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Abstract

Recent research has shown that generative models with highly disentangled rep-
resentations fail to generalise to unseen combination of generative factor values.
These findings contradict earlier research which showed improved performance in
out-of-training distribution settings when compared to entangled representations.
Additionally, it is not clear if the reported failures are due to (a) encoders failing
to map novel combinations to the proper regions of the latent space, or (b) novel
combinations being mapped correctly but the decoder being unable to render the
correct output for the unseen combinations. We investigate these alternatives by
testing several models on a range of datasets and training settings. We find that (i)
when models fail, their encoders also fail to map unseen combinations to correct
regions of the latent space and (ii) when models succeed, it is either because the
test conditions do not exclude enough examples, or because excluded cases involve
combinations of object properties with its shape. We argue that to generalise
properly, models not only need to capture factors of variation, but also understand
how to invert the process that causes the visual input.

1 Introduction
Disentangled representations extract factors of variations from data, and learning them has been the
focus of much research in recent years [1]. Several approaches have been proposed to induce disen-
tanglement, including latent space penalization [1–3], different training regimes [4, 5], architectures
[6], data-driven inductive biases [7] and model selection methods [8]. These have produced more
interpretable representations [9] that improve sample efficiency and learning for downstream models
[10, 11, 8].

Importantly, researchers have also hypothesized that disentangled representations could provide a
way of improving generalisation performance by enabling the discovery of causal variables in data
[12] or by capturing its compositional structure [8]. This claim is especially interesting as it allows
machine learning systems to emulate a key property of human intelligence – the ability to generalise
to unseen combinations of known elements. For example, if a model has learned to generate red
triangles and blue squares, then the model should also be able to correctly generate blue triangles
and red squares. This property, which we refer to as combinatorial generalisation, gives humans the
ability to make “infinite use of finite means” [13–16] and has been termed “a top priority for AI to
achieve human-like abilities” [17]. Indeed, several authors have reported that unsupervised models
that are better at disentangling generative factors are also better at some forms of combinatorial
generalisation [1, 10, 6]
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Figure 1: Possible problems for combinatorial generalisation. Left: visualisation of how a
combinatorial generalisation condition can be defined for a dataset containing two generative factors.
Black and red circles denote training and test examples, respectively. In the Middle and Right panels,
the outline of each circle shows the target position of the representation in latent space, while a shaded
circle shows the position at which the latent representation is projected by the encoder. Middle: first
type of combinatorial generalisation error, encoder error. The encoder projects unseen inputs to
different parts of the latent space than what was expected based on their generative factor values
(shown as shaded circles falling outside their target outlines) Right: second type of combinatorial
generalisation error, decoder error. Observed representations (shaded circles), are mapped to the
correct position in latent space (circle outlines), but a decoder/downstream process mixes-up the
black and red representations (blue dashed lines).

However, two recent studies have reported evidence that contradicts this hypothesis. Montero et al.
[18] considered datasets where inputs varied along several dimensions (generative factors) and divided
generalisation conditions into different types. They found that VAEs with highly disentangled latent
representations succeeded at the easiest generalisation conditions where only one combination of all
generative factors was excluded (a condition they termed recombination-to-element), but failed at
more challenging conditions, where all combinations of a subset of generative factors were excluded
(termed recombination-to-range by Montero et al. [18]). In another second study, Schott et al. [19]
tested 17 learning approaches, expanding the analysis to other paradigms, architectures and task
structures. They observed that models showed moderate success at generalising on some artificial
datasets, such as 3DShapes. However, their ability to generalise dropped significantly on more
realistic datasets and in more challenging generalisation conditions.

These contradictory results could be down to a number of differences between studies that report
successes and those that report failures. For example, there were qualitative differences in the datasets
that were tested and how the test conditions were set up. This is indeed what Montero et al. [18]
conclude, writing that “it is not clear what exactly was excluded while training [previous models]”,
suggesting that previously observed successes may have been on the simplest generalisation condition
where only very few combinations were left out. But this still leaves open the question of why models
that achieve high degree of disentanglement nevertheless fail at combinatorial generalisation under
more challenging conditions.

We see two possible reasons why this could happen. One possibility is that models correctly infer the
values of latent variables (Fig. 1, left) for novel combinations of generative factors, but the decoder
fails to map these unseen latent values to the (output) image space – decoder error (Fig. 1, right).
Some evidence supporting this hypothesis was observed by Watters et al. [6], who looked at not only
the output image reconstructions, but also at latent representations in a simple reconstruction task.
Watters et al. [6] observed that, in their task, models that have more disentangled latent representations
do indeed map unseen combinations of generative factors to the correct values in the latent space.
But they only tested a very simple dataset, involving only two generative factors. Montero et al. [18]
showed that models can sometimes succeed to generalise in simple settings where they can solve the
combinatorial generalisation problem through interpolation, but struggle at more challenging settings
where larger number of combinations are excluded from the training set.

Another possibility is that current models fail at harder forms of combinatorial generalisation (such
as recombination-to-range) due to an encoding failure – encoder error. That is, the encoder fails to
map these harder unseen combinations of generative factors to the correct values of variables in the
latent space (Fig. 1, middle). If this were the case, then it reflects a more fundamental limitation of
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Figure 2: (a) Image composition task. An example of the composition task. In this case, the [shape]
of the output must match the transform image and the rest of the values ([position, orientation])
must match the original image. (b) Model architecture. The model uses the same encoder to
represent both images. Then a transform takes these latent representation and combines them to
produce a transformed representation, which is used to reconstruct the output image. Reproduced
from Montero et al. with permission from the authors.

current models, showing that even though models can map observed combinations to correct values
of latent representations, they do not understand how generative factors are combined. So when
novel combinations are presented, models cannot infer the values of generative factors that led to the
observed data.

In this work we explore these issues by examining the latent space of generative models. Extending
the findings of Montero et al. [18] and Schott et al. [19], we show that failure to generalise in the
output space is accompanied by failure to generalise in latent space across several datasets. We show
that these results hold for a broad range of decoder architectures (the standard deconvolution decoder
and the spatial broadcast decoder [6]), loss functions (β-VAE and WAE) and task settings. Finally,
by looking at the latent space we discover that, in addition to the difficulty of the generalisation task,
a crucial condition for failure of combinatorial generalisation is the way in which generative factors
are combined. These results not only challenge research that argues that disentanglement leads to
better generalisation [10, 6], but also shows that the failure to generalise is a lot more entrenched in
current models than suspected by Montero et al. [18] and Schott et al. [19].

2 Testing generalisation in latent representations

In this section we first describe a carefully designed semi-supervised task that enables us to achieve
latent representations that are highly disentangled. This is crucial because standard disentanglement
learning objectives, which rely on minimizing total correlation [1–3], struggle to reliably achieve a
high degree of disentanglement, which makes it difficult to assess whether test data are projected to the
expected position in the latent space (see Figure 1). Secondly, we describe our choice of corresponding
model architectures as well as loss functions. For our results to be broadly applicable to existing
research, we chose standard encoder and decoder architectures as well as a more sophisticated
approach designed to induce a high degree of disentanglement [6]. Lastly, we describe some
challenging test conditions for combinatorial generalisation on well known datasets.

2.1 Experimental Setup

2.1.1 Task

One of the main barriers to achieving disentanglement in standard unsupervised training is the non-
identifiability of the models when using iid data [20, 7]. In short, this is because there are infinitely
many linear combinations of the underlying generative factors that produce a valid basis on which
they can be represented.

To get around this problem we used the composition task developed by Montero et al. [18] (see
Appendix A.1 for further discussion). This task takes two images and a query vector as inputs (see
Figure 2(a)). The goal of the task is to output an image that combines the two images based on an
action in the query vector:
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input = xog, xtrans, q

output = xout

where xog and xtrans are the two input images, xout is the output image, and q is the query vector.
Following Montero et al., we used actions that involve replacing one of the properties (generative
factors) of xog with a property of xtrans, based on the value of q. This vector was a one-hot encoding
of the generative factor that was required to be changed.

By combining a semi-supervised component (the query vector plus image reconstruction) with sparse
transitions (only one generative factor needed to be modified at a time), the composition task provided
a strong inductive bias towards high levels of disentanglement, as has been shown in previous work
that exploits these approaches [4, 5, 7].

2.1.2 Models

The model architecture used to solve the composition task is shown in Figure 2(b). It involves two
encoders that map each image to a latent space. The latent vectors are then “composed” (see below),
based on the query (action) vector. This composed vector is mapped from the latent space into the
(output) image space using a decoder. Encoders and decoders for generative models match the ones
used in past work [1, 3] for both dSprites and 3DShapes datasets. For MPI3D we added another 2
more layers, which we found was necessary for models to learn the task. For the Circles dataset we
used the encoder defined in Watters et al, along with the corresponding Spatial Broadcast Decoder
architecture. Latent representations for the generative models are standard diagonal Gaussians with
input dependent means and variances, to which we applied both the Variational and Wasserstein loss
[21, 22].

We can define the composition operation that combines both latent representations as:

zout = zog ⊙ (1− c) + ztrans ⊙ c

where zout, zog and ztrans are the latent representations corresponding to the output, original,
and transform images and ⊙ is the element-wise product between vectors. The variable c is the
interpolation vector of coefficients. We defined two ways of computing c: (i) a learned interpolation
function computed as σ(W · [zog; ztrans;q] + b) with parameters W and b where [.; .] represents
the concatenation of vectors; and (ii) a fixed interpolation function c = padded(q) which just pads q
with zeros to match the vector length of the latent representation (see Appendix A.2 for more details).

To facilitate our goal of testing combinatorial generalisation, we augmented the target output by
requiring the model to reconstruct the input images as well. Thus the trained encoder and decoder
form a valid standard autoencoder. We can then probe the image reconstructions and the latent
representations for unseen combinations to check if the models generalise. An illustration of this
model can be found in Figure 2.

2.1.3 Datasets

We tested our models on three standard datasets: dSprites (a sythesised dataset of 2D shapes
procedurally generated from 5 independent generative factors [23]), 3DShapes (another synthesised
dataset consisting of 3D shapes procedurally generated from 6 ground truth generative factors [24])
and MPI3D (a collection of four different datasets consisting of synthetic as well as real-world images
procedurally generated from 7 generative factors [25]). These are the most popular datasets used
in the disentanglement literature that also provide ground truth generative factor values. We tested
combinatorial generalisation by systematically excluding combinations of values of generative factors
from each dataset. Here we focus on the conditions described as recombination-to-range by Montero
et al.. These are the most interesting conditions where, according to Montero et al., one would expect
a model that learns disentangled representations to succeed at combinatorial generalisation, but tested
models typically fail. Consider a dataset with, say, four generative factors [g1, g2, g3, g4] where
all gi ∈ [0, 1]. The recombination-to-range condition creates a training/test split where all examples
with combinations of a subset of generative factors are excluded from the training set and added to
the test set. Thus, an example of a dataset that tests recombination-to-range may consist of a training
set where all combinations where [g1 > 0.5, g2 > 0.5] have been excluded from the training set and
added to the test set. Note that the model trained on such a datasets would come across a number of
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Figure 3: Generalisation in latent space Top: Typical examples of reconstructions for training and
test images for models that learn highly disentangled representations. Bottom: Visualisation of the
latent space of models trained on three datasets – dSprites (left), 3DShapes (middle) and MPI3D
(right). Each panel shows contours from the joint distribution of two latent variables that best predict
the corresponding generative factors. In all cases, the red distributions indicate test data and the black
ones indicate training data. Note that the latent values in this figure are not necessarily the same
as the values of generative factors excluded. This is because every model ends up with a different
internal representation based on its initialisation and sequence of training trials. However, in each
case, we observed that these internal representations were highly structured when the model showed
a high degree of disentanglement.

examples where [g1 > 0.5] and also examples where [g2 > 0.5], but never be trained on an example
where both these conditions are true simultaneously. This method was used to create training / test
sets for each of the datsets in the following manner:

• dSprites: All images such that [shape=square, posX> 0.5] were excluded from the training set.
Squares never appear on the right side of the image, but do appear on the left and other shapes
(hearts, ellipsis) are observed on the right as well.

• 3DShapes: All images such that [shape=pill, object-hue=> 0.5] were excluded from the train-
ing set. Thus, pills colored as any of the colors in the second half of the HSV spectrum did not
appear in the training set. These colors (shades of blue, purple, etc) were observed on the other
shapes, and the pill was observed with other colors such as red and orange.

• MPI3D: All images such that [shape=cylinder, vertical axis> 0.5] were excluded from the
training set. We also excluded all images where [shape=cone] or [shape=hexagonal] as these
shapes are very similar to the pyramid and cylinder, respectively and make it hard to access
reconstruction accuracy.

2.1.4 Measuring Disentanglement

We used the DCI metric from Eastwood and Williams [26] to measure the degree of disentanglement
(see Appendix A.5). This metric provides a set of regression weights between ground truth factors
and latent variables. We selected the latent variable corresponding to each ground truth factor
using a matching algorithm based on these weights. Crucially, for highly disentangled models any
combination of generative factors will have a corresponding combination of latent variables of the
same cardinality. This allows us to create visualisations of the latent representations analogous to the
ones in Figure 1.

2.2 Results

We observed that most models trained on the composition task managed to achieve a reasonably
high degree of disentanglement, and successfully reconstructed images in the training data (see
Appendix B.1 and B.2 for quantitative results). Here we present results of typical models that achieved
a very high degree of disentanglement (with alignment scores typically > 0.95, see Appendix B.1 for
details). Figure 3 shows reconstructions as well latent space representations of three typical models
trained on the dSprites, 3DShapes and MPI3D datasets, respectively.

Replicating results of Montero et al. [18], we observed that models showed poor generalisation
to unseen combinations for all three datasets (see reconstruction of test images in Figure 3). For
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Figure 4: Latent space induced by SBD Visualisation of the latent space for models that use
a Spatial Broadcast Decoder as described in Watters et al. Both visualisations correspond to a
condition where combinations in the middle of the image are removed. (a) The result when this
is done for the Circles dataset which uses only one shape and where the training set excludes all
combinations [shape=circle, 0.35 < posX < 0.65, 0.35 < posY < 0.65] (b) The result for the
a similar condition for the Simple dataset which uses two shapes and excludes all combinations
[shape=square, 0.35 < posX < 0.65, 0.35 < posY < 0.65].

dSprites, the models typically produced images in which the target location is correct but the shape
is not (e.g., replacing the square with an ellipse). Similarly, with 3DShapes and MPI3D, models
typically reconstructed shapes with the correct colour hue (3DShapes) or vertical location (MPI3D),
but made an error in the shape of the target object (e.g., replacing the pill (3DShapes) or cylinder
(MPI3D) with a sphere(3DShapes) or pyramid (MPI3D).

Next, we looked at the latent representations of each of these cases by selecting a latent variable that
showed highest correlation with each generative factor as described in Section 2.1.4. Figure 3 plots
the distributions of the value of each latent variable for every combination of values of the relevant
generative factors (see Appendix A.5 for details). Visualising these probability distributions for the
combination of generative factors seen during training (in black) confirmed that the models learned
highly disentangled representations (note the low variance of the probability distributions for trained
combinations, especially for dSprites and 3DShapes).

Crucially, we observed that the encoder failed to map the generative factors for the test combina-
tions to the correct location in the latent space (red distributions). This was particularly true for
dSprites and 3DShapes dataset: note how the mean of the probability distributions for the left out
combinations ([shape=square, posX> 0.5] for dSprites and [shape=pill, object-hue=[blue,
purple]]) are shifted to overlap the latent representations seen during training. The shifts in the
mean of distributions were less acute for MPI3D, but we nevertheless observed an increase in the
variability of test distributions and a consistent shift in the location for values of generative factors
that were far from the trained values.

In summary, we made three key observations in these experiments. First, models replicated the
negative results reported previously: i.e., a degradation in reconstruction performance in the challeng-
ing combinatorial generalisation conditions. Second, by visualising the latent space, we observed
that failures of generalisation coincided with poor latent representations, showing that failures of
generalisation are not entirely due to decoder errors. Third, the failures in latent representations as
well as output reconstructions showed that different generative factors have important qualitative
differences, with models making larger errors in generating the correct shape for unseen combinations
than in reproducing the position, scale or color (see Appendix B.2).

2.3 Exploring alternative hypotheses

In the experiments above, we used the deconvolution network as the decoder, which is the standard
decoder used in VAEs [1]. However, some studies have shown that replacing the deconvolution
network with a different architecture helps the model learn representations that are more disentangled.
One such architecture is the Spatial Broadcast Decoder (SBD from hereon) developed by Watters
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Figure 5: Replacing decoder with ground-truth Visualisation of the latent space for models trained
to predict the correct generative factor values for each image. The visualizations correspond to
the same test conditions as the ones presented in Figure 3: (a) dSprites, where all combinations
where [shape=square, posX > 0.5] were excluded from the training set (b) 3DShapes, where all
combinations where [shape=pill, object-hue > 0.5] were excluded, and (c) MPI3D, where all
combinations where [shape=cylinder, vertical-axis > 0.5] were excluded (note that, in this
case, [vertical-axis > 0.5] corresponds to the corresponding latent variable value < 0).

et al. [6], who showed that such a decoder not only helped in learning representations that were highly
disentangled, but also helped in solving the problem of combinatorial generalisation.

In our next set of experiments, we tested whether using the SBD succeeds at combinatorial generali-
sation in more challenging settings, akin to the ones we tested above. We first replicated the results
for both conditions tested by Watters et al. [6], using our composition task on the Circles dataset and
replacing the deconvolution network with the SBD. Figure 4 (panel A) shows the results for the first
condition, where the training set excluded images with circles presented in the middle of the canvas
(see Appendix B.2 for results on the second condition). As we can see from this figure, the latent
space learned by the model was indeed highly structured and, crucially, the model mapped the latent
values for the left out combinations (red crosses) to the correct region of the latent space.

Next, we wanted to check how these results scaled when we made the generalisation test more
challenging, excluding a combination of values for a range of variables (the recombination-to-range
condition developed by Montero et al. [18]). We can do this with the Circles dataset by adding a third
generative factor and the simplest way of doing this is by letting the shape take one of several values,
instead of being a circle for all examples.

We tested this by constructing a new dataset called Simple. Like the Circles dataset, this dataset
consisted of images that had a shape located at various (x and y) positions on the canvas. Unlike the
Circles dataset, this shape could be either a triangle or a square (we chose these shapes as they are
different enough for models to not confuse them by accident). We then tested the two conditions
similar to the conditions tested by Watters et al. [6], excluding all combinations where one of the
shapes was presented in the middle (first condition) or the top-right (second condition) of the canvas.

The results for the first condition are shown in panel B of Figure 4 (see Appendix for results of
the second condition). Like the results for the first set of experiments above, we have plotted the
probability distribution of combinations of values of the the latent variables (here, shape and posX)
for all values of the third latent variable (here, posY). Similar to our earlier results, we observed that
even the model using the SBD failed to map the unseen (test) combinations to the correct position
in the latent space (compare the mean and variability of the red distributions compared to the black
ones). Correspondingly, we also observed that models failed to correctly reconstruct output images
for the test conditions, even when they had no problem reconstructing these images for combination
of generative factors seen during training (See Appendix B.2).

3 Understanding the role of the encoder
We have shown that errors in generalisation occur in latent space as well in the reconstructions for
generative models. To conclude this analysis we show that the problem does not lie in the generative
nature of the task by testing the encoders on a latent prediction task, where the target is not the ground
truth factor values. We used the same datasets and generalisation conditions as before.

3.1 Experimental setup

We trained models on a prediction task where the model was given a single image as the input and
the target was to output the ground truth generative factor values. This ensures that the resulting
latent representation will be completely disentangled, as the model must output each of the factor
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values separately. We used the mean squared error of the output and target vectors as a learning
signal. All other parameters remain same as the composition task. We used the same architectures for
the feed-forward models as the encoders in the corresponding datasets above.

We evaluated the models using the R2 metric as used in Schott et al. [19] to check whether the
models had solved the task. We also use the same method to visualise the results as described above,
plotting the joint probability distributions for the combination of generative factors along which the
model was tested for generalisation. In this case, it is straightforward to do so as the relevant output
dimensions shared the same index as the corresponding generative factor.

Because a supervised learning setting might not give such a rich signal to the model, we also tested
a different scheme that still tests the encoder. In this alternative setting, we first train a complete
generative model on the full data set to a high degree of disentanglement. We then freeze the decoder
and retrain the encoder on the generalisation conditions we are interested in (see Figure 33 in
Appendix D.2). Thus, the encoder has to reproduce the latent representations that the decoder is
expecting in order to properly reconstruct unseen samples. Simultaneously, errors can only be a
product of failures by the encoder, as the decoder is completely disentangled during its training.

3.2 Results

The results for the three dataset are shown in Figure 5. We observed a very similar pattern for
this task as the semi-supervised task above. For all three datasets, the probability distributions of
latent values for the left out combinations (in red) showed a much higher variance and were shifted
towards combinations of latent values that had been experienced during training. Thus, even when the
encoders were trained to recognise perfectly disentangled generative factors, they failed to generalise
to combinations that were not experienced during training. For the frozen decoder setting, we include
results in Appendix D.2, showing that the failures occur there as well.

4 Explaining contradictory findings
How can we reconcile the failures of generalisation observed above with with past studies that
showed successful combinatorial generalisation on some datasets and conditions? One response is
that the generalisation conditions we test are more challenging than the ones tested in previous studies
because they exclude more data from the training set. However, it is also possible that the success of
combinatorial generalisation is not only determined by how many combinations are excluded from
the test condition, but also by which combination of generative factors are tested.

All failures observed above were for cases where the generative factor ‘shape’ is combined with
another generative factor (position / color). It is possible that this was because shape combines with
other factors in a qualitatively different manner than, say, the floor hue combines with the wall hue in
3DShapes. In order to completely disentangle shape from, say, position the model must come up
with a representation of shape that is invariant to a change in position. And it must do so by learning
from training examples where shape and position jointly determine the same part of the image.

We illustrate these two types of combinations in Figure 6. In the first case ( e.g., [floor-hue,
wall-hue]), two factors determine mutually exclusive pixels of the image. We call these types of
combinations non-interactive. Solving the combinatorial generalisation problem in the non-interactive
case is trivial – the model can do this by learning independent mappings between sets of pixels and
the corresponding generative factors. In the second case (e.g., [shape, posX]), the value of pixels is
jointly determined by two factors in a nonlinear and complex manner. A pixel node may have value
+1 for a given value of [shape] and [posX], but this value may change to −1 for a slight change in
either factor. Other changes will have no effect on the value of some pixels. We call these types of
combinations interactive. To succeed at combinatorial generalisation in the interactive condition, a
model must not only learn the mapping between pixels and factors, but also learn how the factors
combine to jointly determine the value of each pixel.

Based on this insight, we hypothesised that models may fail to perform combinatorial generalisation
in the interactive condition, but succeed in the non-interactive condition. To test this hypothesis,
we carried out a set of experiments where the model had to solve the problem of combinatorial
generalisation, but the combinations that were excluded did not interact in the training examples.
We can do this for both the 3DShapes dataset as well as the MPI3D dataset, as both datasets involve
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Figure 6: Non-interactive and interactive combinations as graphs. The panels on the left show
an example of two factors [lcolor, rcolor] that we call non-interactive. In this case, the value
of each factor determines the colour of mutually-exclusive set of pixels. The model must learn the
dependencies (edges) between the generative factors and pixels. Compare this to the three panels on
the right, illustrating the interactive condition. In this case, the two factors [shape, posX] jointly
determine the value of each pixel. In this case, the model must learn how the value of shape nodes
non-linearly determines the value of pixel nodes based on the value of posX node.

images where the canvas contains several disjoint elements. So, we repeated the semi-supervised
learning experiments above, where models had to learn the composition task, but instead of excluding
combinations where the generative factors interacted with each other, we excluded the following
combinations from the training set:

• 3DShapes: Exclude all combinations such that [floor-hue < 0.25, wall hue > 0.75]: none of
the training images had the combination of floors with a “warm” hue and walls with a “cold” hue.

• MPI3D: Exclude all combinations such that [shape={cylinder,sphere}, background
color=salmon]. Note, even though shape combinations are excluded, the combination of
generative factors excluded do not interact (i.e. determine different parts of the image).

It is also possible that model struggled with factors that combine with [shape] not because it is an
interactive factor, but because it is a ‘discrete’ factor, taking on a few specific and unrelated values. If
this is the case, then a model should be able to succeed at combinatorial generalisation by learning
discrete latent representations. A recent model – CascadeVAE [27] – addresses this by concurrently
inferring continuous and discrete latent factors. We tested this model on the image reconstruction
task in the recombination-to-range condition of dSprites dataset.

Finally, it is possible that standard VAEs struggle with the combinatorial generalisation because
they cannot capture the dependencies between generative factors. A recent model – Commutative
LieGroupVAE [28] – uses an adaptive equivariant structure, rather than a fixed vector space, to learn
factors of variation in the data. This approach combines explicit modeling group operations plus
penalties to the learned basis in order to learn a highly disentangled representation of the input (see
the original work for more details). The hope is that because this method is adaptive, it may be able to
capture not only the generative factors underlying the data, but also the dependencies between them
(see Figure 6). As with CascadeVAE, we use the same training configuration as in the original work
and test on the interactive conditions of dSprites and Shapes3D datasets (see details in Appendix D.4).

4.1 Results

For the non-interactive conditons, we again observed that models learned highly disentangled
representations for this task. More interestingly, we also observed that models now succeeded
at the combinatorial generalisation task. Figure 7 shows some typical reconstructions for training as
well as test images. These reconstructions successfully reproduce the unseen combination of floor
hues and wall hues for the 3DShapes dataset and the combination of shape and background arc color
for the MPI3D dataset. This figure also shows the joint probability distribution for trained as well as
novel combination of latent values. In contrast to Figure 3, we now see that the means of the test
latent distributions (in red) fall in the expected location and a show a much smaller variance.

We also observed that alternative models cannot solve the hard generalisation challenges described
(See Appendix D). Figure 35 shows these results for CascadeVAE on dSprites (the only dataset
for which authors provide training parameters), and how the model clearly fails at combinatorial
generalisation as before, unable to map the previously seen shape to a novel position. Figure 37
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Figure 7: Latent space for conditions where models succeed Visualisation of the latent space
for models trained on conditions in which they succeed at generalisation. The figure follows the
same conventions as in Figure 3. (a) Results for 3DShapes when removing floor and wall color
combinations. (b) Visualisation for the MPI3D dataset for combinations where the salmon background
has not been seen with the cylinder shape.

shows the same results for LieGroupVAE, with model succeeding at the non-interactive condition in
Shapes3D but failing the interactive one.

5 Discussion

Our world is inherently compositional – it can be decomposed into simpler parts and relationships
between these parts. The idea behind learning disentangled representations is to recover this under-
lying compositional structure of the world from perceptual inputs. Unsupervised learning models,
such as VAEs, aim to do this by separating out the factors that remain invariant under transformations
of other factors [29]. It is therefore tempting to conclude that models that manage to show a high
degree of disentanglement on the training set also capture the compositional structure of the world. If
they did, they should be able to generalise to settings that present novel combination of the factors of
variation. However, in our experiments, we observed that models that learned highly disentangled
representations nevertheless failed at combinatorial generalisation, not only in the reconstruction
space, but also in the latent space. These failures reproduced over several different datasets, different
types of decoders, different loss functions and under a variety of different task settings.

Our interpretation of these results is that models manage to achieve a high degree of disentanglement
by discovering factors that remain invariant over training examples and simply associating perceptual
inputs with these factors. However, to capture the compositional structure of the world, models
must additionally understand how factors interact to cause the perceptual input – that is, develop a
good causal model of the world. We think the failure of models to form such a causal model is the
reason why models succeeded at problems of combinatorial generalisation that do not involve an
interaction between the left-out factors (Figure 7), but consistently failed at problems where these
factors interacted (Figure 3). When generative factors do not interact, the model does not need to
learn how the factors combine to determine the same part of the output space. Instead, it can simply
map the value of each generative factor to a different location. It appears to solve combinatorial
generalisation, but it does not understand how generative factors combine.

In summary, our work shows that the problem of combinatorial generalisation remains unsolved in
both latent space and reconstruction space, even for highly disentangled models. By highlighting this
limitation, we hope to inspire more work exploring new approaches that emulate this key capacity of
human cognition, thus endowing models with a better understanding of the compositional structure
of our world.
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