_{i=1}^{t} F_{i}(1 \mid \mathbf{w}) \leq k^{\prime}, \forall \mathbf{w} \in \mathbb{R}^{d} \tag{29}
\end{equation*}
$$

where $F_{i}(1 \mid \mathbf{w})$ denote the probability that $F_{i}(\mathbf{w})=1$. Then, we have the following:
(1) If $W=\left\{\mathbf{w} \in \mathbb{R}^{d}: \delta^{T} \mathbf{w} \leq \beta\right\}$ for some β and $\frac{\sum_{i=1}^{t} \operatorname{Pr}\left(F_{i}(\mathbf{X})=1\right)}{k^{\prime}} \geq \operatorname{Pr}(\mathbf{X} \in W)$, then $\frac{\sum_{i=1}^{t} \operatorname{Pr}\left(F_{i}(\mathbf{Y})=1\right)}{k^{\prime}} \geq \operatorname{Pr}(\mathbf{Y} \in W)$.
(2) If $W=\left\{\mathbf{w} \in \mathbb{R}^{d}: \delta^{T} \mathbf{w} \geq \beta\right\}$ for some β and $\frac{\sum_{i=1}^{t} \operatorname{Pr}\left(F_{i}(\mathbf{X})=1\right)}{k^{\prime}} \leq \operatorname{Pr}(\mathbf{X} \in W)$, then $\frac{\sum_{i=1}^{t} \operatorname{Pr}\left(F_{i}(\mathbf{Y})=1\right)}{k^{\prime}} \leq \operatorname{Pr}(\mathbf{Y} \in W)$.

By leveraging Lemma 2, Lemma 3, and Lemma 4 , we derive the following lemma:
Lemma 5. Suppose we have an arbitrary base multi-label classifier f, an integer k^{\prime}, an input \mathbf{x}, an arbitrary set denoted as O, two label probability bounds \underline{p}_{O} and \bar{p}_{O} that satisfy $\underline{p_{O}} \leq p_{O}=$ $\sum_{i \in O} \operatorname{Pr}\left(i \in f_{k^{\prime}}(\mathbf{X})\right) \leq \bar{p}_{O}$, as well as regions \mathcal{A}_{O} and \mathcal{B}_{O} defined as follows:

$$
\begin{align*}
& \mathcal{A}_{O}=\left\{\mathbf{w}: \delta^{T}(\mathbf{w}-\mathbf{x}) \leq \sigma\|\delta\|_{2} \Phi^{-1}\left(\frac{\overline{p_{O}}}{\overline{k^{\prime}}}\right)\right\} \tag{30}\\
& \mathcal{B}_{O}=\left\{\mathbf{w}: \delta^{T}(\mathbf{w}-\mathbf{x}) \geq \sigma\|\delta\|_{2} \Phi^{-1}\left(1-\frac{\bar{p}_{O}}{k^{\prime}}\right)\right\} \tag{31}
\end{align*}
$$

Then, we have:

$$
\begin{align*}
& \operatorname{Pr}\left(\mathbf{X} \in \mathcal{A}_{O}\right) \leq \frac{\sum_{i \in O} \operatorname{Pr}\left(i \in f_{k^{\prime}}(\mathbf{X})\right)}{k^{\prime}} \leq \operatorname{Pr}\left(\mathbf{X} \in \mathcal{B}_{O}\right) \tag{32}\\
& \operatorname{Pr}\left(\mathbf{Y} \in \mathcal{A}_{O}\right) \leq \frac{\sum_{i \in O} \operatorname{Pr}\left(i \in f_{k^{\prime}}(\mathbf{Y})\right)}{k^{\prime}} \leq \operatorname{Pr}\left(\mathbf{Y} \in \mathcal{B}_{O}\right) \tag{33}
\end{align*}
$$

Proof. We know $\operatorname{Pr}\left(\mathbf{X} \in \mathcal{A}_{O}\right)=\frac{p_{O}}{k^{\prime}}$ based on Lemma 2 . Moreover, based on the condition $\underline{p_{O}} \leq \sum_{i \in O} \operatorname{Pr}\left(i \in f_{k^{\prime}}(\mathbf{X})\right)$, we obtain the first inequality in Equation 32 Similarly, we can obtain the second inequality in Equation 32 . We define $F_{i}(\mathbf{w})=\mathbb{I}\left(i \in f_{k^{\prime}}(\mathbf{w})\right), \forall i \in O$, where \mathbb{I} is indicator function. Then, we have $\operatorname{Pr}\left(\mathbf{X} \in \mathcal{A}_{O}\right) \leq \frac{\sum_{i \in O} \operatorname{Pr}\left(i \in f_{k^{\prime}}(\mathbf{X})\right)}{k^{\prime}}=\frac{\sum_{i \in O} \operatorname{Pr}\left(F_{i}(\mathbf{X})=1\right)}{k^{\prime}}$. Note that there are k^{\prime} elements in $f_{k^{\prime}}(\mathbf{w}), \forall \mathbf{w} \in \mathbb{R}^{d}$, therefore, we have $\sum_{i \in O} F_{i}(1 \mid \mathbf{w})=\sum_{i \in O} \mathbb{I}\left(i \in f_{k^{\prime}}(\mathbf{w})\right) \leq$ $k^{\prime}, \forall \mathbf{w} \in \mathbb{R}^{d}$. Then, we can apply Lemma 4 and we have the following:

$$
\begin{equation*}
\operatorname{Pr}\left(\mathbf{Y} \in \mathcal{A}_{O}\right) \leq \frac{\sum_{i \in O} \operatorname{Pr}\left(F_{i}(\mathbf{Y})=1\right)}{k^{\prime}}=\frac{\sum_{i \in O} \operatorname{Pr}\left(i \in f_{k^{\prime}}(\mathbf{Y})\right)}{k^{\prime}} \tag{34}
\end{equation*}
$$

which is the first inequality in Equation 33 . Similarly, we can obtain the second inequality in Equation 33.

Based on Lemma 1 and Lemma2, we derive the following lemma:
Lemma 6. Suppose we have an arbitrary base multi-label classifier f, an integer k^{\prime}, an input \mathbf{x}, an arbitrary label which is denoted as l, two label probability bounds \underline{p}_{l} and \bar{p}_{l} that satisfy $\underline{p_{l}} \leq p_{l}=\operatorname{Pr}\left(l \in f_{k^{\prime}}(\mathbf{X})\right) \leq \bar{p}_{l}$, and regions \mathcal{A}_{l} and \mathcal{B}_{l} defined as follows:

$$
\begin{align*}
& \mathcal{A}_{l}=\left\{\mathbf{w}: \delta^{T}(\mathbf{w}-\mathbf{x}) \leq \sigma\|\delta\|_{2} \Phi^{-1}\left(\underline{p_{l}}\right)\right\} \tag{35}\\
& \mathcal{B}_{l}=\left\{\mathbf{w}: \delta^{T}(\mathbf{w}-\mathbf{x}) \geq \sigma\|\delta\|_{2} \Phi^{-1}\left(1-\bar{p}_{l}\right)\right\} \tag{36}
\end{align*}
$$

Then, we have:

$$
\begin{align*}
& \operatorname{Pr}\left(\mathbf{X} \in \mathcal{A}_{l}\right) \leq \operatorname{Pr}\left(l \in f_{k^{\prime}}(\mathbf{X})\right) \leq \operatorname{Pr}\left(\mathbf{X} \in \mathcal{B}_{l}\right) \tag{37}\\
& \operatorname{Pr}\left(\mathbf{Y} \in \mathcal{A}_{l}\right) \leq \operatorname{Pr}\left(l \in f_{k^{\prime}}(\mathbf{Y})\right) \leq \operatorname{Pr}\left(\mathbf{Y} \in \mathcal{B}_{l}\right) \tag{38}
\end{align*}
$$

Proof. We know $\operatorname{Pr}\left(\mathbf{X} \in \mathcal{A}_{l}\right)=\underline{p_{l}}$ based on Lemma 2 Moreover, based on the condition $\underline{p_{l}} \leq$ $\operatorname{Pr}\left(l \in f_{k^{\prime}}(\mathbf{X})\right)$, we obtain the first inequality in Equation 37. Similarly, we can obtain the second inequality in Equation 37. We define $F(\mathbf{w})=\mathbb{I}\left(l \in f_{k^{\prime}}(\mathbf{w})\right)$. Based on the first inequality in Equation 37, we know $\operatorname{Pr}\left(\mathbf{X} \in \mathcal{A}_{l}\right) \leq \operatorname{Pr}\left(l \in f_{k^{\prime}}(\mathbf{X})\right)=\operatorname{Pr}(F(\mathbf{X})=1)$. Then, we apply Lemma 1 and we have the following:

$$
\begin{equation*}
\operatorname{Pr}\left(\mathbf{Y} \in \mathcal{A}_{l}\right) \leq \operatorname{Pr}(F(\mathbf{Y})=1)=\operatorname{Pr}\left(l \in f_{k^{\prime}}(\mathbf{Y})\right) \tag{39}
\end{equation*}
$$

which is the first inequality in Equation 38 . The second inequality in Equation 38 can be obtained similarly.

Next, we formally show our proof for Theorem 1
Proof. We leverage the law of contraposition to prove our theorem. Roughly speaking, if we have a statement: $P \rightarrow Q$, then, it's contrapositive is: $\neg Q \rightarrow \neg P$, where \neg denotes negation. The law of contraposition claims that a statement is true if, and only if, its contrapositive is true. We define the predicate P as follows:

$$
\begin{align*}
& \max \left\{\Phi\left(\Phi^{-1}\left(\underline{p_{a_{e}}}\right)-\frac{R}{\sigma}\right),{\underset{\max }{u=1}}_{d-e+1} \frac{k^{\prime}}{u} \cdot \Phi\left(\Phi^{-1}\left(\frac{p_{\Gamma_{u}}}{k^{\prime}}\right)-\frac{R}{\sigma}\right)\right\} \\
> & \min \left\{\Phi\left(\Phi^{-1}\left(\bar{p}_{b_{s}}\right)+\frac{R}{\sigma}\right), \max _{v=1}^{k-e+1} \frac{k^{\prime}}{v} \cdot \Phi\left(\Phi^{-1}\left(\frac{\bar{p}_{\Lambda_{v}}}{k^{\prime}}\right)+\frac{R}{\sigma}\right)\right\} . \tag{40}
\end{align*}
$$

We define the predicate Q as follows:

$$
\begin{equation*}
\min _{\delta,\|\delta\|_{2} \leq R}\left|L(\mathbf{x}) \cap g_{k}(\mathbf{x}+\delta)\right| \geq e \tag{41}
\end{equation*}
$$

We will first prove the statement: $P \rightarrow Q$. To prove it, we consider its contrapositive, i.e., we prove the following statement: $\neg Q \rightarrow \neg P$.
Deriving necessary condition: Suppose $\neg Q$ is true, i.e., $\min _{\delta,\|\delta\|_{2} \leq R}\left|L(\mathbf{x}) \cap g_{k}(\mathbf{x}+\delta)\right|<e$. On the one hand, this means there exist at least $d-e+1$ elements in $L(\mathbf{x})$ do not appear in $g_{k}(\mathbf{x}+\delta)$. For convenience, we use $\mathcal{U}_{r} \subseteq L(\mathbf{x})$ to denote those elements, a subset of $L(\mathbf{x})$ with r elements where $r=d-e+1$. On the other hand, there exist at least $k-e+1$ elements in $\{1,2, \cdots, c\} \backslash L(\mathbf{x})$ appear
in $g_{k}(\mathbf{x}+\delta)$. We use $\mathcal{V}_{s} \subseteq\{1,2, \cdots, c\} \backslash L(\mathbf{x})$ to denote them, a subset of $\{1,2, \cdots, c\} \backslash L(\mathbf{x})$ with $s=k-e+1$ elements. Formally, we have the following:

$$
\begin{align*}
& \exists \mathcal{U}_{r} \subseteq L(\mathbf{x}), \mathcal{U}_{r} \cap g_{k}(\mathbf{x}+\delta)=\emptyset \tag{42}\\
& \exists \mathcal{V}_{s} \subseteq\{1,2, \cdots, c\} \backslash L(\mathbf{x}), \mathcal{V}_{s} \subseteq g_{k}(\mathbf{x}+\delta), \tag{43}
\end{align*}
$$

In other words, there exist sets \mathcal{U}_{r} and \mathcal{V}_{s} such that the adversarially perturbed label probability p_{i}^{*} 's for elements in \mathcal{V}_{s} are no smaller than these for the elements in \mathcal{U}_{r}. Formally, we have the following necessary condition if $\left|L(\mathbf{x}) \cap g_{k}(\mathbf{x}+\delta)\right|<e$:

$$
\begin{equation*}
\min _{\mathcal{U}_{r}} \max _{i \in \mathcal{U}_{r}} \operatorname{Pr}\left(i \in f_{k^{\prime}}(\mathbf{Y})\right) \leq \max _{\mathcal{V}_{s}} \min _{j \in \mathcal{V}_{s}} \operatorname{Pr}\left(j \in f_{k^{\prime}}(\mathbf{Y})\right) \tag{44}
\end{equation*}
$$

Bounding $\max _{i \in \mathcal{U}_{r}} \operatorname{Pr}\left(i \in f_{k^{\prime}}(\mathbf{Y})\right)$ and $\min _{j \in \mathcal{V}_{s}} \operatorname{Pr}\left(j \in f_{k^{\prime}}(\mathbf{Y})\right)$ for given \mathcal{U}_{r} and \mathcal{V}_{s} : For simplicity, we assume $\mathcal{U}_{r}=\left\{w_{1}, w_{2}, \cdots, w_{r}\right\}$. Without loss of generality, we assume $\underline{p_{w_{1}} \geq p_{w_{2}} \geq}$ $\cdots \geq \underline{p_{w_{r}}}$. Similarly, we assume $\mathcal{V}_{s}=\left\{z_{1}, z_{2}, \cdots, z_{s}\right\}$ and $\bar{p}_{z_{s}} \geq \cdots \geq \bar{p}_{z_{2}} \geq \bar{p}_{z_{1}}$. For an arbitrary element $i \in \mathcal{U}_{r}$, we define the following region:

$$
\begin{equation*}
\mathcal{A}_{i}=\left\{\mathbf{w}: \delta^{T}(\mathbf{w}-\mathbf{x}) \leq \sigma\|\delta\|_{2} \Phi^{-1}\left(\underline{p_{i}}\right)\right\} \tag{45}
\end{equation*}
$$

Then, we have the following for any $i \in \mathcal{U}_{r}$:

$$
\begin{equation*}
\operatorname{Pr}\left(i \in f_{k^{\prime}}(\mathbf{Y})\right) \geq \operatorname{Pr}\left(\mathbf{Y} \in \mathcal{A}_{i}\right)=\Phi\left(\Phi^{-1}\left(\underline{p_{i}}\right)-\frac{\|\delta\|_{2}}{\sigma}\right) \tag{46}
\end{equation*}
$$

We obtain the first inequality from Lemma 6, and the second equality from Lemma 2 Similarly, for an arbitrary element $j \in \mathcal{V}_{s}$, we define the following region:

$$
\begin{equation*}
\mathcal{B}_{j}=\left\{\mathbf{w}: \delta^{T}(\mathbf{w}-\mathbf{x}) \geq \sigma\|\delta\|_{2} \Phi^{-1}\left(1-\bar{p}_{j}\right)\right\} \tag{47}
\end{equation*}
$$

Then, based on Lemma6 and Lemma2 we have the following:

$$
\begin{equation*}
\operatorname{Pr}\left(j \in f_{k^{\prime}}(\mathbf{Y})\right) \leq \operatorname{Pr}\left(\mathbf{Y} \in \mathcal{B}_{j}\right)=\Phi\left(\Phi^{-1}\left(\bar{p}_{j}\right)+\frac{\|\delta\|_{2}}{\sigma}\right) \tag{48}
\end{equation*}
$$

Therefore, we have the following:

$$
\begin{align*}
& \max _{i \in \mathcal{U}_{r}} \operatorname{Pr}\left(i \in f_{k^{\prime}}(\mathbf{Y})\right) \tag{49}\\
\geq & \left.\max _{i \in \mathcal{U}_{r}} \Phi\left(\Phi^{-1}\left(\underline{p_{i}}\right)-\frac{\|\delta\|_{2}}{\sigma}\right)=\max _{i \in\left\{w_{1}, w_{2}, \cdots, w_{r}\right\}} \Phi\left(\Phi^{-1}\left(\underline{p_{i}}\right)-\frac{\|\delta\|_{2}}{\sigma}\right)=\Phi\left(\Phi^{-1} \underline{p_{w_{1}}}\right)-\frac{\|\delta\|_{2}}{\sigma}\right) \tag{50}\\
& \min _{j \in \mathcal{V}_{s}} \operatorname{Pr}\left(j \in f_{k^{\prime}}(\mathbf{Y})\right) \tag{51}\\
\leq & \min _{j \in \mathcal{V}_{s}} \Phi\left(\Phi^{-1}\left(\bar{p}_{j}\right)+\frac{\|\delta\|_{2}}{\sigma}\right)=\min _{j \in\left\{z_{1}, z_{2}, \cdots, z_{s}\right\}} \Phi\left(\Phi^{-1}\left(\bar{p}_{j}\right)+\frac{\|\delta\|_{2}}{\sigma}\right)=\Phi\left(\Phi^{-1}\left(\bar{p}_{z_{1}}\right)+\frac{\|\delta\|_{2}}{\sigma}\right) \tag{52}
\end{align*}
$$

Next, we consider all possible subsets of \mathcal{U}_{r} and \mathcal{V}_{s}. We denote $\Gamma_{u} \subseteq \mathcal{U}_{r}$, a subset of u elements in \mathcal{U}_{r}, and denote $\Lambda_{v} \subseteq \mathcal{V}_{s}$, a subset of v elements in \mathcal{V}_{s}. Then, we have the following:

$$
\begin{align*}
& \max _{i \in \mathcal{U}_{r}} \operatorname{Pr}\left(i \in f_{k^{\prime}}(\mathbf{Y})\right) \geq \max _{\Gamma_{u} \subseteq \mathcal{U}_{r}} \max _{i \in \Gamma_{u}} \operatorname{Pr}\left(i \in f_{k^{\prime}}(\mathbf{Y})\right) \tag{53}\\
& \min _{j \in \mathcal{V}_{s}} \operatorname{Pr}\left(j \in f_{k^{\prime}}(\mathbf{Y})\right) \leq \min _{\Lambda_{v} \subseteq \mathcal{V}_{s}} \min _{j \in \Lambda_{v}} \operatorname{Pr}\left(j \in f_{k^{\prime}}(\mathbf{Y})\right) \tag{54}
\end{align*}
$$

We define the following quantities:

$$
\begin{equation*}
\underline{p_{\Gamma_{u}}}=\sum_{i \in \Gamma_{u}} \underline{p_{i}} \text { and } \bar{p}_{\Lambda_{v}}=\sum_{j \in \Lambda_{v}} \bar{p}_{j} \tag{55}
\end{equation*}
$$

Given these quantities, we define the following region based on Equation 30

$$
\begin{align*}
& \mathcal{A}_{\Gamma_{u}}=\left\{\mathbf{w}: \delta^{T}(\mathbf{w}-\mathbf{x}) \leq \sigma\|\delta\|_{2} \Phi^{-1}\left(\frac{p_{\Gamma_{u}}}{k^{\prime}}\right)\right\} \tag{56}\\
& \mathcal{B}_{\Lambda_{v}}=\left\{\mathbf{w}: \delta^{T}(\mathbf{w}-\mathbf{x}) \geq \sigma\|\delta\|_{2} \Phi^{-1}\left(1-\frac{\bar{p}_{\Lambda_{v}}}{k^{\prime}}\right)\right\} \tag{57}
\end{align*}
$$

Then, we have the following:

$$
\begin{align*}
& \frac{\sum_{i \in \Gamma_{u}} \operatorname{Pr}\left(i \in f_{k^{\prime}}(\mathbf{Y})\right)}{k^{\prime}} \tag{58}\\
\geq & \operatorname{Pr}\left(\mathbf{Y} \in \mathcal{A}_{\Gamma_{u}}\right) \tag{59}\\
= & \Phi\left(\Phi^{-1}\left(\frac{p_{\Gamma_{u}}}{k^{\prime}}\right)-\frac{\|\delta\|_{2}}{\sigma}\right) \tag{60}
\end{align*}
$$

We have Equation 59 from 58 based on Lemma 5, and we have Equation 60 from 59 based on Lemma 2 Therefore, we have the following:

$$
\begin{align*}
& \max _{i \in \Gamma_{u}} \operatorname{Pr}\left(i \in f_{k^{\prime}}(\mathbf{Y})\right) \tag{61}\\
\geq & \frac{\sum_{i \in \Gamma_{u}} \operatorname{Pr}\left(i \in f_{k^{\prime}}(\mathbf{Y})\right)}{u} \tag{62}\\
= & \frac{k^{\prime}}{u} \cdot \Phi\left(\Phi^{-1}\left(\frac{p_{\Gamma_{u}}}{k^{\prime}}\right)-\frac{\|\delta\|_{2}}{\sigma}\right) \tag{63}
\end{align*}
$$

We have Equation 62 from 61 because the maximum value is no smaller than the average value. Similarly, we have the following:

$$
\begin{equation*}
\min _{j \in \Lambda_{v}} \operatorname{Pr}\left(j \in f_{k^{\prime}}(\mathbf{Y})\right) \leq \frac{k^{\prime}}{v} \cdot \Phi\left(\Phi^{-1}\left(\frac{\bar{p}_{\Lambda_{v}}}{k^{\prime}}\right)+\frac{\|\delta\|_{2}}{\sigma}\right) \tag{64}
\end{equation*}
$$

Recall that we have $\bar{p}_{w_{1}} \geq \bar{p}_{w_{2}} \geq \cdots \geq \bar{p}_{w_{r}}$ for \mathcal{U}_{r}. By taking all possible Γ_{u} with u elements into consideration, we have the following:

$$
\begin{equation*}
\max _{i \in \mathcal{U}_{r}} \operatorname{Pr}\left(i \in f_{k^{\prime}}(\mathbf{Y})\right) \geq \max _{\Gamma_{u} \subseteq \mathcal{U}_{r}} \max _{i \in \Gamma_{u}} \operatorname{Pr}\left(i \in f_{k^{\prime}}(\mathbf{Y})\right) \geq \max _{\Gamma_{u}=\left\{w_{1}, \cdots, w_{u}\right\}} \frac{k^{\prime}}{u} \cdot \Phi\left(\Phi^{-1}\left(\frac{p_{\Gamma_{u}}}{k^{\prime}}\right)-\frac{\|\delta\|_{2}}{\sigma}\right) \tag{65}
\end{equation*}
$$

In other words, we only need to consider $\Gamma_{u}=\left\{w_{1}, \cdots, w_{u}\right\}$, i.e., a subset of u elements in \mathcal{U}_{r} whose label probability upper bounds are the largest, where ties are broken uniformly at random. The reason is that $\Phi\left(\Phi^{-1}\left(\frac{p_{\Gamma u}}{k^{\prime}}\right)-\frac{\|\delta\|_{2}}{\sigma}\right)$ increases as $\underline{p_{\Gamma_{u}}}$ increases. Combining with Equations 49 , we have the following:

$$
\begin{equation*}
\max _{i \in \mathcal{U}_{r}} \operatorname{Pr}\left(i \in f_{k^{\prime}}(\mathbf{Y})\right) \geq \max \left\{\Phi\left(\Phi^{-1}\left(\underline{p_{w_{1}}}\right)-\frac{\|\delta\|_{2}}{\sigma}\right), \max _{\Gamma_{u}=\left\{w_{1}, \cdots, w_{u}\right\}} \frac{k^{\prime}}{u} \cdot \Phi\left(\Phi^{-1}\left(\frac{p_{\Gamma_{u}}}{k^{\prime}}\right)-\frac{\|\delta\|_{2}}{\sigma}\right)\right\} \tag{66}
\end{equation*}
$$

Similarly, we have the following:

$$
\begin{equation*}
\min _{j \in \mathcal{V}_{s}} \operatorname{Pr}\left(j \in f_{k^{\prime}}(\mathbf{Y})\right) \leq \min \left\{\Phi\left(\Phi^{-1}\left(\bar{p}_{z_{1}}\right)+\frac{\|\delta\|_{2}}{\sigma}\right), \min _{\Lambda_{v}=\left\{z_{1}, \cdots, z_{v}\right\}} \frac{k^{\prime}}{v} \cdot \Phi\left(\Phi^{-1}\left(\frac{\bar{p}_{\Lambda_{v}}}{k^{\prime}}\right)+\frac{\|\delta\|_{2}}{\sigma}\right)\right\} \tag{67}
\end{equation*}
$$

Bounding $\min _{\mathcal{U}_{r}} \max _{i \in \mathcal{U}_{r}} \operatorname{Pr}\left(i \in f_{k^{\prime}}(\mathbf{Y})\right)$ and $\max _{\mathcal{V}_{s}} \min _{j \in \mathcal{V}_{s}} \operatorname{Pr}\left(j \in f_{k^{\prime}}(\mathbf{Y})\right)$: We have the following:

$$
\begin{align*}
& \min _{\mathcal{U}_{r}} \max _{i \in \mathcal{U}_{r}} \operatorname{Pr}\left(i \in f_{k^{\prime}}(\mathbf{Y})\right) \tag{68}\\
\geq & \min _{\mathcal{U}_{r}} \max \left\{\max _{i \in\left\{w_{1}, w_{2}, \cdots, w_{r}\right\}} \Phi\left(\Phi^{-1}\left(\underline{p_{i}}\right)-\frac{\|\delta\|_{2}}{\sigma}\right), \max _{\Gamma_{u}=\left\{w_{1}, \cdots, w_{u}\right\}} \frac{k^{\prime}}{u} \cdot \Phi\left(\Phi^{-1}\left(\frac{p_{\Gamma_{u}}}{k^{\prime}}\right)-\frac{\|\delta\|_{2}}{\sigma}\right)\right\} \tag{69}\\
\geq & \max \left\{\max _{i \in\left\{a_{e}, a_{e+1}, \cdots, a_{k}\right\}} \Phi\left(\Phi^{-1}\left(\underline{p_{i}}\right)-\frac{\|\delta\|_{2}}{\sigma}\right), \max _{\Gamma_{u}=\left\{a_{e}, \cdots, a_{e+u-1}\right\}} \frac{k^{\prime}}{u} \cdot \Phi\left(\Phi^{-1}\left(\frac{p_{\Gamma_{u}}}{k^{\prime}}\right)-\frac{\|\delta\|_{2}}{\sigma}\right)\right\} \tag{70}\\
= & \max \left\{\Phi\left(\Phi^{-1}\left(\underline{p_{a_{e}}}\right)-\frac{\|\delta\|_{2}}{\sigma}\right), \max _{\Gamma_{u}=\left\{a_{e}, \cdots, a_{e+u-1}\right\}} \frac{k^{\prime}}{u} \cdot \Phi\left(\Phi^{-1}\left(\frac{p_{\Gamma_{u}}}{k^{\prime}}\right)-\frac{\|\delta\|_{2}}{\sigma}\right)\right\} \tag{71}\\
= & \max \left\{\Phi\left(\Phi^{-1}\left(\underline{p_{a_{e}}}\right)-\frac{\|\delta\|_{2}}{\sigma}\right),{\underset{\sim}{u=1}}_{d-e+1}^{\max _{u}} \frac{k^{\prime}}{u} \cdot \Phi\left(\Phi^{-1}\left(\frac{p_{\Gamma_{u}}}{k^{\prime}}\right)-\frac{\|\delta\|_{2}}{\sigma}\right)\right\} \tag{72}
\end{align*}
$$

```
Algorithm 1: Computing the Certified Intersection Size
    Input: \(f, \mathbf{x}, L(\mathbf{x}), R, k^{\prime}, k, n, \sigma\), and \(\alpha\).
    Output: Certified intersection size.
    \(\mathrm{x}^{1}, \mathrm{x}^{2}, \cdots, \mathrm{x}^{n} \leftarrow\) RANDOMSAMPLE \((\mathrm{x}, \sigma)\)
    counts \([i] \leftarrow \sum_{t=1}^{n} \mathbb{I}\left(i \in f\left(\mathbf{x}^{t}\right)\right), i=1,2, \cdots, c\).
    \(\underline{p_{i}}, \bar{p}_{j} \leftarrow \operatorname{PROBBOUNDESTIMATION}(\) counts,\(\alpha), i \in L(\mathbf{x}), j \in\{1,2, \cdots, c\} \backslash L(\mathbf{x})\)
    \(\bar{e} \leftarrow \operatorname{BinARySEARCH}\left(\sigma, k^{\prime}, k, R,\left\{\underline{p_{i}} \mid i \in L(\mathbf{x})\right\},\left\{\bar{p}_{j} \mid j \in\{1,2, \cdots, c\} \backslash L(\mathbf{x})\right\}\right)\)
    return \(e\)
```

where $\Gamma_{u}=\left\{a_{e}, \cdots, a_{e+u-1}\right\}$. We have Equation 70 from 69 because $\max \left\{\max _{i \in\left\{w_{1}, w_{2}, \cdots, w_{r}\right\}} \Phi\left(\Phi^{-1}\left(\underline{p_{i}}\right)-\frac{\|\delta\|_{2}}{\sigma}\right), \max _{\Gamma_{u}=\left\{w_{1}, \cdots, w_{u}\right\}} \frac{k^{\prime}}{u} \cdot \Phi\left(\Phi^{-1}\left(\frac{p_{\Gamma}}{k^{\prime}}\right)-\frac{\|\delta\|_{2}}{\sigma}\right)\right\}$ reaches the minimal value when $\mathcal{U}_{r} \overline{\text { contains }} r$ elements with smallest label probability lower bounds, i.e., $\mathcal{U}_{r}=\left\{a_{e}, a_{e+1}, \cdots, a_{d}\right\}$, where $r=d-e+1$. Similarly, we have the following:

$$
\begin{equation*}
\max _{\mathcal{V}_{s}} \min _{j \in \mathcal{V}_{s}} \operatorname{Pr}\left(j \in f_{k^{\prime}}(\mathbf{Y})\right) \leq \min \left\{\Phi\left(\Phi^{-1}\left(\underline{p_{b_{s}}}\right)+\frac{\|\delta\|_{2}}{\sigma}\right), \min _{v=1}^{s} \frac{k^{\prime}}{v} \cdot \Phi\left(\Phi^{-1}\left(\frac{\bar{p}_{\Lambda_{v}}}{k^{\prime}}\right)+\frac{\|\delta\|_{2}}{\sigma}\right)\right\} \tag{73}
\end{equation*}
$$

where $\Lambda_{v}=\left\{b_{s-v+1}, \cdots, b_{s}\right\}$ and $s=k-e+1$.
Applying the law of contraposition: Based on necessary condition in Equation 44 , if we have $\left|T \cap g_{k}(\mathbf{x}+\delta)\right|<e$, then, we must have the following:

$$
\begin{align*}
& \max \left\{\Phi\left(\Phi^{-1}\left(\underline{p_{a_{e}}}\right)-\frac{\|\delta\|_{2}}{\sigma}\right),{\underset{\sim}{u=1}}_{d-e+1}^{\max ^{\prime}} \frac{k^{\prime}}{u} \cdot \Phi\left(\Phi^{-1}\left(\frac{p_{\Gamma_{u}}}{k^{\prime}}\right)-\frac{\|\delta\|_{2}}{\sigma}\right)\right\} \tag{74}\\
\leq & \min _{\mathcal{U}_{r}} \max _{i \in \mathcal{U}_{r}} \operatorname{Pr}\left(i \in f_{k^{\prime}}(\mathbf{Y})\right) \tag{75}\\
\leq & \max _{\mathcal{V}_{s}} \min _{j \in \mathcal{V}_{s}} \operatorname{Pr}\left(j \in f_{k^{\prime}}(\mathbf{Y})\right) \tag{76}\\
\leq & \min \left\{\Phi\left(\Phi^{-1}\left(\bar{p}_{b_{e}}\right)+\frac{\|\delta\|_{2}}{\sigma}\right), \min _{v=1}^{k-e+1} \frac{k^{\prime}}{v} \cdot \Phi\left(\Phi^{-1}\left(\frac{\bar{p}_{\Lambda_{v}}}{k^{\prime}}\right)+\frac{\|\delta\|_{2}}{\sigma}\right)\right\}, \tag{77}
\end{align*}
$$

We apply the law of contraposition and we obtain the statement: if we have the following:

$$
\begin{align*}
& \max \left\{\Phi\left(\Phi^{-1}\left(\underline{p_{a_{e}}}\right)-\frac{\|\delta\|_{2}}{\sigma}\right), \stackrel{d-e+1}{\max _{u=1}} \frac{k^{\prime}}{u} \cdot \Phi\left(\Phi^{-1}\left(\frac{p_{\Gamma_{u}}}{k^{\prime}}\right)-\frac{\|\delta\|_{2}}{\sigma}\right)\right\} \\
> & \min \left\{\Phi\left(\Phi^{-1}\left(\bar{p}_{b_{s}}\right)+\frac{\|\delta\|_{2}}{\sigma}\right), \stackrel{\max _{v=1}^{k-e+1}}{\max ^{\prime}} \cdot \Phi\left(\Phi^{-1}\left(\frac{\bar{p}_{\Lambda_{v}}}{k^{\prime}}\right)+\frac{\|\delta\|_{2}}{\sigma}\right)\right\}, \tag{78}
\end{align*}
$$

Then, we must have $\left|L(\mathbf{x}) \cap g_{k}(\mathbf{x}+\delta)\right| \geq e$. From Equation 8 , we know that Equation 78 is satisfied for $\forall\|\delta\|_{2} \leq R$. Therefore, we reach our conclusion.

Figure 2: Comparing MultiGuard with with Jia et al. [22] on MS-COCO (first row) and NUSWIDE (second row) dataset.

Figure 3: Impact of k^{\prime} on the certified top- k precision@ R, certified top- k recall@ R, and certified top- k f1-score@ R on MS-COCO (first row) and NUS-WIDE (second row) dataset.

Figure 4: Impact of k on the certified top- k precision@ R, certified top- k recall@ R, and certified top- k f1-score@ R on MS-COCO (first row) and NUS-WIDE (second row) dataset.

Figure 5: Impact of σ on the certified top- k precision@ R, certified top k recall@ R, and certified top- k f1-score@ R on MS-COCO (first row) and NUS-WIDE (second row) dataset.

Figure 6: Training the base multi-label classifier with vs. without noise on Pascal VOC (first row), MS-COCO (second row) and NUS-WIDE (third row) datasets.

