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Abstract

Multi-label classification, which predicts a set of labels for an input, has many ap-
plications. However, multiple recent studies showed that multi-label classification
is vulnerable to adversarial examples. In particular, an attacker can manipulate the
labels predicted by a multi-label classifier for an input via adding carefully crafted,
human-imperceptible perturbation to it. Existing provable defenses for multi-class
classification achieve sub-optimal provable robustness guarantees when general-
ized to multi-label classification. In this work, we propose MultiGuard, the first
provably robust defense against adversarial examples to multi-label classification.
Our MultiGuard leverages randomized smoothing, which is the state-of-the-art
technique to build provably robust classifiers. Specifically, given an arbitrary
multi-label classifier, our MultiGuard builds a smoothed multi-label classifier
via adding random noise to the input. We consider isotropic Gaussian noise in
this work. Our major theoretical contribution is that we show a certain num-
ber of ground truth labels of an input are provably in the set of labels predicted
by our MultiGuard when the ℓ2-norm of the adversarial perturbation added to
the input is bounded. Moreover, we design an algorithm to compute our prov-
able robustness guarantees. Empirically, we evaluate our MultiGuard on VOC
2007, MS-COCO, and NUS-WIDE benchmark datasets. Our code is available at:
https://github.com/quwenjie/MultiGuard

1 Introduction

Multi-class classification assumes each input only has one ground truth label and thus often predicts
a single label for an input. In contrast, in multi-label classification [42, 41, 35, 43], each input has
multiple ground truth labels and thus a multi-label classifier predicts a set of labels for an input.
For instance, an image could have multiple objects, attributes, or scenes. Multi-label classification
has many applications such as diseases detection [16], object recognition [43], retail checkout
recognition [18], document classification [34], etc..

However, similar to multi-class classification, multiple recent studies [56, 53, 30] showed that
multi-label classification is also vulnerable to adversarial examples. In particular, an attacker can
manipulate the set of labels predicted by a multi-label classifier for an input via adding carefully
crafted perturbation to it. Adversarial examples pose severe security threats to the applications of
multi-label classification in security-critical domains. To mitigate adversarial examples to multi-label
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classification, several empirical defenses [49, 1, 30] have been proposed. For instance, Melacci et
al. [30] proposed to use the domain knowledge on the relationships among the classes to improve
the robustness of multi-label classification. However, these defenses have no provable robustness
guarantees, and thus they are often broken by more advanced attacks. For instance, Melacci et al. [30]
showed that their proposed defense can be broken by an adaptive attack that exploits the domain
knowledge used in the defense. Moreover, existing provably robust defenses [10, 8, 17, 46, 12, 22]
are all for multi-class classification, which achieve sub-optimal provable robustness guarantee when
extended to multi-label classification as shown by our experimental results.

Our work: We propose MultiGuard, the first provably robust defense against adversarial examples
for multi-label classification. MultiGuard leverages randomized smoothing [5, 29, 24, 26, 12], which
is the state-of-the-art technique to build provably robust classifiers. In particular, compared to other
provably robust techniques, randomized smoothing has two advantages: 1) scalable to large-scale
neural networks, and 2) applicable to any classifiers. Suppose we have an arbitrary multi-label
classifier (we call it base multi-label classifier), which predicts k′ labels for an input. We build a
smoothed multi-label classifier via randomizing an input. Specifically, given an input, we first create
a randomized input via adding random noise to it. We consider the random noise to be isotropic
Gaussian in this work. Then, we use the base multi-label classifier to predict labels for the randomized
input. Due to the randomness in the randomized input, the k′ labels predicted by the base multi-label
classifier are also random. We use pi to denote the probability that the label i is among the set of k′
labels predicted by the base multi-label classifier for the randomized input, where i ∈ {1, 2, · · · , c}.
We call pi label probability. Our smoothed multi-label classifier predicts the k labels with the largest
label probabilities for the input. We note that k′ and k are two different parameters.

Our main theoretical contribution is to show that, given a set of labels (e.g., the ground truth labels)
for an input, at least e of them are provably in the set of k labels predicted by MultiGuard for
the input, when the ℓ2-norm of the adversarial perturbation added to the input is no larger than a
threshold. We call e certified intersection size. We aim to derive the certified intersection size for
MultiGuard. However, existing randomized smoothing studies [24, 12, 22] achieves sub-optimal
provable robustness guarantees when generalized to derive our certified intersection size. The
key reason is they were designed for multi-class classification instead of multi-label classification.
Specifically, they can guarantee that a smoothed multi-class classifier provably predicts the same
single label for an input [24, 12] or a certain label is provably among the top-k labels predicted by
the smoothed multi-class classifier [22]. In contrast, our certified intersection size characterizes the
intersection between the set of ground truth labels of an input and the set of labels predicted by a
smoothed multi-label classifier. In fact, previous provable robustness results [12, 22] are special cases
of ours, e.g., our results reduce to Cohen et al. [12] when k′ = k = 1 and Jia et al. [22] when k′ = 1.

In particular, there are two challenges in deriving the certified intersection size. The first challenge
is that the base multi-label classifier predicts multiple labels for an input. The second challenge is
that an input has multiple ground truth labels. To solve the first challenge, we propose a variant of
Neyman-Pearson Lemma [33] that is applicable to multiple functions, which correspond to multiple
labels predicted by the base multi-label classifier. In contrast, existing randomized smoothing
studies [24, 26, 12, 22] for multi-class classification use the standard Neyman-Pearson Lemma [33]
that is only applicable for a single function, since their base multi-class classifier predicts a single
label for an input. To address the second challenge, we propose to use the law of contraposition
to simultaneously consider multiple ground truth labels of an input when deriving the certified
intersection size.

Our derived certified intersection size is the optimal solution to an optimization problem, which
involves the label probabilities. However, it is very challenging to compute the exact label probabilities
due to the continuity of the isotropic Gaussian noise and the complexity of the base multi-label
classifiers (e.g., complex deep neural networks). In response, we design a Monte Carlo algorithm
to estimate the lower or upper bounds of label probabilities with probabilistic guarantees. More
specifically, we can view the estimation of lower or upper bounds of label probabilities as a binomial
proportion confidence interval estimation problem in statistics. Therefore, we use the Clopper-
Pearson [11] method from the statistics community to obtain the label probability bounds. Given the
estimated lower or upper bounds of label probabilities, we design an efficient algorithm to solve the
optimization problem to obtain the certified intersection size.
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Empirically, we evaluate our MultiGuard on VOC 2007, MS-COCO, and NUS-WIDE benchmark
datasets. We use the certified top-k precision@R, certified top-k recall@R, and certified top-k
f1-score@R to evaluate our MultiGuard. Roughly speaking, certified top-k precision@R is the least
fraction of the k predicted labels that are ground truth labels of an input when the ℓ2-norm of the
adversarial perturbation is at most R; certified top-k recall@R is the least fraction of ground truth
labels of an input that are in the set of k labels predicted by our MultiGuard; and certified top-k
f1-score@R is the harmonic mean of certified top-k precision@R and certified top-k recall@R. Our
experimental results show that our MultiGuard outperforms the state-of-the-art certified defense [22]
when extending it to multi-label classification. For instance, on VOC 2007 dataset, Jia et al. [22]
and our MultiGuard respectively achieve 24.3% and 31.3% certified top-k precision@R, 51.6%
and 66.4% certified top-k recall@R, as well as 33.0% and 42.6% certified top-k f1-score@R when
k′ = 1, k = 3, and R = 0.5.

Our major contributions can be summarized as follows:

• We propose MultiGuard, the first provably robust defense against adversarial examples for multi-
label classification.

• We design a Monte Carlo algorithm to compute the certified intersection size.
• We evaluate our MultiGuard on VOC 2007, MS-COCO, and NUS-WIDE benchmark datasets.

2 Background and Related Work
Multi-label classification: In multi-label classification, a multi-label classifier predicts multiple
labels for an input. Many deep learning classifiers [27, 52, 43, 45, 57, 32, 21, 7, 54, 48, 2, 13] have
been proposed for multi-label classification. For instance, a naive method for multi-label classification
is to train independent binary classifiers for each label and use ranking or thresholding to derive
the final predicted labels. This method, however, ignores the topology structure among labels and
thus cannot capture the label co-occurrence dependency (e.g., mouse and keyboard usually appear
together). In response, several methods [43, 7] have been proposed to improve the performance of
multi-label classification via exploiting the label dependencies in an input. Despite their effectiveness,
these methods rely on complicated architecture modifications. To mitigate the issue, some recent
studies [48, 2] proposed to design new loss functions. For instance, Baruch et al. [2] introduced an
asymmetric loss (ASL). Roughly speaking, their method is based on the observation that, in multi-
label classification, most inputs contain only a small fraction of the possible candidate labels, which
leads to under-emphasizing gradients from positive labels during training. Their experimental results
indicate that their method achieves state-of-the-art performance on multiple benchmark datasets.
Adversarial examples to multi-label classification: Several recent studies [40, 56, 53, 30, 20]
showed that multi-label classification is vulnerable to adversarial examples. An attacker can manip-
ulate the set of labels predicted by a multi-label classifier for an input via adding carefully crafted
perturbation to it. For instance, Song et al. [40] proposed white-box, targeted attacks to multi-label
classification. In particular, they first formulate their attacks as optimization problems and then use
gradient descent to solve them. Their experimental results indicate that they can make a multi-label
classifier produce an arbitrary set of labels for an input via adding adversarial perturbation to it. Yang
et al. [53] explored the worst-case mis-classification risk of a multi-label classifier. In particular, they
formulate the problem as a bi-level set function optimization problem and leverage random greedy
search to find an approximate solution. Zhou et al. [56] proposed to generate ℓ∞-norm adversarial
perturbations to fool a multi-label classifier. In particular, they transform the optimization problem of
finding adversarial perturbations into a linear programming problem which can be solved efficiently.
Existing empirically robust defenses: Some studies [49, 1, 30] developed empirical defenses
to mitigate adversarial examples in multi-label classification. For instance, Wu et al. [49] applied
adversarial training, a method developed to train robust multi-class classifiers, to improve the
robustness of multi-label classifiers. Melacci et al. [30] showed that domain knowledge, which
measures the relationships among classes, can be used to detect adversarial examples and improve the
robustness of multi-label classifiers. However, all these defenses lack provable robustness guarantees
and thus, they are often broken by advanced adaptive attacks. For instance, Melacci et al. [30] showed
that their defenses can be broken by adaptive attacks that also consider the domain knowledge.
Existing provably robust defenses: All existing provably robust defenses [37, 10, 6, 19, 8, 17, 46,
4, 24, 12, 26, 36, 23, 47, 39, 31, 44, 38, 55, 50] were designed for multi-class classification instead
of multi-label classification. In particular, they can guarantee that a robust multi-class classifier
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predicts the same single label for an input or a label (e.g., the single ground truth label of the input) is
among the top-k labels predicted by a robust multi-class classifier. These defenses are sub-optimal
for multi-label classification. Specifically, in multi-label classification, we aim to guarantee that at
least some ground truth labels of an input are in the set of labels predicted by a robust multi-label
classifier.

MultiGuard leverages randomized smoothing [24, 26, 12, 22, 51]. Existing randomized smoothing
studies (e.g., Jia et al. [22]) achieve sub-optimal provable robustness guarantees (i.e., certified
intersection size) for multi-label classification, because they are designed for multi-class classification.
For example, as our empirical evaluation results will show, MultiGuard significantly outperforms
Jia et al. [22] when extending it to multi-label classification. Technically speaking, our work has
two key differences with Jia et al.. First, the base multi-class classifier in Jia et al. only predicts a
single label for an input while our base multi-label classifier predicts multiple labels for an input.
Second, Jia et al. can only guarantee that a single label is provably among the k labels predicted by a
smoothed multi-class classifier, while we aim to show that multiple labels (e.g., ground truth labels of
an input) are provably among the k labels predicted by a smoothed multi-label classifier. Due to such
key differences, we require new techniques to derive the certified intersection size of MultiGuard.
For instance, we develop a variant of Neyman-Pearson Lemma [33] which is applicable to multiple
functions while Jia et al. uses the standard Neyman-Pearson Lemma [33] which is only applicable to
a single function. Moreover, we use the law of contraposition to derive our certified intersection size,
which is not required by Jia et al..

3 Our MultiGuard
3.1 Building our MultiGuard
Label probability: Suppose we have a multi-label classifier f which we call base multi-label
classifier. Given an input x, the base multi-label classifier f predicts k′ labels for it. For simplicity,
we use fk′(x) to denote the set of k′ labels predicted by f for x. We use ϵ to denote an isotropic
Gaussian noise, i.e., ϵ ∼ N (0, σ2 · I), where σ is the standard deviation and I is an identity matrix.
Given x+ ϵ as input, the output of f would be random due to the randomness of ϵ, i.e., fk′(x+ ϵ) is
a random set of k′ labels. We define label probability pi as the probability that the label i is among
the set of top-k′ labels predicted by f when adding isotropic Gaussian noise to an input x, where
i ∈ {1, 2, · · · , c}. Formally, we have pi = Pr(i ∈ fk′(x+ ϵ)).

Our smoothed multi-label classifier: Given the label probability pi’s for an input x, our smoothed
multi-label classifier g predicts the k labels with the largest label probabilities for x. For simplicity,
we use gk(x) to denote the set of k labels predicted by our smoothed multi-label classifier for an
input x.

Certified intersection size: An attacker adds a perturbation δ to an input x. gk(x+ δ) is the set of
k labels predicted by our smoothed multi-label classifier for the perturbed input x+ δ. Given a set
of labels L(x) (e.g., the ground truth labels of x), our goal is to show that at least e of them are in
the set of k labels predicted by our smoothed multi-label classifier for the perturbed input, when the
ℓ2-norm of the adversarial perturbation is at most R. Formally, we aim to show the following:

min
δ,∥δ∥2≤R

|L(x) ∩ gk(x+ δ)| ≥ e, (1)

where we call e certified intersection size. Note that different inputs may have different certified
intersection sizes.

3.2 Deriving the Certified Intersection Size
Defining two random variables: Given an input x, we define two random variables X = x+ϵ,Y =
x+ δ+ ϵ, where δ is an adversarial perturbation and ϵ is isotropic Gaussian noise. Roughly speaking,
the random variables X and Y respectively denote the inputs derived by adding isotropic Gaussian
noise to the input x and its adversarially perturbed version x + δ. Based on the definition of the
label probability, we have pi = Pr(i ∈ fk′(X)). We define adversarial label probability p∗i as
p∗i = Pr(i ∈ fk′(Y)), i ∈ {1, 2, · · · , c}. Intuitively, adversarial label probability p∗i is the probability
that the label i is in the set of k′ labels predicted by the base multi-label classifier f for Y. Given an
adversarially perturbed input x+ δ, our smoothed multi-label classifier predicts the k labels with the
largest adversarial label probabilities p∗i ’s for it.
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Derivation sketch: We leverage the law of contraposition in our derivation. Roughly speaking, if we
have a statement: P −→ Q, then its contrapositive is: ¬Q −→ ¬P , where ¬ is the logical negation
symbol. The law of contraposition claims that a statement is true if and only if its contrapositive is
true. In particular, we define the following predicate:

Q : min
δ,∥δ∥2≤R

|L(x) ∩ gk(x+ δ)| ≥ e. (2)

Intuitively, Q is true if at least e labels in L(x) can be found in gk(x+ δ) for an arbitrary adversarial
perturbation δ whose ℓ2-norm is no larger than R. Then, we have ¬Q : minδ,∥δ∥2≤R |L(x) ∩
gk(x+ δ)| < e. Moreover, we derive a necessary condition (denoted as ¬P ) for ¬Q to be true, i.e.,
¬Q −→ ¬P . Roughly speaking, ¬P compares upper bounds of the adversarial label probabilities
of the labels in {1, 2, · · · , c} \ L(x) with lower bounds of those in L(x). More specifically, ¬P
represents that the lower bound of the eth largest adversarial label probability of labels in L(x) is no
larger than the upper bound of the (k − e+ 1)th largest adversarial label probability of the labels in
{1, 2, · · · , c} \ L(x). Finally, based on the law of contraposition, we have P −→ Q, i.e., Q is true if
P is true (i.e., ¬P is false).

The major challenges we face when deriving the necessary condition ¬P are as follows: (1) the
adversarial perturbation δ can be arbitrary as long as its ℓ2-norm is no larger than R, which has
infinitely many values, and (2) the complexity of the classifier (e.g., a complex deep neural network)
and the continuity of the random variable Y make it hard to compute the adversarial label probabilities.
We propose an innovative method to solve the challenges based on two key observations: (1) the
random variable Y reduces to X under no attacks (i.e., δ = 0) and (2) the adversarial perturbation δ
is bounded, i.e., ∥δ∥2 ≤ R. Our core idea is to bound the adversarial label probabilities using the
label probabilities. Suppose we have the following bounds for the label probabilities (we propose an
algorithm to estimate such bounds in Section 3.3):

pi ≥ pi,∀i ∈ L(x), (3)

pj ≤ pj ,∀j ∈ {1, 2, · · · , c} \ L(x). (4)

Given the bounds for label probabilities, we derive a lower bound of the adversarial label probability
for each label i ∈ L(x) and an upper bound of the adversarial label probability for each label
j ∈ {1, 2, · · · , c} \ L(x). To derive these bounds, we propose a variant of the Neyman-Pearson
Lemma [33] which enables us to consider multiple functions. In contrast, the standard Neyman-
Pearson Lemma [33] is insufficient as it is only applicable to a single function while the base
multi-label classifier outputs multiple labels.

We give an overview of our derivation of the bounds of the adversarial label probabilities and show the
details in the proof of the Theorem 1 in supplementary material. Our idea is to construct some regions
in the domain space of X and Y via our variant of the Neyman-Pearson Lemma. Specifically, given
the constructed regions, we can obtain the lower/upper bounds of the adversarial label probabilities
using the probabilities that the random variable Y is in these regions. Note that the probabilities
that the random variables X and Y are in these regions can be easily computed as we know their
probability density functions.

Next, we derive a lower bound of the adversarial label probability p∗i (i ∈ L(x)) as an example to
illustrate our main idea. Our derivation of the upper bound of the adversarial label probability for
a label in {1, 2, · · · , c} \ L(x) follows a similar procedure. Given a label i ∈ L(x), we can find a
region Ai via our variant of Neyman-Pearson Lemma [33] such that Pr(X ∈ Ai) = pi. Then, we
can derive a lower bound of p∗i via computing the probability of the random variable Y in the region
Ai, i.e., we have:

p∗i ≥ Pr(Y ∈ Ai). (5)

The above lower bound can be further improved via jointly considering multiple labels in L(x).
Suppose we use Γu ⊆ L(x) to denote an arbitrary set of u labels. We can craft a region AΓu via

our variant of Neyman-Pearson Lemma such that we have Pr(X ∈ AΓu
) =

∑
i∈Γu

pi

k′ . Then, we can
derive the following lower bound:

max
i∈Γu

p∗i ≥
k′

u
· Pr(Y ∈ AΓu

). (6)

The eth largest lower bounds of adversarial label probabilities of labels in L(x) can be derived by
combing the lower bounds in Equation 5 and 6. Formally, we have the following theorem:
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Theorem 1 (Certified Intersection Size). Suppose we are given an input x, a base multi-label
classifier f , our smoothed classifier g, and a set of d ground truth labels L(x) = {a1, a2, · · · , ad}
for x. Moreover, we have a lower bound pi of pi for each i ∈ L(x) satisfying Equation 3 and an upper
bound pj of pj for each j ∈ {1, 2, · · · , c} \ L(x) satisfying Equation 4. We assume pa1 ≥ · · · ≥ pad

for convenience. Let pb1 ≥ pb2 ≥ · · · ≥ pbc−d
be the c− d label probability upper bounds for the

labels in {1, 2, · · · , c} \ L(x), where ties are broken uniformly at random. Given a perturbation size
R, we have the following guarantee:

min
δ,∥δ∥2≤R

|L(x) ∩ gk(x+ δ)| ≥ e, (7)

where e is the optimal solution to the following optimization problem or 0 if it does not have a
solution:

e = argmax
e′=1,2,··· ,min{d,k}

e′

s.t.max{Φ(Φ−1(pae′ )−
R

σ
),

η
max
u=1

k′

u
· Φ(Φ−1(

pAu

k′ )− R

σ
)}

>min{Φ(Φ−1(pbs) +
R

σ
),

s

min
v=1

k′

v
· Φ(Φ−1(

pBv

k′ ) +
R

σ
)}, (8)

where Φ and Φ−1 respectively are the cumulative distribution function and its inverse of the standard
Gaussian distribution, η = d−e′+1, pAu

=
∑e′+u−1

l=e′ pal
, s = k−e′+1, and pBv

=
∑s

l=s−v+1 pbl .

Proof. Please refer to Appendix A in supplementary material.

We have the following remarks for our theorem:

• When k′ = k = 1 and L(x) only contains a single label, our certified intersection size reduces to
the robustness result derived by Cohen et al. [12], i.e., the smoothed classifier provably predicts the
same label for an input when the adversarial perturbation is bounded. When k′ = 1, k ≥ 1, and
L(x) only contains a single label, our certified intersection size reduces to the robustness result
derived by Jia et al. [22], i.e., a label is provably among the k labels predicted by a smoothed
classifier when the adversarial perturbation is bounded. In other words, the certified robustness
guarantees derived by Cohen et al. [12] and Jia et al. [22] are special cases of our results. Note that
Cohen et al. is a special case of Jia et al. Moreover, both Cohen et al. and Jia et al. focused on
certifying robustness for multi-class classification instead of multi-label classification.

• Our certified intersection size holds for arbitrary attacks as long as the ℓ2-norm of the adversarial
perturbation is no larger than R. Moreover, our results are applicable for any base multi-label
classifier.

• Our certified intersection size relies on a lower bound of the label probability for each label i ∈ L(x)
and an upper bound of the label probability for each label j ∈ {1, 2, · · · , c} \ L(x). Moreover,
when the label probability bounds are estimated more accurately, our certified intersection size may
be larger.

• Our theorem requires pAu
≤ k′ and pBv

≤ k′. We have pAu
≤ pAu

≤
∑

i∈L(x) pi ≤
∑c

j=1 pj =

k′. In Section 3.3, our estimated pBv
will always be no larger than k′. Thus, we can apply our

theorem in practice.
• We note that there are respectively two terms in the left- and right-hand sides of Equation 8. The

major technical challenge in our derivation stems from the second term in each side. As we will
show in our experiments, those two terms significantly improve certified intersection size.

3.3 Computing the Certified Intersection Size

In order to compute the certified intersection size for an input x, we need to solve the optimization
problem in Equation 8. The key challenge of solving the optimization problem is to estimate
lower bounds pi of label probabilities for i ∈ L(x) and upper bounds pj of label probabilities
for j ∈ {1, 2, · · · , c} \ L(x). To address the challenge, we design a Monte Carlo algorithm to
estimate these label probability bounds with probabilistic guarantees. Then, given the estimated label
probability bounds, we solve the optimization problem to obtain the certified intersection size.
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Estimating label probability bounds: We randomly sample n Gaussian noise from ϵ and add
them to the input x. We use x1,x2, · · · ,xn to denote the n noisy inputs for convenience. Given
these noisy inputs, we use the base multi-label classifier f to predict k′ labels for each of them.
Moreover, we define the label frequency ni of label i as the number of noisy inputs whose predicted
k′ labels include i. Formally, we have ni =

∑n
t=1 I(i ∈ fk′(xt)), i ∈ {1, 2, · · · , c}, where I is

an indicator function. Based on the definition of label probability pi, we know that ni follows a
binomial distribution with parameters n and pi, where n is the number of noisy inputs and pi is the
label probability of label i. Our goal is to estimate a lower or upper bound of pi based on ni and
n, which is a binomial proportion confidence interval estimation problem. Therefore, we can use
the Clopper-Pearson [11] method from the statistics community to estimate these label probability
bounds. Formally, we have the following label probability bounds:

pi = Beta(
α

c
;ni, n− ni + 1), i ∈ L(x), (9)

pj = Beta(1− α

c
;nj , n− nj + 1), ∀j ∈ {1, 2, · · · , c} \ L(x), (10)

where 1− α
c is the confidence level and Beta(ρ; ς, ϑ) is the ρth quantile of the Beta distribution with

shape parameters ς and ϑ. Based on Bonferroni correction [3, 14], the overall confidence level for the
c label probability upper or lower bounds is 1− α. To solve the optimization problem in Equation 8,
we also need to estimate pAu

and pBv
. In particular, we can estimate pAu

=
∑e′+u−1

l=e′ pal
and

pBv
=

∑s
l=s−v+1 pbl . However, this bound may be loose for pBv

. We can further improve the
bound via considering the constraint that pBv

+
∑

i∈L(x) pi ≤ k′. In other words, we have pBv
≤

k′−
∑

i∈L(x) pi. Given this constraint, we can estimate pBv
= min(

∑s
l=s−v+1 pbl , k

′−
∑

i∈L(x) pi).
Note that the above constraint is not applicable for pAu

since it is a lower bound.

Solving the optimization problem in Equation 8: Given the estimated label probability lower or
upper bounds, we solve the optimization problem in Equation 8 via binary search.

Complete algorithm: Algorithm 1 in supplementary materials shows our complete algorithm to
compute the certified intersection size for an input x. The function RANDOMSAMPLE returns n noisy
inputs via first sampling n noise from the isotropic Gaussian distribution and then adding them to the
input x. Given the label frequency for each label and the overall confidence α as input, the function
PROBBOUNDESTIMATION aims to estimate the label probability bounds based on Equation 9 and 10.
The function BINARYSEARCH returns the certified intersection size via solving the optimization
problem in Equation 8 using binary search.

4 Evaluation
4.1 Experimental Setup

Datasets: We adopt the following multi-label classification benchmark datasets:
• VOC 2007 [15]: Pascal Visual Object Classes Challenge (VOC 2007) dataset [15] contains 9,963

images from 20 objects (i.e., classes). On average, each image has 2.5 objects. Following previous
work [43], we split the dataset into 5,011 training images and 4,952 testing images.

• MS-COCO [28]: Microsoft-COCO (MS-COCO) [28] dataset contains 82,081 training images,
40,504 validation images, and 40,775 testing images from 80 objects. Each image has 2.9 objects
on average. The images in the testing dataset do not have ground truth labels. Therefore, following
previous work [7], we evaluate our method on the validation dataset.

• NUS-WIDE [9]: NUS-WIDE dataset [9] originally contains 269,648 images from Flickr. The
images are manually annotated into 81 visual concepts, with 2.4 visual concepts per image on
average. Since the URLs of certain images are not accessible, we adopt the version released by [2],
which contains 154,000 training images and 66,000 testing images.

Similar to previous work [12, 25] on certified defenses for multi-class classification, we randomly
sample 500 images from the testing (or validation) dataset of each dataset to evaluate our MultiGuard.

Base multi-label classifiers: We adopt ASL [2] to train the base multi-label classifiers on the three
benchmark datasets. In particular, ASL leverages an asymmetric loss to solve the positive-negative
imbalance issue (an image has a few positive labels while has many negative labels on average) in
multi-label classification, and achieves state-of-the-art performance on the three benchmark datasets.
Suppose qj is the probability that a base multi-label classifier predicts label j (j = 1, 2, · · · , c) for a
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training input. Moreover, we let yj be 1 (or 0) if the label j is (or is not) a ground truth label of the
training input. The loss of ASL [2] is as follows: LASL =

∑c
j=1−yjLj+ − (1 − yj)Lj−, where

Lj+ = (1 − qj)
γ+ log(qj) and Lj− = (max(qj −m, 0))

γ− log (1−max(qj −m, 0)). Note that
γ+, γ−, and m are hyperparameters. Following [2], we set training hyperameters γ+ = 0, γ− = 4,
and m = 0.05. We train the classifier using Adam optimizer, using learning rate 10−3 and batch size
32. We adopt the public implementation of ASL2 in our experiments. Similar to previous work [12]
on randomized smoothing based multi-class classification, we add isotropic Gaussian noise to the
training data when we train our base multi-label classifiers. In particular, given a batch of training
images, we add isotropic Gaussian noise to each of them, and then we use the noisy training images
to update the base multi-label classifier. Our experimental results indicate that such training method
can substantially improve the robustness of our MultiGuard (please refer to Figure 6 in supplementary
material).

Evaluation metrics: We use certified top-k precision@R, certified top-k recall@R, and certi-
fied top-k f1-score@R as evaluation metrics. We first define them for a single testing input and
then for multiple testing inputs. In particular, given the certified intersection size e for a test-
ing input x under perturbation size R, we define them as follows: certified top-k precision@R =
e/k, certified top-k recall@R = e/|L(x)|, certified top-k f1-score@R = 2 · e/(|L(x)| + k), where
L(x) is the set of ground truth labels of x and the symbol | · | measures the number of elements
in a set. Roughly speaking, certified top-k precision@R is the least fraction of the k predicted
labels for an input that are ground truth labels, when the ℓ2-norm of the adversarial perturbation
is at most R; certified top-k recall@R is the least fraction of the ground truth labels in L(x) that
are in the k labels predicted by MultiGuard; and certified top-k f1-score@R measures a trade-off
between certified top-k precision@R and certified top-k recall@R. Note that the above definition is
for a single testing input. Given a testing/validation dataset with multiple testing inputs, the overall
certified top-k precision@R, certified top-k recall@R, and certified top-k f1-score@R are computed
as the averages over the testing inputs.

Compared methods: We compare with the state-of-the-art certified defense, namely Jia et al. [22],
by extending it to multi-label classification. To the best of our knowledge, Jia et al. is the only
certified defense that considers top-k predictions against ℓ2-norm adversarial perturbations. Given
an arbitrary label, Jia et al. derived a certified radius such that the label is among the top-k labels
predicted by the smoothed classifier (Theorem 1 in Jia et al.). For each label in L(x), we compute a
certified radius. Given a perturbation size R, the certified intersection size e can be computed as the
number of labels in L(x) whose certified radii are larger than R.

Parameter setting: Our MultiGuard has the following parameters: k′ (the number of labels predicted
by the base multi-label classifier for an input), k (the number of labels predicted by our smoothed
multi-label classifier for an input), standard deviation σ, number of noisy inputs n, and confidence
level 1 − α. Unless otherwise mentioned, we adopt the following default parameters: α = 0.001,
n = 1, 000, σ = 0.5, k′ = 1 and k = 3 for VOC 2007 dataset, and k′ = 3 and k = 10 for MS-COCO
and NUS-WIDE datasets, where we use larger k′ and k for MS-COCO and NUS-WIDE because they
have more classes.

4.2 Experimental Results

Comparison results: The first row in Figure 1 shows the comparison results on VOC 2007 dataset
in default setting. We find that MultiGuard achieves higher certified top-k precision@R, certified
top-k recall@R, and certified top-k f1-score@R than Jia et al.. MultiGuard is better than Jia et al.
because MultiGuard jointly considers all ground truth labels, while Jia et al. can only consider each
ground truth label independently. For instance, suppose we have two ground truth labels; it is very
likely that both of them are not in the top-k predicted labels when considered independently, but at
least one of them is among the top-k predicted labels when considered jointly. The intuition is that it
is easier for an attacker to find an adversarial perturbation such that a certain label is not in the top-k
predicted labels, but it is more challenging for an attacker to find an adversarial perturbation such
that both of the two labels are not in the top-k predicted labels. Our observations on the other two
datasets are similar, which can be found in Figure 2 in supplementary material.

2https://github.com/Alibaba-MIIL/ASL
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(a) Certified top-k precision@R
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(b) Certified top-k recall@R
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(c) Certified top-k f1-score@R

Figure 1: Comparing with Jia et al. [22] (first row). Impact of k′ (second row), k (third row),
σ (fourth row), n (fifth row), and α (sixth row) on certified top-k precision@R, certified top-k
recall@R, and certified top-k f1-score@R. The dataset is VOC 2007. The results on the other
two datasets are shown in supplementary material.
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Impact of k′: The second row in Figure 1 shows the impact of k′ on VOC 2007 dataset. In particular,
we find that a larger k′ achieves a larger certified top-k precision@R (or certified top-k recall@R
or certified top-k f1-score@R) without attacks (i.e., R = 0), but the curves drop more quickly as
R increases (i.e., a larger k′ is less robust against adversarial examples as R increases). The reason
is that a larger k′ gives an attacker a larger attack space. Note that this is also reflected in our
optimization problem in Equation 8. In particular, the left-hand (or right-hand) side in Equation 8
decreases (or increases) as k′ increases, which leads to smaller certified intersection size e as k′

increases. We have similar observations on MS-COCO and NUS-WIDE datasets. Please refer to
Figure 3 in supplementary material.

Impact of k: The third row in Figure 1 shows the impact of k on VOC 2007 dataset. We have
the following observations from our experimental results. First, k achieves a tradeoff between the
certified top-k precision@R without attacks and robustness. In particular, a larger k gives us a
smaller certified top-k precision@R without attacks, but the curve drops more slowly as R increases
(i.e., a larger k is more robust against adversarial examples as R increases). Second, we find that
certified top-k recall@R increases as k increases. The reason is that more labels are predicted by
our MultiGuard as k increases. Third, similar to certified top-k precision@R, k also achieves a
tradeoff between the certified top-k f1-score@R without attacks and robustness. We also have those
observations on the other two datasets. Please refer to Figure 4 in supplementary material for details.

Impact of σ: The fourth row in Figure 1 shows the impact of σ on VOC 2007 dataset. The
experimental results indicate that σ achieves a tradeoff between the certified top-k precision@R (or
certified top-k recall@R or certified top-k f1-score@R) without attacks (i.e., R = 0) and robustness.
Specifically, a larger σ leads to a smaller certified top-k precision@R (or certified top-k recall@R
or certified top-k f1-score@R) without attacks, but is more robust against adversarial examples as
R increases. The observations on the other two datasets are similar. Please refer to Figure 5 in
supplementary material.

Impact of n and α: The fifth and sixth rows in Figure 1 respectively show the impact of n and
α on VOC 2007 dataset. In particular, we find that certified top-k precision@R (or certified top-k
recall@R or certified top-k f1-score@R) increases as n or α increases. The reason is that a larger n
or α gives us tighter lower or upper bounds of the label probabilities, which leads to larger certified
intersection sizes. However, we find that the certified top-k precision@R (or certified top-k recall@R
or certified top-k f1-score@R) is insensitive to α once it is small enough and insensitive to n once it
is large enough.

Effectiveness of the second terms in Equation 8: We perform experiments under our default setting
to validate the effectiveness of our second terms in the left- and right-hand sides of Equation 8. Our
results are as follows: with and without the second terms, MultiGuard respectively achieves 31.3%
and 23.6% certified top-k precision@R, 66.4% and 48.8% certified top-k recall@R, as well as 42.6%
and 31.8% certified top-k f1-score@R, where the perturbation size R = 0.5 and the dataset is VOC
2007. As the result shows, our second terms can significantly improve certified intersection size.

5 Conclusion

In this paper, we propose MultiGuard, the first provably robust defense against adversarial examples
for multi-label classification. In particular, we show that a certain number of ground truth labels of an
input are provably predicted by our MultiGuard when the ℓ2-norm of the adversarial perturbation
added to the input is bounded. Moreover, we design an algorithm to compute the certified robustness
guarantees. Empirically, we conduct experiments on VOC 2007, MS-COCO, and NUS-WIDE
benchmark datasets to validate our MultiGuard. Interesting future work to improve MultiGuard
includes: 1) incorporating the knowledge of the base multi-label classifier, and 2) designing new
methods to train more accurate base multi-label classifiers.

Acknowledgements: We thank the anonymous reviewers for constructive comments. This work
was supported by NSF under Grant No. 1937786 and 2125977 and the Army Research Office under
Grant No. W911NF2110182.
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of GPUs, internal cluster, or cloud provider)? [No]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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