
Supplementary Material for Lost in Latent Space

A Experimental setup

A.1 Composition task

Here we describe the image composition task in more detail. This task was created by Montero et al.
[18] to check whether a different task than simple image reconstruction helps the model to learn more
disentangled representations and as a consequence show combinatorial generalisation. At a high level
the task is a manipulation task, where models must learn to extract the relevant factors gi from two
images, Xog and Xtrans, and combine them based on a given ‘action’:

input = Xog, Xtrans, q

output = Xout

where Xout is the output image and q is the query vector, that encodes the action. Following Montero
et al., we use actions that involve replacing one of the properties (generative factors) of Xog with a
property of Xtrans. The query vector uses a one-hot encoding of the generative factor that must be
changed. See Figure 2 for an example of this task.

A critical aspect of this task is that it requires the change to be only one generative factor for each trial.
Restricting the manipulation to a single generative factor encourages sparseness of representations
and provides a strong inductive bias for the model to learn disentangled representations. Previous
research has shown that sparse transitions following natural image statistics provide a strong inductive
bias towards disentanglement (see, for example, Klindt et al. [7]). This is because breaking the i.i.d.
assumption, present in most datasets, allows for the identification of the underlying factors (see Klindt
et al. [7] for details and Hyvarinen and Morioka [20] for a similar argument for selecting independent
components from data).

A second inductive bias towards disentanglement is provided by the nature of the composition task.
In contrast to a reconstruction task, that doesn’t provide any supervision signal, and a classification
task, which provides a strong supervision signal, the composition task uses a query vector to provide
a weak supervision signal. Two studies have shown that a weak supervision signal can provide a
strong inductive bias for generalisation. Locatello et al. [4] showed that a few labeled examples were
enough to significantly improve the disentanglement in generative models. In the second study, Lin
et al. [5] developed a task with a weak supervision signal, where the target was to identify the factor
that had changed between two images. They used this task to train a GAN and show it leads to more
disentangled representations. The query vector in the composition task constitutes a similar weak
supervision signal, but provided as an input instead of as a target.

A.1.1 Procedure

When training models, we sampled each combination in an online fashion. The procedure works as
follows:

1. Sample an image Xog and with generative factors given by the vector gog from the dataset.
2. Sample an action, a, that indexes the set of all generative factors, {g1, . . . , gn}.
3. Sample a second image Xtrans such that gtrans[a], the ath generative factor of Xtrans does

not match gog[a], the ath generative factor of Xog .
4. Compute gout by replacing gog[a] with gtrans[a] and get and it’s associated image Xout.

All sampling is done uniformly and we allow sampling of categorical variables such as shape.

A.2 Models

A.2.1 Composition operation

We use the general architecture described in Figure 2(b) to define a model that solves the composition
task. As mentioned in the main text this requires the definition of the composition operation, f(·) in
latent space. In general, such operation can be defined as:

zout ≜ f(zog, ztrans,q)
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where zout, zog and ztrans are the latent representations corresponding to the output, original, and
transformation images. and q is the one-hot vector encoding the action to be performed.

We defined 3 different versions of this operation:

fmlp(zog, ztrans,q) = Wout · ReLU(W[zog; ztrans;q] + b) (1)
flin(zog, ztrans,q) = Wout · [zog; ztrans;q] (2)

finterp(zog, ztrans,q) = zog ⊙ (1− c) + ztrans ⊙ c (3)

where [.; .] represents the concatenation of vectors, c is the interpolation vector of coefficients. We
define c in two ways for equation 3 as described in the main text:

clearn = σ(W · [zog; ztrans;q] + b) (4)
caction = pad(q, length(z)− length(q)) (5)

where the first option has learnable parameters W and b. The second just pads the query vector, q,
with zeros to match the vector length of the latent representation.

Preliminary tests showed that using (1) or (2) as composition operations lead to poor disentanglement.
Thus we only tested the two variants of (3) in the rest of the experiments. For some datasets such as
dSprites, (5) worked better. For 3DShapes on the other hand, (4) gave better results.

For the rest of the architectures (encoders and decoders) we use the same parameters across datasets
for each condition. For dSprites and 3DShapes, we use a similar architecture as in Kim and Mnih
[3] but increase the number of channels in the early convolutions. MPI3D required us to increase
these values again in order to achieve good reconstructions. For Circles and Simple we use the
architecture proposed in Watters et al. [6] but slightly increase the channel size in the decoder to
avoid a performance overhead related to PyTorch’s implementation. See Table 1 for details.

Table 1: Architecture parameters
dSprites & 3DShapes MPI3D Circles & Simple

Encoder Decoder Encoder Decoder Encoder Decoder

Conv(32, 4, 2) Transpose Conv(64, 4, 2) Transpose Conv(64, 4, 2) SBD(64, 64)
Conv(32, 4, 2) of encoder Conv(64, 4, 2) of encoder Conv(64, 4, 2) Conv(64, 5, 1)
Conv(64, 4, 2) Conv(128, 4, 2) Conv(64, 4, 2) Conv(64, 5, 1)
Conv(64, 4, 2) Conv(128, 4, 2) Conv(64, 4, 2) Conv(64, 5, 1)

Conv(128, 4, 2) Conv(256, 4, 2) Linear(256) Conv(64, 5, 1)
Linear(256) Linear(256) Linear(20)
Linear(20) Linear(20)

All layers where followed by ReLU activation functions except for the last one. The latent layers
used were 10-dimensional, parameterized diagonal Gaussians in all cases. For both the Conv and
DeConv layer the parameters indicate number of channels, size of convolution filter and the stride.
“Same” padding was used throughout. For completion, we note that the architectures for the latent
prediction task were the same ones as the corresponding encoder.

A.3 Datasets

Throughout the article we use standard datasets used to test disentangled models in the literature.
These are: dSprites, 3DShapes, MPI3D and Circels. Below we describe each of the generative factors
they contain. We’ve focused on datasets that have been specifically designed for this purpose and
thus contain explicit values of the generative factors. This is necessary in order to compute the level
of disentanglement with most metrics, including the DCI metric.

• dSprites: Introduced in Higgins, Higgins et al. [1] to test the original β-VAE approach
to disentanglement. It contains the following generative factors: [shape, scale, orien
tation, position X, position Y]. Orientation here refers to the rotation of the shape
along it’s center of mass. This is as opposed to the meaning in 3DShapes (see below).
The GitHub repository for dSprites can be found at: https://github.com/deepmind/
dsprites-dataset.
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• 3DShapes: Introduced in Kim Kim and Mnih [3], to study the FactorVAE penalty. It
contains the 6 generative factors: [floor hue, wall hue, object hue, scale, shape,
orientation]. Colors are defined in the HSV format, and the values correspond to the hue
component. Here orientation defines the angle of point-of-view for the scene. The objects
themselves do not rotate. This dataset can be found at: https://github.com/deepmind/
3d-shapes.

• MPI3D: This dataset was proposed in Gondal et al, Gondal et al. [25] as
part of the the NEURIPS Disentanglement Challenge. It contains seven gen-
erative factors: [object color, object shape, object size, camera height, back
ground color, horizontal axis, vertical axis]. We note that vertical axis and hori-
zontal axis have complex non-linear dependencies between them in the rendered image.
The names can also be misleading as horizontal axis controls the height of the arm while
vertical axis controls the rotation in the direction perpendicular to the horizontal axis. The
GitHub repository for this dataset can be found at: https://github.com/rr-learning/
disentanglement_dataset.

• Circles: Introduced to test the capabilities of the Spatial Broadcast Decoder models in
Watters et al, Watters et al. [6]. It contains only two factors: [position x, position y],
the model being required to only render circles at the relevant position. There is no published
dataset in this case, though the authors mention that they generated this dataset using the
Spriteworld library, which is a library designed to generate simple datasets for reinforcement
learning. We adapted the library to generate still images similar to those found in Watters
et al. [6].

• Simple: We modified the Circles dataset to create the Simple Sprites dataset in order
to test the effect of introducing an additional shape when testing the combinatorial gen-
eralisation capabilities of the Spatial Broadcast decoder. In addition to the two position
factors in the Circles dataset, we added a shape factor that could take one of two values
[shape={triangle,square}]. We chose these shapes so that they are sufficiently different
from each other. To generate the dataset we use the same library that we use to replicate the
Circles dataset above.

A.3.1 Combinatorial generalisation test conditions

For each dataset we tested one success condition and one failure condition. These all constitute
recombination-to-range conditions as definde in Montero et al. [18] but we refer to them as combina-
torial generalisation conditions 2. The failure conditions were defined as follows

• dSprites: All images such that [shape=square, posX> 0.5] were excluded from the
training set. Squares never appear on the right side of the image, but do appear on the left
and other shapes (hearts, ellipsis) are observed on the right as well.

• 3DShapes: All images such that [shape=pill, object-hue=> 0.5] were excluded from
the training set. Thus, pills colored as any of the colors in the second half of the HSV
spectrum did not appear in the training set. These colors (shades of blue, purple, etc) were
observed on the other shapes, and the pill was observed with other colors such as red and
orange. Additionally we removed every other color from the dataset. This helped us clearly
discretize the generative factors and latent representations, allowing us to clearly observe
the performance of the models in the latent space.

• MPI3D: All images such that [shape=cylinder, vertical axis> 0.5] were excluded from
the training set. We also excluded all images where [shape=cone] or [shape=hexagonal]
as these shapes are very similar to the pyramid and cylinder, respectively and make it hard
to access reconstruction accuracy. Furthermore, only images with [horizontal axis=0]
were included as rotation of both horizontal and vertical axis make it hard to find completely
unseen combinations due to how much rotation of the objects is involved.

• Circles: All images such that [posX 0.5,posY> 0.5] were excluded from the training set.
Models have not seen circles in the top right corner.

2This is the terminology used Schott et al. [19], though, technically speaking, their interpolation condition
was also a combinatorial generalisation case analogous to the recombination-to-element condition in Montero
et al.
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• Simple: All images such that [0.35 < posX 0.65,0.35 posY> 0.65,shape=triangle] were
excluded from the training set. Similar to the previous condition, but now the unseen triangles
lie in a patch in the middle of the screen. Squares were presented on all positions, similar to
dSprites.

And the success ones as:

• 3DShapes: These test images presented a novel combination of generative factors, here
[floor hue < 0.25, wall hue > 0.75] – that is, the model has seen all wall hues and floor
hues in the range [0, 1], but it has never seen a combination a floor with a hue < 0.25 with
a wall of a hue > 0.75. In this case no discretization was necessary, as the task is easy
enough that the model obtained good disentanglement and the visualisations were easy to
understand.

• MPI3D: All images such that [shape={cylinder,sphere}, background color=salmon]
were excluded from the training set. We also excluded all images where [shape=cone] or
[shape=hexagonal] as these shapes are very similar to the pyramid and cylinder, respec-
tively and make it hard to access reconstruction accuracy. Furthermore, only images with
[horizontal axis=0] were included as rotation of both horizontal violate our independence
assumption. Models can appear over the background strip very often.

• Circles: All images such that [0.35 < posX 0.65,0.35 posY> 0.65] were excluded from
the training set. Models have not seen circles in a patch located in the middle of the image.

A.4 Training

To penalise the models we use the standard VAE objective [21] and the Wasserstein loss (WAE,
Tolstikhin et al. [22]). In the case of the MPI3D dataset, WAEs were the only one that could
successfully converge for the semi-supervised setting, which we use as a sanity check. This is likely
because the VAE objective forces the distribution of the latent representation for each input to match
the prior. On the other hand WAEs only require the marginal posterior over all inputs to match the
prior. The result is a latent representation that is more flexible, which seems to be required in this
more complex dataset. As a consequence, we do not test VAE models on the MPI3D dataset for the
composition task.

We trained the models to convergence, which in all cases occurred within 100 epochs. Batch sizes
were kept at 64 and learning rates at 1e− 4 as in previous work for dSprites, 3DShapes and MPI3D.
For the Circles dataset we used a batch size of 16 and a learning rate of 3e− 4 as in Watters et al..
We used the Adam optimizer with the default PyTorch values for all remaining parameters [30].

A.5 Measuring and visualizing disentanglement

We measured disentanglement using the DCI metric of Eastwood and Williams [26]. DCI defines
three different metrics: disentanglement, completeness and informativeness. For our purposes, we
are only interested in the first, but they are all computed in a similar way. Disentanglement here is
defined as the degree to which a latent variable represents at most one and only one generative factor.

Let vj be the ground truth values for each factor gj . Assuming a trained model, the metric works as
follows:

1. Compute the latent representation zn = encode(xn) for all images xn in the dataset.

2. For each factor gj solve a regression problem with the zn’s as covariates.

3. Construct a matrix C, where each index, cij , is the absolute value of the regression coefficient
between the latent variable i and generative factor j.

4. C is then used to quantify the deviation of the latent representation from the ideal one.

The authors propose using Lasso regression or Random Forests (they provide a method to determine
the coefficient for the latter). In this work we use Lasso with their proposed hyper-parameters. To
compute the disentanglement score, the coefficients in C are treated as a distributions, one for each
column (latent), from which the entropy is computed:
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Figure 8: Ideal disentanglement Example of ideal disentanglement computed with the DCI metric
for the dSprites dataset.

H(Pi) = −
J∑

j=0

Pij logJ Pij

where Pij = Cij/
∑J

k=0 Cik, where J denotes the number of rows in C. The score for one variable
is computed as:

di = 1−H(Pi)

The di’s are then be averaged to obtain the final, overall disentanglement score:

D =
∑
i

ρi · di

ρi =

∑J
j=0 Ci,j∑
l,j Cl,j

where the ρi are computed so as to account for dead units in the representation. We refer to D as the
disentanglement score throughout the main text, in line with most research on the topic.

DCI is interesting for a couple of reasons. First, it computes it’s scores based on the ability to predict
values from the latent representations. Additionally, the coefficients C can be visualized using Hinton
matrices, which means we can use it for both quantitative measurements and for visual inspection of
the trained models, as we see below. An ideal model in this framework will produce a matrix C that
is diagonal, up to some permutation of the latent variables and disregarding any extra dimensions
used in the latent representation (see Figure 8 for an example). This fits well with intuitions regarding
disentanglement and with the definition proposed in Higgins et al. [29]. Given these coefficients, it
is easy to assign latents to the corresponding generative factor. To avoid assigning a latent to two
factors, we used the Munkres algorithm [31] as in Hyvarinen and Morioka [20].

For a highly disentangled model we can use this assignment to visualize pairs of latent variables in a
2D plot. Given to factors of interest (say ‘shape’ and ‘position’) we the latent variables that were
assigned to them by the above procedure for each point in the dataset. This gives us a matrix of
size Nx2 we can then compute a kernel-density estimate of the distribution of these points. Highly
disentangled models should look like a regular lattice of almost Gaussian distributions. Models that
are not as disentangled can have different properties, such as drifting or increased variance of the
estimated kernel densities.

A.6 Implementation

All the models and tasks where implemented in PyTorch (version ≥ 3.83, Paszke et al. [32]) and
Numpy [33]. The experiments where performed with the aid of the Ignite and Sacred frameworks
[34, 35]. Visualizations were created using Matplotlib [36] and Seaborn [37]. Code required to
reproduce the results can be found at https://github.com/mmrl/lost-in-latent-space.

We trained a total of 48 + 9 models accounting for all combinations of datasets (4, dSprites, 3DShapes,
MPI3D and Circles), losses (2, VAE and WAE), conditions (3, baseline with all the data, one success
and one failure) and decoder architectures (standard or Spatial Broadcast) for the semi-supervised

3Note that 3.8 is a hard requirement here if we want to access the tile function for the Spatial Broadcast
Decoder. Otherwise it must be implemented in Numpy and converted to a PyTorch tensor manually.
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case, and the same combination of datasets and conditions for the latent prediction one (excluding the
circles dataset). Each model took between 2 and 5 hours to train depending on the condition, except
the latent-prediction case and the the circles dataset (under 1 hour). This totals to roughly 150 hours
of wall clock time for training. Both this and the analysis were performed on a single workstation
using an Intel Core i7-9700K CPU, with 32 GiB of RAM and an NVIDIA RTX 2080Ti GPU.

B Results

Below we provide Model scores (that were used to measure success at reconstruction as well as degree
of disentanglement), some example reconstructions for each type of model and Hinton matrices that
are useful to visualising the degree of disentanglement. We also provide visualisations of the latent
space (akin to the ones presented in the main text). In each case, we present examples of two types of
training objective (VAE & WAE – see Section A.4) and two types of interpolation (fixed and learned
– see Equations 5 and 4) – making a total of four models for each condition (except for the MPI3D
dataset where only models trained with the WAE objective succeeded in learning the task).

B.1 Model scores

Table 2: Scores for dSprites failure condition The scores for the condition
[shape=square,posX>0.5]. Reconstruction loss for VAEs are computed with pixel-wise bi-
nary cross-entropy (Bernoulli loss). For the WAE it is the pixel-wise mean squared error.

Train loss Test loss Disentanglement
Model

VAE + learned interp 8.353618 183.369238 0.881088
VAE + fixed interp 7.524311 366.997949 0.999999
WAE + learned interp 2.310111 44.854529 0.917322
WAE + fixed interp 2.038967 45.108577 0.983566

Table 3: Scores for 3DShapes failure condition The scores for the condition [shape=pill,object
hue={blue, purple}]. Reconstruction loss for VAEs are computed with pixel-wise binary cross-
entropy (Bernoulli loss). For the WAE it is the pixel-wise mean squared error.

Train loss Test loss Disentanglement
Model

VAE + learned interp 3459.323259 5050.596667 0.980030
VAE + fixed interp 3460.841481 5517.578000 0.960200
WAE + learned interp 5.905513 214.398937 0.999999
WAE + fixed interp 7.470970 224.247479 0.973512

Table 4: Scores for 3DShapes success condition The scores for the condition [wall hue={red, or
ange},floor hue{purple, magenta}]. Reconstruction loss for VAEs are computed with pixel-wise
binary cross-entropy (Bernoulli loss). For the WAE it is the pixel-wise mean squared error.

Train loss Test loss Disentanglement
Model

VAE + learned interp 3467.451818 3498.955556 0.975767
VAE + fixed interp 3471.045758 3510.643056 0.893841
WAE + learned interp 5.079037 6.359890 0.972172
WAE + fixed interp 5.932047 32.906424 0.948327
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Table 5: Scores for MPI3D failure condition The scores for the condition [object
shape=cylinder,vertical axis >0.5]. Reconstruction loss for VAEs are computed with pixel-
wise binary cross-entropy (Bernoulli loss). For the WAE it is the pixel-wise mean squared error.

Train loss Test loss Disentanglement
Model

WAE + learned interp 2.114849 4.598420 0.675261
WAE + fixed interp 1.586387 5.227437 0.976362

Table 6: Scores for MPI3D failure condition The scores for the condition
[shape={cylinder,sphere}, background color=salmon]. Reconstruction loss for VAEs
are computed with pixel-wise binary cross-entropy (Bernoulli loss). For the WAE it is the pixel-wise
mean squared error.

Train loss Test loss Disentanglement
Model

WAE + learned interp 2.014464 2.271657 0.702668
WAE + fixed interp 1.694517 2.517065 0.966975

Table 7: Scores for the Circles dataset The scores for the two conditions in the score dataset.
The “corner” condition excludes instances with [posX>0.5, posY>0.75]. The condition “midpos”
excludes those with [0.35<posX<0.65,0.35<posY<0.65].

Condition Train loss Test loss Disentanglement
Model

VAE + fixed interp corner 113.977726 4313.172778 0.843828
VAE + fixed interp midpos 115.894145 157.793549 0.781331

Table 8: Scores for the Simple dataset The scores for the two conditions in the score dataset. The
“corner” condition excludes instances with [posX>0.5, posY>0.75,shape=triangle]. The condition
“midpos” excludes those with [0.35<posX<0.65,0.35<posY<0.65,shape=triangle].

Condition Train loss Test loss Disentanglement
Model

VAE + fixed interp corner 129.493923 523.572257 0.901404
VAE + fixed interp midpos 129.802943 267.656094 0.936586

B.2 Reconstructions

21



VAE + learned interp (train) VAE + learned interp (test)

VAE + fixed interp (train) VAE + fixed interp (test)

WAE + learned interp (train) WAE + learned interp (test)

WAE + fixed interp (train) WAE + fixed interp (test)

Figure 9: Failures of combinatorial generalisation on dSprites Some example reconstructions
for the dSprites dataset for four models: (i) a VAE using learned interpolation (see Equations 4),
(ii) a VAE using a fixed interpolation (see Equation 5), (iii) a WAE using a learned interpolation, and
(iv) a WAE using a fixed interpolation. In each case, the five figures on the left show input (first row)
and reconstruction (second row) for five training images. The five figures on the right show input
and reconstructions for test images. These test images presented a novel combination of generative
factors, here [shape=square, posX > 0.5] – that is, the model has seen all shapes on both the left
and right hand side of the canvas, except squares, which have only been seen on the left hand side
(posX < 0.5). All models learn representations that are highly disentangled. While reconstructions
on the training dataset are really accurate - it is clear to see that the models struggle to reconstruct the
test images, where a square is presented on the right hand side of the canvas.
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VAE + learned interp (train) VAE + learned interp (test)

VAE + fixed interp (train) VAE + fixed interp (test)

WAE + learned interp (train) WAE + learned interp (test)

WAE + fixed interp (train) WAE + fixed interp (test)

Figure 10: Failures of combinatorial generalisation on 3DShapesSome example reconstructions
for the 3DShapes dataset for four models: (i) a VAE using learned interpolation (see Equations 4),
(ii) a VAE using a fixed interpolation (see Equation 5), (iii) a WAE using a learned interpolation, and
(iv) a WAE using a fixed interpolation. All models learn representations that are highly disentangled.
In each case, the five figures on the left show input (first row) and reconstruction (second row) for
five training images. The five figures on the right show input and reconstructions for test images.
These test images presented a novel combination of generative factors, here [shape=pill, object
hue > 0.5] – that is, the model has seen all the combinations of shapes and hues for the object in the
middle of the image, except for the ‘pill’ shape, which has only been seen in “warmer” colors (object
hue < 0.5). We observed that while reconstructions on the training dataset were really accurate - it
is clear to see that the models struggled to reconstruct the test images, where the object was a ‘pill’
shape with a “cooler” color.
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VAE + learned interp (train) VAE + learned interp (test)

VAE + fixed interp (train) VAE + fixed interp (test)

WAE + learned interp (train) WAE + learned interp (test)

WAE + fixed interp (train) WAE + fixed interp (test)

Figure 11: Success in combinatorial generalisation on 3DShapes Some example reconstructions
for the 3DShapes dataset for four models: (i) a VAE using learned interpolation (see Equations 4),
(ii) a VAE using a fixed interpolation (see Equation 5), (iii) a WAE using a learned interpolation, and
(iv) a WAE using a fixed interpolation. All models learn representations that are highly disentangled.
In each case, the five figures on the left show input (first row) and reconstruction (second row) for
five training images. The five figures on the right show input and reconstructions for test images.
These test images presented a novel combination of generative factors, here [floor hue < 0.25,
wall hue > 0.75] – that is, the model has seen all wall hues and floor hues in the range [0, 1], but it
has never seen a combination a floor with a hue < 0.25 with a wall of a hue > 0.75. We observed
that, in this case, the model succeeded at combinatorial generalisation, reconstructing the images
equally well on the training and test sets (compare with Figure 10).
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WAE + learned interp (train) WAE + learned interp (test)

WAE + fixed interp (train) WAE + fixed interp (test)

Figure 12: Failures of combinatorial generalisation on MPI3D Some example reconstructions for
the MPI3D dataset for two models: (i) a WAE using learned interpolation (see Equations 4), (ii) a
WAE using a fixed interpolation (see Equation 5). Both models learn representations that are highly
disentangled. In each case, the five figures on the left show input (first row) and reconstruction (second
row) for five training images. The five figures on the right show input and reconstructions for test im-
ages. These test images presented a novel combination of generative factors, here [shape=cylinder,
vertical axis > 0.5] – that is, the model has seen all the combinations of shapes (of the object at
the end of a rod) and positions on the vertical axis, except for the cylinder, which has only been seen
at vertical axis positions < 0.5). We observed that while reconstructions on the training dataset were
really accurate - both models struggled to reconstruct the test images with the left out combination of
shape and position, frequently replacing the shape of the object.

WAE + learned interp (train) WAE + learned interp (test)

WAE + fixed interp (train) WAE + fixed interp (test)

Figure 13: Success in combinatorial generalisation on MPI3D Some example reconstructions
for the MPI3D dataset for two models: (i) a WAE using learned interpolation (see Equations 4),
(ii) a WAE using a fixed interpolation (see Equation 5). Both models learn representations that
are highly disentangled. In each case, the five figures on the left show input (first row) and re-
construction (second row) for five training images. The five figures on the right show input and
reconstructions for test images. These test images presented a novel combination of generative factors,
here [shape={cylinder,sphere}, background color=salmon]. We observed that, in this case, the
model managed to successfully perform the task of combinatorial generalisation, reproducing the
training as well as the test images with really good accuracy (compare with 12).
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VAE + fixed interp (train) VAE + fixed interp (test)

Figure 14: Success in combinatorial generalisation on Circles dataset Some example recon-
structions for the Circles dataset. The model learns representations that are highly disentangled
using fixed interpolation (see Equation 5). The five figures on the left show input (first row) and
reconstruction (second row) for five training images. The five figures on the right show input and
reconstructions for test images. These test images presented a novel combination of generative
factors, here [0.35 < posX < 0.65, 0.35 < posY < 0.65] – that is, the model has seen circles in all
x-positions, as well as all y-positions, but never for a combination of x & y positions that fall in a
central patch. We observed that the models managed to successfully perform the task of combinatorial
generalisation, reproducing the circle in all positions of the canvas.

VAE + fixed interp (train) VAE + fixed interp (test)

Figure 15: Failure in combinatorial generalisation on Circles dataset Some example recon-
structions for the Circles dataset. The model learns representations that are highly disentangled
using fixed interpolation (see Equation 5). The five figures on the left show input (first row) and
reconstruction (second row) for five training images. The five figures on the right show input and
reconstructions for test images. These test images presented a novel combination of generative factors,
here [posX > 0.5, posY > 0.5] – that is, the model has seen circles in all x-positions, as well as all
y-positions, but never for a combination of x & y positions that fall in a top right corner. We observed
that the models failed in this condition in line with results in Watters et al. [6]

VAE + fixed interp (train) VAE + fixed interp (test)

Figure 16: Failures of combinatorial generalisation on Simple dataset for the middle patch con-
dition Some example reconstructions for the Simple dataset for two models: The model learns repre-
sentations that are highly disentangled using fixed interpolation (see Equation 5). The five figures on
the left show input (first row) and reconstruction (second row) for five training images. The five figures
on the right show input and reconstructions for test images. These test images presented a novel com-
bination of generative factors, here [0.35 < posX < 0.65, 0.35 < posY < 0.65,shape=triangle]
– that is, the model has seen triangles in all x-positions, as well as all y-positions, but never for a
combination of x & y positions that fall in a central patch. It has seen squares in a central location.
We observed that the models failed to proprely generalise in this condition, as opposed to the corre-
sponding condition in the circles dataset (see Figure 14
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B.3 Disentanglement

VAE + learned interp VAE + fixed interp WAE + learned interp WAE + fixed interp

Figure 17: Visualising disentanglement for dSprites dataset Following Eastwood and Williams
[26], we used Hinton matrices to visualise the extent of disentanglement. Each panel shows the
matrix C (see Section A.5) of regression coefficients between latent variables and generative factors.
A disentangled model should have high coefficients for each pair of generative factors and latent
variable but low coefficients everywhere else – i.e. the matrix should be sparse (see ideal Hinton
matrix in Figure 8). Here we can see that all models learning the composition task show highly sparse
matrices and models using fixed interpolation (Equation 5) achieve particularly high disentanglement.

VAE + learned interp VAE + fixed interp WAE + learned interp WAE + fixed interp

Figure 18: Visualising disentanglement for 3DShapes dataset, failure condition Following East-
wood and Williams [26], we used Hinton matrices to visualise the extent of disentanglement. Each
panel shows the matrix C (see Section A.5) of regression coefficients between latent variables and
generative factors.
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VAE + learned interp VAE + fixed interp WAE + learned interp WAE + fixed interp

Figure 19: Visualising disentanglement for 3DShapes dataset, success condition Following
Eastwood and Williams [26], we used Hinton matrices to visualise the extent of disentanglement.
Each panel shows the matrix C (see Section A.5) of regression coefficients between latent variables
and generative factors.

WAE + learned interp WAE + fixed interp

Figure 20: Visualising disentanglement for MPI3D dataset, failure condition Following Eastwood
and Williams [26], we used Hinton matrices to visualise the extent of disentanglement. Each panel
shows the matrix C (see Section A.5) of regression coefficients between latent variables and generative
factors.
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WAE + learned interp WAE + fixed interp

Figure 21: Visualising disentanglement for MPI3D dataset, success condition Following Eastwood
and Williams [26], we used Hinton matrices to visualise the extent of disentanglement. Each panel
shows the matrix C (see Section A.5) of regression coefficients between latent variables and generative
factors.

VAE + fixed interp VAE + fixed interp

(a) Circles dataset Following Eastwood
and Williams [26], we used Hinton matrices
to visualise the extent of disentanglement.
Each panel shows the matrix C (see Sec-
tion A.5) of regression coefficients between
latent variables and generative factors. Left
the corner condition. The middle patch con-
dition.

VAE + fixed interp VAE + fixed interp

(b) Simple dataset Following Eastwood and
Williams [26], we used Hinton matrices to
visualise the extent of disentanglement. Each
panel shows the matrix C (see Section A.5)
of regression coefficients between latent vari-
ables and generative factors. Left the corner
condition. The middle patch condition.

Figure 22: Visualising disentanglement for the Circles and Simple datasets
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B.4 Latent visualizations

VAE VAE WAE WAE

Figure 23: Visualisation of latent space for dSprites dataset. Distribution of encoded values for
different combinations of shape and posX for the dSprites dataset. For models that do not disentangle
well (first and third from left to right), we observe a very unstructured distribution of both training
(black) and (test). Models with high disentanglement (second and fourth) show a very structured
representation where it is easy to discriminate between different shapes and positions in the training
set, but which diverge in the test set.

VAE + learned interp VAE + fixed interp WAE + learned interp WAE + fixed interp

Figure 24: Visualisation of latent space for 3DShapes dataset, failure condition. Distribution of
encoded values for different combinations of shape and object hue for the 3DShapes dataset. In this
case, all models showed high levels of disentanglement. The factor combinations for the training set
are easily distinguishable. However, models show poor generalisation in the test set. The 4th model
on the right is the one that shows the best results, yet the test distributions show a signfican increase
in variance and drift towards observed training data.

VAE + learned interp VAE + fixed interp WAE + learned interp WAE + fixed interp

Figure 25: Visualisation of latent space for 3DShapes dataset, success condition. Distribution
of encoded values for different combinations of wall hue and floor hue for the 3DShapes dataset.
In this case, all models showed high levels of disentanglement. The factor combinations for the
training set are easily distinguishable. As opposed to the previous condition, models show excellent
generalisation to the test data.

WAE + learned interp WAE + fixed interp

Figure 26: Visualisation of latent space for MPI3D dataset, failure condition. Distribution of
encoded values for different combinations of shape and vertical axis for the MPI3D dataset. The
model on the left shows poor disentanglement with the joint distribution of the best match latents
for both training (black) and testing examples (red) showing significant overlap. The model on the
right on the other hand achieved high disentanglement. The encoded value for each shape is easily
distinguishable. The encoded angle of the arm is not as clearly separated. The test data shows a
significant drift, though not as dramatic as in dSprites.
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WAE + learned interp WAE + fixed interp

Figure 27: Visualisation of latent space for MPI3D dataset, success condition. Distribution of
encoded values for different combinations of shape and vertical axis for the MPI3D dataset. The
first three models from the left show poor disentanglement with the joint distribution for both
training (black) and testing examples (red). The model on the right on the other hand achieved
high disentanglement. The encoded value for each shape background color combination is easily
distinguishable. There is no hint of drift or even increase in variance.

VAE + fixed interp VAE + fixed interp

Figure 28: Visualisation of latent space for Circles dataset. We replicate the results from Watters
et al.. On the left, the Spatial Broadcast Decoder shows poor generalisation when tested on the corner
case. Test examples (red) bend over the closest seen training examples (black). On the right, when
the excluded patch is locate in the center, the model shows excellent generalisation.

VAE + fixed interp VAE + fixed interp

Figure 29: Visualisation of latent space for Simple dataset. We show that the Spatial Broadcast
Decoder [6] fails when we introduce another shape in the middle patch position. On the left, the
result for the corner case, showing again poor generalisation. The drift is similar to the one observed
in dSprites: as we move away from observed positions the latent representation experience a dramatic
increase in variance and shift towards the mean of the other shape. On the right, when the excluded
patch is locate in the center, the model also fails as the introduction of a new shape makes turns the
task too hard for the model.
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C Interactive vs Non-interactive combinations of generative factors

In our simulations, we observed that models failed at combinatorial generalisation when the generative
factor ‘shape’ was combined with another generative factor (position / color). We hypothesised that
this was because shape combines with other factors (position / color / orientation) in an interactive
manner – that is, the value of any pixel in the image is determined jointly by the value of [shape]
and other factors. To understand why this is a hard problem, consider a graphical representation that
captures the dependencies between the pixels of an image and generative factors (Figure 6.a). Each
pixel and each generative factor corresponds to a node in this graph – pixel nodes are at the bottom
and generative factor nodes are at the top. The value of the pixel nodes depends on the value of one
or more generative factors. We capture this dependence as edges between pixel nodes and generative
factor nodes.

Consider two different conditions. In the first condition, we take a combination of the generative
factors [floor-hue, wall-hue]. In this case, the factor node [floor-hue] will determine one set of
pixel nodes, while the factor [wall-hue] will determine another (mutually-exclusive) set of pixel
nodes. During training, the model needs to learn how to map the value of each generative factor
to the corresponding pixel. Once it has learned this mapping, it can easily generalise to unseen
combinations of [floor-hue, wall-hue] because the same graphical dependencies learned from
training work. We call this case the non-interactive condition.

Now, consider a second condition where the generative factors are [shape, posX]. In this case, the
value of each pixel node is jointly determined by the values of both generative factors. Furthermore,
note that the mapping is highly nonlinear and complex. For example, in the dSprites dataset, a pixel
node may have value +1 for a given value of [shape] and [posX], but this value may change to −1
for a slight change in either factor. Other changes will have no effect on the value of some pixels.
To succeed at combinatorial generalisation, a model must account for these dependencies and any
changes that occur dynamically as a result of the interaction between the generative factors. We call
this condition interactive and hypothesised that models will succeed in the non-interactive condition,
but succeed in the interactive condition. The results in Figures 3 and 7 confirm this hypothesis.
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D Control experiments

D.1 Rebalanced datsets

In all experiments where we tested combinatorial generalisation, combinations along a subset of
dimensions were excluded from the training set. This means that the model was trained on an unequal
number of samples from different dimensions. Here we include results for simulations where the
datasets have been rebalanced so that all shapes are seen the same number of times. Figures show that
models achieve high levels of disentanglement while still failing to generalise. Since we observed that
models achieve disentanglement more consistently compared to an unbalanced dataset, we rebalance
the dataset in all subsequent experiments.

VAE (train) VAE (test)

VAE (train) VAE (test)

WAE (train) WAE (test)

Figure 30: Failures of combinatorial generalisation for models trained on dSprites, 3DShapes
and MPI3d. In each case, the top row shows input images and the bottom row shows reconstructions.
The images on the left are sampled from the training set and the ones on the right from the test set.
Failures of generalisation usually manifest as the model swapping the input shape. Only harder
conditions with rebalanced datsets (i.e. all shapes are observed the same number of times) are shown.

VAE VAE WAE

Figure 31: Visualisation of latent space for models trained on dSprites, 3DShapes and MPI3d.
Like in other results, the latent space projections for test images are shown in red. We have also
colour-coded the training set images according to shape. This makes it clear that the models are
clearly disentangled (one shape (colour) maps to one row (value of latent variable)). Despite this, we
see generalisation failures, where left-out combinations show an increase in variance and the mean
drifts to values seen during the training set. Only harder conditions with rebalanced datsets (i.e. all
shapes are observed the same number of times) are shown.
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Figure 32: Visualising disentanglement for models trained on dSprites, 3DShapes and MPI3d.
Only harder conditions with rebalanced datsets (i.e. all shapes are observed the same number of
times) are shown.
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Figure 33: Schematic illustration of the ideal decoder experiment. The “ideal decoder” was
constructed by training the model on the composition task (left) using the entire dataset (here
dSprites) and then inserting the trained decoder from this setup into a VAE which was then trained on
the image reconstruction task (right). All weights of the decoder were frozen, essentially limiting the
learning to the encoder.

D.2 Using an ideal decoder

For all results in the main text where we use the semi-supervised (composition) task, the model was
trained end-to-end. This means that the encoder and decoder were jointly trained. Then at test time,
we found that the model failed to reconstruct images containing left-out combinations of generative
factors and the encoder also failed to project these images with left-out combinations to the correct
region of the latent space. However, it could be argued that the failure to project images in the correct
region of latent space is not entirely down to the encoder as the encoder and decoder were jointly
trained. In other words, if one could fix the decoder – i.e. the decoder can learn to correctly map
regions in the latent space to image space – then the encoder may learn to perform combinatorial
generalisation. To test this hypothesis we ran the dSprites task using an “ideal decoder”.

We constructed this ideal decoder (see Figure 33) by training a model in the usual way on the
composition task, except the decoder was trained on the entire dataset (with no combinations left
out). Once this model had been trained, we verified that the decoder had learned disentangled
representations. Figure 34a visualises the latent space of this model showing that the model did
indeed learn highly disentangled representations. We then took a new (untrained) VAE and replaced
the decoder with this “ideal decoder” and froze all the weights. In the next step we trained the
VAE on the image reconstruction task on the dSprites dataset. Critically, this time we left out some
combinations of shape and position (the same combination that was left out in Figure 3). We then
tested this model in the regular manner on samples from all possible combinations of shapes and
positions. The results of the reconstructions are shown in Figure 34c. We can see that, just like
the model where the encoder and decoder were jointly trained, the model manages to reconstruct
the training images but fails in most cases to produce the test images accurately. Furthermore, a
visualisation of the latent space (Figure 34b shows that, despite being trained with this ideal decoder,
the encoder fails to map unseen combinations to the correct region of the latent space. These results
verify that the failure of the encoder to project images with novel combinations is not the result of the
decoder used to train the model.
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Figure 34: Encoder trained with a perfect decoder. We take a model that has achieved high level of
disentanglement on the full dataset (top row) and freeze it’s docoder. A new encoder is then attached
to this perfect decoder and trained on the generalisation case for dSprites producing a set of latent
representations (middle) and reconstructions for both training and test data (bottom row).
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D.3 Testing discrete latent representations

The CascadeVAE [27] model uses discrete latents which are supposed to learn to represent categories
such as shape.

D.3.1 Encoder and Decoder architectures

All models used in the main text use continuous latent variables, which are the standard variables
used for VAEs. However, our data contains various ordinal variables. For example, [shape] has
a discrete set of values for the dSprites dataset. Some recent research shows that using a set of
discrete variables leads to lower reconstruction loss and better disentanglement. To test whether using
discrete latent variables also leads to better combinatorial generalisation for shape, we tested the
CascadeVAE proposed by Jeong and Song [27]. This model uses discrete latent variables alongside
continuous variables. To infer the values of the continuous ones, they use the standard approach in
VAEs, producing mean and standard deviation values of a Gaussian distribution. For the discrete
variables they use a top down iterative procedure which is defined by a nested optimization operation:

max
θ,ϕ

(
max

d(1),...,d(n)

n∑
i=1

µ(i)T d(1) − λ
∑
i ̸=j

d(i)
T

d(j)

)

− β

n∑
i=1

DKL(qϕ(z|x(i)||p(z))

subject to ||d(i)|| = 1, d(i) ∈ 0, 1S , ∀i,

where µ(i) donotes the vector of the likelihood log pϕ(x
(i)|z(i), ek) evaluated at each discrete value

k ∈ [S].

The results for the dSprites dataset using CascadeVAE are shown in Figure 35. As can be seen
from this figure, the model trains successfully for this dataset, showing impressive reconstruction.
However, just like the models tested in the main text, it fails at combinatorial generalisation.

D.4 Testing interaction between factors

Given our conclusion that failures to model certain interactions appropriately could be the cause of the
failures of previous approaches, we tested a recent model – Commutative LieGroupVAE [28] – that
uses an adaptive equivariant structure, rather than a fixed vector space, to learn factors of variation in
the data. This approach combines explicit modeling group operations plus penalties to the learned
basis in order to learn a highly disentangled representation of the input (see the original work for
more details). The hope is that because this method is adaptive, it may be able to capture not only the
generative factors underlying the data, but also the dependencies between them (see Figure 6).

To check whether this approach helps overcome the problem of combinatorial generalisation for
interactive generative factors, we replicated our experiments with 3DShapes under the interactive
and non-interactive conditions. The first simulation tested the condition where the combination
[floor hue < 0.25, wall hue > 0.75] was left out of the training set. This is the non-interactive
condition, since the [floor-hue] and [wall-hue] determine different parts of the image. The second
simulation tested the condition where the combination [shape=pill, object-hue> 0.5] was left
out of the training set. This is the interactive condition since [shape] and [object-hue] determine
the same set of pixels in the image. In addition, we ran a third simulation, on the dSprites dataset,
where the combination [shape=square, posX>0.5] was left out of the training set. This is also an
interactive condition because shape and position jointly determine the pixels of the image.

Visualizing the latent space of this model is harder, since each factor is now represented in a subspace
that is not one-dimensional, but ten-dimensional (we used the original code and parameters from
the author’s original repository). To plot latent representations, we first projected each subspace
to a one-dimensional representation using PCA, and computed disentanglment scores on the result.
Disentanglement scores for the 3DShapes simulations reached 0.9 on the interactive case. For each
case we ran 5 seeds and have shown the best models in terms of disentanglement (they all achieved
similar reconstruction scores).
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Figure 35: Results for CascadeVAE. (a) shows image reconstructions for training (left) and test
(right) for an example model seed. As we can see from these reconstructions, the model successfully
trains, reproducing the correct output image for each input image. However, it fails to reconstruct
the unseen test combinations in a number of cases, replacing squares with hearts, etc. (b) show the
latent space projection for training and test images. We have colour-coded each shape as a different
colour and the test cases in red. We can again see that the model fails for the test cases, projecting
the unseen shape (square) to three different values of the latent variable. However, it should also be
noted here that, unlike the models discussed in the main text, this model does not show a high level
of disentanglement, consequently mapping each shape to several values of the latent variable even for
the training data. This lack of disentanglement is clear from examining the Hinton matrices in (c).

The results of these simulations are presented in Figures 36, 37 and 38. First of all, like the other
models tested in the main manuscript, we observed that the LieGroupVAE manages to learn these
tasks and performs image reconstruction to an impressive degree on the training set. Secondly,
we found that this model succeeds on the non-interactive condition ([floor hue < 0.25, wall
hue > 0.75]), reconstructing images with unseen combinations of floor-hue and wall-hue successfully
(see Figure 36). Lastly, we found that, just like the other models discussed in the manuscript,
LieGroupVAE also failed to reconstruct images in the interactive conditions – [shape=pill, object-
hue=> 0.5] in 3DShapes (Figure 37) and [shape=square, posX>0.5] in dSprites (Figure 38). These
simulations suggest that the approach used in LieGroupVAE is not sufficient to overcome the problem
of combinatorial generalisation for interactive generative factors.
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Figure 36: Results for LieGroupVAE – non-interactive condition (3DShapes). (a) shows image
reconstructions for training (top) and test (bottom) for an example model seed. As we can see
from these reconstructions, the model successfully trains, reproducing the correct output image for
each input image. It also succeeds at reconstructing the (unseen) test images in this non-interactive
condition (note the combinations of wall-hue and floor-hue that are correctly reproduced). (b) show
a visualisation of latent space. We have colour-coded each shape as a different colour and the test
cases in red. It should also be noted here that, unlike the models discussed in the main text, the
multidimensional nature of the subspaces for each subgroup makes it difficult to visualise these in a
satisfactory way. (c) visualises the dependencies between generative factors and latent variables using
Hinton matrices. In general, we obtained models that were highly disentangled, with disentanglement
score 0.90. In this case the number of latents is much higher since the group size used in the original
work is 400 for this dataset instead of 100 as used in dSprites.
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Figure 37: Results for LieGroupVAE – interactive condition (3DShapes). (a) shows image
reconstructions for training (top) and test (bottom) for an example model seed. Again, the model
successfully trains, reproducing the correct output image for each input image. However, in this case,
it fails to reconstruct the unseen test combinations in a number of cases, though the mistakes are more
varied than with other models, mixing shapes, colours and even combining them in some cases. (b)
show the latent space projection for training and test images, where we have colour-coded each shape
as a different colour and the test cases are in red. It should also be noted here that, unlike the models
discussed in the main text, the multidimensional nature of the subspaces for each subgroup makes it
difficult to visiaulize these in a satisfactory way.
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Figure 38: Results for LieGroupVAE on dSprites. (a) shows image reconstructions for training
(top) and test (bottom) for an example model seed. Like in the case of 3DShapes (interactive
condition), the model successfully trains, reproducing the correct output image for each input image.
However, it fails to reconstruct the unseen test combinations in a number of cases, with squares being
reconstructed as blobs that resemble hearts (b) show the latent space projection for training and test
images. We have colour-coded each shape as a different colour and the test cases in red. (c) shows
the Hinton matrices of these models. In all cases, models managed to achieve a disentanglement
score > 0.9

41


