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Abstract

The performance of spectral clustering heavily relies on the quality of affinity
matrix. A variety of affinity-matrix-construction (AMC) methods have been pro-
posed but they have hyperparameters to determine beforehand, which requires
strong experience and leads to difficulty in real applications, especially when the
inter-cluster similarity is high and/or the dataset is large. In addition, we often
need to choose different AMC methods for different datasets, which still depends
on experience. To solve these two challenging problems, in this paper, we present
a simple yet effective method for automated spectral clustering. First, we propose
to find the most reliable affinity matrix via grid search or Bayesian optimization
among a set of candidates given by different AMC methods with different hyper-
parameters, where the reliability is quantified by the relative-eigen-gap of graph
Laplacian introduced in this paper. Second, we propose a fast and accurate AMC
method based on least squares representation and thresholding and prove its ef-
fectiveness theoretically. Finally, we provide a large-scale extension for the auto-
mated spectral clustering method, of which the time complexity is linear with the
number of data points. Extensive experiments of natural image clustering show
that our method is more versatile, accurate, and efficient than baseline methods.

1 Introduction

Clustering is an important approach to data mining and knowledge discovery. Particularly, spectral
clustering [Weiss, 1999; Shi and Malik, 2000; Ng et al., 2002; Von Luxburg, 2007] has superior
performance than k-means clustering [Steinhaus and others, 1956], hierarchical clustering [Johnson,
1967], DBSCAN [Ester et al., 1996], and mixtures of probabilistic principal component analyzers
[Tipping and Bishop, 1999] in many applications. Roughly speaking, spectral clustering consists
of two steps: 1) construct an affinity matrix in which each element denotes the similarity between
two data points; 2) perform normalized cut [Shi and Malik, 2000] on the graph corresponding to the
affinity matrix. K-nearest neighbors (K-NN) and Gaussian kernel k(x,y) = exp(−‖x−y‖2/(2ς2))
are two popular methods to construct affinity matrices, where k and ς are hyperparameters.

As the performance of spectral clustering heavily relies on the quality of affinity matrix, in recent
years, a variety of methods have been proposed to construct or learn affinity matrices for spectral
clustering. Many of them are in the framework of self-expressive [Roweis and Saul, 2000; Elhamifar
and Vidal, 2013] model, i.e., minimizeC 1

2‖X − XC‖2F + λR(C). Here the columns of X ∈
Rm×n are the data points drawn from a union of subspaces. C ∈ Rn×n is a coefficient matrix.
R(C) denotes a regularization operator on C. λ is a hyperparameter to be determined in advance.
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Elhamifar and Vidal [2013] proposed to useR(C) = ‖C‖1 :=
∑n
i=1

∑n
j=1 |cij | under a constraint

diag(C) = 0. In [Elhamifar and Vidal, 2013], the affinity matrix for spectral clustering is given by
A = |C|+ |C|>. The method is called Sparse Subspace Clustering (SSC). Some theoretical results
of SSC can be found in [Wang and Xu, 2013; Soltanolkotabi et al., 2014].

Following the self-expressive framework, Liu et al. [2013] let R(C) = ‖C‖∗ (nuclear norm of C)
and proposed a Low-Rank Representation (LRR) method for subspace clustering. Lu et al. [2012]
and Pan Ji et al. [2014] used the least squares representation (LSR) model for subspace clustering.
A few variants of LRR and SSC can be found in [Patel and Vidal, 2014; Li and Vidal, 2015; Patel et
al., 2015; Shen and Li, 2016; Li and Vidal, 2016; Fan and Chow, 2017; Fan et al., 2018; Lu et al.,
2018; Pan and Kang, 2021; Kang et al., 2022]. Recently, deep learning methods were also used to
learn affinity matrices for spectral clustering [Ji et al., 2017; Zhang et al., 2019b,a; Lv et al., 2021]
and have achieved state-of-the-art performance on many benchmark datasets.

One common limitation of these spectral or subspace clustering methods is that they have at least one
hyperparameter to determine. In the codes of SSC2 and its variants provided by their authors, there
is usually one more thresholding parameter for affinity matrix, which affects the clustering accuracy
a lot. In the deep learning clustering methods such as [Ji et al., 2017] and [Zhang et al., 2019b],
we need to determine the network structures and regularization parameters, which is much more
difficult. Since clustering is an unsupervised learning problem, the hyperparameters cannot be tuned
by cross-validation widely used in supervised learning. Thus we have to tune the hyperparameters
in spectral clustering by experience, which is difficult when the dataset is quite different from those
in our experience and/or the inter-class similarity is high compared to the intra-cluster similarity.
Note that SSC, LRR, and their kernel or deep learning extensions have quadratic or even cubic
time complexity (per iteration), which further increases the difficulty of hyperparameter selection in
clustering large datasets, though there have been a few works improving the computational efficiency
[Peng et al., 2013; Cai and Chen, 2014; Wang et al., 2014; Peng et al., 2015; You et al., 2016a,b; Li
and Zhao, 2017; You et al., 2018; Matsushima and Brbic, 2019; Li et al., 2020; Chen et al., 2020;
Kang et al., 2020; Fan, 2021; Cai et al., 2022]. On the other hand, different datasets often require
different AMC methods, which is hard to tackle by experience.

This paper aims at model and hyperparameter selection for spectral clustering and wants to improve
the convenience, accuracy, and efficiency of spectral clustering. Our contributions are as follows.

• We propose a relative-eigen-gap based automated spectral clustering (AutoSC) method.
It finds the Laplacian matrix with largest relative-eigen-gap among a set of candidates
constructed by different models with different hyperparameters.

• We also implement the AutoSC method via Bayesian optimization. The method can select
the possibly best model and optimize the hyperparameters automatically. Note that any
AMC methods (e.g. SSC) can be included in the framework of AutoSC.

• To improve the accuracy and efficiency of AutoSC, we propose a new AMC method based
on least squares representation and thresholding and prove its effectiveness theoretically.

• We provide an extension for AutoSC to cluster large-scale datasets.

Experiments on seven benchmark image datasets demonstrate the effectiveness of our method. Par-
ticularly, our method outperforms state-of-the-art methods of large-scale clustering.

2 Related work

Exploiting eigenvalue information for clustering As the number of zero eigenvalues of a Lapla-
cian matrix is equal to the number of connected components of the graph [Von Luxburg, 2007], a
few researchers took advantage of eigenvalue information in spectral clustering [Meila et al., 2005;
Meila and Shortreed, 2006; Ji et al., 2015; Hu et al., 2017; Lu et al., 2018]. For instance, Ji et al.
[2015] utilized eigen-gap to determine the rank of the Shape Interaction Matrix. But the method
requires determining another hyperparameter γ beforehand and needs to perform spectral clustering
multiple times. The methods of [Meila et al., 2005; Hu et al., 2017; Lu et al., 2018] are based on

2Wang and Xu [2013] and Soltanolkotabi et al. [2014] provided lower and upper bounds for the λ in SSC
theoretically, which however depend on the unknown noise level.
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iterative optimization (need to perform eigenvalue decomposition at every iteration) and hence are
not effective in handling large-scale datasets. In addition, the BDR method of [Lu et al., 2018] has
two hyperparameters (λ, γ) to determine by experience, although it outperformed SSC and LRR on
some datasets. A comparison is shown in Figure 1.

Automated machine learning Automated model and hyperparameter selection for supervised
learning have been extensively studied [Hutter et al., 2019]. In contrast, the study for unsuper-
vised learning is very limited. The reason is that in unsupervised learning there is no ground truth
or reliable metric to evaluate the performance of algorithms. Concurrently to our work, Poulakis
[2020] also attempted to do automated clustering. Specifically, Poulakis [2020] proposed to use
meta-learning to select clustering algorithm and use a heuristic combination of some clustering va-
lidity metrics such as Silhouette coefficient [Liu et al., 2010] and S Dbw [Halkidi and Vazirgiannis,
2001] as an objective to maximize via grid search or Bayesian optimization [Jones et al., 1998]. One
problem is that these metrics are mainly based on Euclidean distance or densities and hence may not
be suitable to evaluate the clustering performance of non-distance or non-density based clustering
algorithms. Another one is that there is no unified metric to compare different clustering algorithms.

3 Automated Spectral Clustering (AutoSC)

3.1 Preliminary Knowledge

Let A ∈ Rn×n be an affinity matrix constructed from a given data matrix X ∈ Rm×n. The
corresponding graph is denoted by G = (V,E), where V = {v1, . . . , vn} is the vertex set and E =
{e1, . . . , el} is the edge set. The degree matrix of a graph G is defined as D = diag(A1), where
1 = [1, . . . , 1]>. Our goal is to partition the vertices into k disjoint nonempty subsets C1, . . . , Ck.
Let C = {C1, . . . , Ck}. It is expected to find a partition C that minimizes the following metric.
Definition 3.1 (MNCut). The multiway normalized cut (MNCut) [Meila, 2001] is defined as

MNCut(C) =

k∑
i=1

∑
j 6=i

Cut(Ci, Cj)
Vol(Ci)

, (1)

where Cut(Ci, Cj) =
∑
u∈Ci

∑
v∈Cj Auv and Vol(Ci) denotes the sum of vertex degrees of Ci.

The normalized graph Laplacian matrix is defined as

L = I −D−1/2AD−1/2, (2)

where I is an identity matrix. The normalized graph Laplacian is often more effective than the
unnormalized one in spectral clustering (some theoretical justification was given by [Von Luxburg,
2007]). Let σi(L) be the i-th smallest eigenvalue of L. The following claim shows the connection
between MNCut(C) and L.
Claim 3.2. The sum of the k smallest singular values of L quantifies the potential connectivity
among C1, . . . , Ck: MNCut(C) ≥

∑k
i=1 σi(L).

The claim can be easily proved by using Lemma 4 of [Meila, 2001]. We defer all proof of
this paper to the appendices. Because the multiplicity k of the eigenvalue 0 of L equals the
number of connected components in G [Von Luxburg, 2007], we expect to construct an affin-
ity matrix A from X such that L has k zero eigenvalues. Thus the optimal partition means
MNCut(C) =

∑k
i=1 σi(L) = 0.

3.2 Relative Eigen-Gap Guided Search

In practice, we may construct an A such that
∑k
i=1 σi(L) is as small as possible because guar-

anteeing zero eigenvalues is difficult. But this is not enough because L may have k + 1 or more
very small or even zero eigenvalues. The second smallest eigenvalue of the Laplacian matrix of
a graph G is called the algebraic connectivity of G (denoted by ac(G)) [Fiedler, 1973]. We have
ac(G) = 0 if and only if G is not connected. When G has k disjointed components, there are k
algebraic connectivities, denoted by ac(C1), . . . , ac(Ck). Based on this, we have
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Claim 3.3. The k+1th smallest eigenvalue of L quantifies the least potential connectivity of parti-
tions C1, . . . , Ck of C:

min
1≤i≤k

MNCut(Ci) ≥ σk+1(L). (3)

In other words, σk+1(L) measures the difficulty in segmenting each of Ci into two subsets. Hence,
when σk+1(L) is large, the partitions C1, . . . , Ck are stable. Based on Claim 3.2 and Claim 3.3, we
may construct an A that has small

∑k
i=1 σi(L) and large σk+1(L) simultaneously, by solving

maximize
θ

σk+1(L)− 1

k

k∑
i=1

σi(L),

subject to L = I −D−1/2AD−1/2, A = fθ(X).

(4)

where fθ : Rm×n → Rn×n is a function with parameter θ, e.g. A = [exp(−‖xi−xj‖2/(2ς2))]−I .
It is difficult to solve (4) because of the composition of fθ, symmetric normalized Laplacian, and
eigenvalue decomposition. On the other hand, in (4), we have to choose f in advance, which requires
domain expertise or strong experience because different dataset usually needs different f .

Note that different f can result in very different distributions of eigenvalues and the small eigenval-
ues are sensitive to f , θ, and noise. Hence the objective in (4) is not effective to compared different
f and θ. In this paper, we define a new metric relative-eigen-gap as follows

reg(L) :=
σk+1(L)− 1

k

∑k
i=1 σi(L)

1
k

∑k
i=1 σi(L) + ε

, (5)

where ε is a small constant (e.g. 10−6) to avoid zero denominator. reg(L) is not sensitive to the
scale of the small eigenvalues. Therefore, instead of (4), we propose to solve

maximize
(f,θ)∈F×Θ

reg(L),

subject to L = I −D−1/2AD−1/2, A = fθ(X),
(6)

where F is a set of pre-defined functions and Θ is a set of hyperparameters. In fact, (6) is equivalent
to choosing one A (or L) from a set of candidates constructed by different f with different θ, of
which the relative-eigen-gap is largest. The best θ can be found using grid search (or even random
search). For convenience, we call the method AutoSC-GD. Table 1 shows a few examples of f and
its parameters. One may use a weighted sum of affinity matrices given by different f , like [Huang
et al., 2012], which however will introduce more hyperparameters.

Table 1: A few examples of f and its θ for AMC (AASC: [Huang et al., 2012])
f K-NN ε-neighborhood Gaussian kernel SSC LRR LSR KSSC AASC
θ K ε σ λ λ λ λ, σ σ1, σ2, . . .

The following theorem3 shows the connection between reg(L) and the stability of the clustering C.
Theorem 3.4. Let C and C′ be two partitions of the vertices of G, where |C| = |C′| = k. De-

fine the distance between C and C′ as dist(C, C′) = 1 − 1
k

∑
Ci∈C

∑
C′j∈C′

(Vol(Ci∩C′j))
2

Vol(Ci)Vol(C′j)
. Sup-

pose ηkε ≥
∑k
i=1 σi(L) ≥ kε and reg(L) > (k − 1)η/2. Let δ = max

(
MNCut(C) −∑k

i=1 σi(L),MNCut(C′)−
∑k
i=1 σi(L)

)
. Then

dist(C, C′) < 1.5δε−1

reg(L)+(1−k)η/2 . (7)

It indicates that when reg(L) is large and δ is small, the partitions C and C′ are close to each other.
Thus, the clustering has high stability. When

∑k
i=1 σi(L) = kε, we have dist(C, C′) < 6δ

σk+1(L)−kε ,
which means the larger σk+1(L) the more stable clustering.

3This theorem is a modified version of Theorem 1 in [Meila et al., 2005], which is for the eigen-gap σk+1−
σk of L. Here we consider reg(L) instead.
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Compare reg(L) with [Meila and Shortreed, 2006] It is worth noting that Meila and Shortreed
[2006] proposed to minimize J(L) := 1

k

∑k
i=1 σi(L)+α (σk(L)− σk+1(L))

2 to find a good affin-
ity matrix for spectral clustering. Although reg(L) and J(L) seem similar, they are essentially
different. As mentioned before, different AMC methods may lead to different scales for the small
eigenvalues, which makes it difficult to compare different AMC methods using J(L). In addition,
J(L) has a hyperparameter α to determine beforehand, which violates our goal of searching models
and hyperparameters. A comparative study (α ≤ 0) is in Section 4.1 (Table 3).

3.3 AutoSC via Bayesian Optimization

Bayesian optimization (BO) [Jones et al., 1998] has become a promising tool for hyperparameter
optimization of supervised machine learning algorithms [Snoek et al., 2012; Klein et al., 2017].
Given a black-box function g : X → R, BO aims to find an x∗ ∈ X that globally minimizes g and
usually has three steps. The first step is finding the most promising point xt+1 ∈ argmaxx ap(g)(x)
by numerical optimization, where ap(g) : X → R is an acquisition function (e.g. Expected Im-
provement) relying on an prior p(g) (e.g. Gaussian processes [Williams and Rasmussen, 2006]).
The second step is evaluating the expensive and possibly noisy function yt+1 ∼ g(x) + N (0, σ2)
and adding the new sample (xt+1, yt+1) to the observation set Dt = {(x1, y1), . . . , (xt, yt)}. The
last step is updating p(g) and ap(g) using Dt+1.

As an alternative to the grid search for (6), we can maximize reg(L) via BO. Suppose we have a set
of different AMC models, i.e., F = {f1, f2, . . . , fM}. For i = 1, 2, . . . ,M , let

gi(θ
(i)) := −reg(L(fi(θ

(i)|X))),

where θ(i) denotes the hyperparameters in fi and X denotes the dataset. Then we use BO to find

θ
(i)
∗ = argmin

θ(i)∈S(i)

gi(θ
(i)), (8)

where S(i) denotes the set of constraints. Finally we get the best model with its best hyperparameters

f?(θ
(?)
∗ |X), where ? = argmin

1≤i≤M
gi(θ

(i)
∗ ). (9)

For convenience, we denote the method by AutoSC-BO. Note that F can include any AMC methods
such as those in Table 1 and even DSC [Ji et al., 2017] (see Appendix D.5).

In AutoSC-BO, we use Expected Improvement (EI) acquisition function

aEI(s|Dt) = Ep [max(gmin − g(s), 0)] , (10)

where gmin is the best function value known. The closed-form formulation is

aEI(s|Dt) = (gmin − µ)Φ

(
gmin − µ

σ

)
+ φ

(
gmin − µ

σ

)
, (11)

where µ = µ(s|Dt, θK) and σ = σ(s|Dt, θK) are the mean value and variance of the Gaussian
process, φ and Φ are standard Gaussian cumulative density function and probability density func-
tion respectively, and θK denotes the hyperparameters of the Gaussian process. For the covariance
function, we use the automatic relevance determination (ARD) Matérn 5/2 kernel [Matérn, 2013]

kM52(s, s′) = θ0

(
1 +

√
5r2(s, s′) +

5

3
r2(s, s′)

)
× exp

(
−
√

5r2(s, s′)
)
, (12)

where r2(s, s′) =
∑d
j=1(sj − s′j)2/θ2

j .

3.4 Discussion on AMC Methods for AutoSC and LSR with Thresholding

In AutoSC, the size of searching space is |F| ×
∏
j |θj |, which should be large enough to include

effective models and their hyperparameters. A large number of works have shown that the self-
expressive models [Elhamifar and Vidal, 2013; Liu et al., 2013; Lu et al., 2018; Ji et al., 2017] often
outperform other AMC models such as Gaussian kernel. However, the self-expressive model based
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AMC methods often require iterative optimization and has at least quadratic time complexity per
iteration, which leads to huge time cost in AutoSC. Although LSR [Lu et al., 2012] has closed-form
solution, the clustering accuracy is not satisfactory [Lu et al., 2018]. In this work, we will show that
LSR with a simple post-processing operation can be a good AMC method and can outperform SSC,
LRR, and BDR [Lu et al., 2018]. Specifically, the LSR model is given as

minimize
C

1
2‖X −XC‖2F + λ

2 ‖C‖
2
F , (13)

of which the closed-form solution is C = (X>X +λI)−1X>X . Let diag(C) = 0 and C ← |C|,
the affinity matrix can be constructed as A = (C + C>)/2. One problem is that the off-diagonal
elements of A are dense (leading to a connected graph), which can result in low clustering accuracy.
Therefore, we propose to truncate C by keeping only the largest τ elements of each column of C.
Nevertheless, it is not easy to determine τ beforehand. When τ is too small, the corresponding
graph will have k+ 1 or more connected components. When τ is too large, the corresponding graph
will have k − 1 or less connected components. However, τ can be automatically determined by our
AutoSC-GD and AutoSC-BO.

In the case that the data have some low-dimensional nonlinear structures, the similarity between
pair-wise columns of X cannot be well recognized by the linear regression (13). Therefore, we also
consider the following nonlinear regression model

minimize
C

1
2‖φ(X)− φ(X)C‖2F + λ

2 ‖C‖
2
F , (14)

where φ denotes a nonlinear feature map performed on each column of the matrix, i.e. φ(X) =
[φ(x1), . . . , φ(xn)]. In (14), letting φ be some feature map induced by a kernel function k(·, ·) (e.g.
polynomial kernel k(xi,xj) = (x>i xj + b)q and Gaussian kernel), we get the kernel LSR (KLSR):

minimize
C

1
2 Tr

(
K − 2KC + C>KC

)
+ λ

2 ‖C‖
2
F , (15)

where K = φ(X)>φ(X) and [K]ij = k(xi,xj). The closed-form solution is C = (K+λI)−1K.
The post-processing is the same as that for the solution of LSR.

We introduce the following property, a necessary condition of successful subspace clustering, which
is similar to the one used in [Wang and Xu, 2013; Soltanolkotabi et al., 2014].

Definition 3.5 (Subspace Detection Property). A symmetric affinity matrix A obtained from X has
subspace detection property if for all i, the nonzero elements of ai correspond to the columns of X
in the same subspace as xi.

For convenience, let π(i) be the index of the subspace xi belongs to and Cj be the index set of the
columns of X in subspace j. We consider the following deterministic model.

Definition 3.6 (Deterministic Model). The columns of X ∈ Rm×n are drawn from a union of k
different subspaces and are further corrupted by noise, where dim(S1 ∪ · · · ∪ Sk) = d < m ≤ n.
Let X = UΣV > be the SVD of X , where Σ = diag(σ1, . . . , σn) and σ1 ≥ σ2 ≥ · · ·σn. Let
γ = σd+1/σd. Denote vi = (vi1, . . . , vin) the i-th row of V and let v̄i = (vi1, . . . , vid). Suppose
the following conditions hold4: 1) for every i ∈ [n], the τ̄ -th largest element of {|v̄>i v̄j | : j ∈ Cπ(i)}
is greater than α; 2) maxi∈[n] maxj∈[n]\Cπ(i)

|v̄>i v̄j | ≤ β; 3) maxi,j,l |vilvjl| ≤ µ.

Then the following theorem verifies the effectiveness of (13) followed by the truncation (threshold-
ing) operation in subspace detection.

Theorem 3.7. Suppose X is given by Definition 3.6 and C is given by (13) with(
ρ−
√
ρ2−4(2µd−∆)(2µm−2µd−∆)

)
σ2
d

4µd−2∆ < λ <

(
ρ+
√
ρ2−4(2µd−∆)(2µm−2µd−∆)

)
σ2
d

4µd−2∆ (16)

where ρ = 2µmγ2 −∆(1 + γ2) and ∆ = α− β. Then the C truncated by τ ≤ τ̄ has the subspace
detection property.

4γ measures the noise level, β is dominated by the difference between subspaces, and µ quantifies the
incoherence in the singular vectors.
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In Theorem 3.7, the width of the range of λ is w =

√
ρ2−4(2µd−∆)(2µm−2µd−∆)σ2

d

2µd−∆ . We see that a
larger σd, ∆, or smaller γ, d leads to a wider range of λ, which corresponds to a simper clustering
problem. When ρ2 ≤ 4(2µd−∆)(2µm−2µd−∆), λ does not exist. Theorem 3.7 can be extended
to the kernel case (15) without the restriction of d < m even when the columns of X are drawn from
a union of nonlinear low-dimensional manifolds. See Definition C.1, Definition C.2, and Theorem
C.3 in Appendix C. Based on Theorem 3.7 and Theorem C.3, the follow proposition indicates that
AutoSC can cluster the data correctly.
Proposition 3.8. Suppose the affinity matrix A given by AutoSC has the subspace or manifold
detection property (defined in Appendix C) and reg(L) = σk+1

ε > 0. Then each component of G
consists of all columns of X in the same subspace or manifold.

Now we see that LSR and KLSR with thresholding can provide effective self-expressive affinity
matrices for AutoSC without performing iterative optimization. On the other hand, the relative-
eigen-gap is able to compare LSR with KLSR, compare different kernels, and evaluate λ, τ , and
kernel parameters. Note that if we use SSC and KSSC instead of LSR and KLSR, AutoSC will be
very time-consuming. If we use LSR and KLSR without thresholding, AutoSC may not provide
high clustering accuracy. We hope that AutoSC is not only automatic but also accurate and efficient.

3.5 AutoSC+NSE for Large-Scale Data

Since the time and space complexity of AutoSC are quadratic with n, it cannot be directly applied
to large-scale datasets. To solve the problem, we propose to perform Algorithm 1 on a set of s
landmarks of the data (denoted by X̂) to get a Ẑ. The landmarks can be generated by k-means or
randomly. Then we regard Ẑ as a feature matrix and learn a map g : Rm → Rk from X̂ to Ẑ.
According to the universal approximation theorem [Sonoda and Murata, 2017] of neural networks,
we approximate g by a two-layer neural network and solve

minimize
W1,W2,b1,b2

1

2s
‖Ẑ −W2ReLU(W1X̂ + b11

>
s )− b21

>
s ‖2F +

γ

2

(
‖W1‖2F + ‖W2‖2F

)
, (17)

where W1 ∈ Rd×m, W2 ∈ Rk×d, b1 ∈ Rd, and b2 ∈ Rk. Since A is sparse, k is often less than
m, and a neural network is used, we call (17) Neural Sparse Embedding (NSE). We use mini-batch
Adam [Kingma and Ba, 2014] to solve NSE. It is worth noting that NSE is different the method
proposed by [Li et al., 2020]. In [Li et al., 2020], the regression is for an affinity matrix, which
leads to high computational cost. The network learned from (17) is applied to X to extract a k-
dimensional feature matrix Z:

Z = ĝ(X) = W2ReLU(W1X + b11
>
n ) + b21

>
n . (18)

Finally, we perform k-means on Z to get the clusters. The procedures are summarized into Algo-
rithm 2 (see Appendix B). Note that the time complexity of AutoSC+NSE is O(dmn+ d̃s2), where
d̃ depends on the specific AMC method. When s� n, the time complexity of AutoSC+NSE is lin-
ear with the number of data points n. Proposition C.4 in Appendix C.2 shows that a small number
of hidden nodes in NSE are sufficient to make the clustering succeed.

4 Experiments

We test our AutoSC on Extended Yale B Face [Kuang-Chih et al., 2005], ORL Face [Samaria
and Harter, 1994], COIL20 [Nene et al., 1996], AR Face [Martı́nez and Kak, 2001], MNIST
[LeCun et al., 1998], Fashion-MNIST [Xiao et al., 2017], GTSRB [Stallkamp et al., 2012], sub-
sets and extracted features of MNIST and Fashion-MNIST. The descriptions for the datasets are
in Appendix D.1. Our MATLAB codes are available at https://github.com/jicongfan/
Automated-Spectral-Clustering.

4.1 Intuitive validation of AutoSC

Performance of Relative-Eigen-Gap First, we use LSR and KLSR to show the effectiveness of
the proposed reg(L). Figure 1(i) shows an intuitive example of the performance of LSR and KLSR

7
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in clustering a subset of the Extended Yale B database, where for (15) we use Gaussian kernel with
ς = 1

n2

∑
ij ‖xi − xj‖. We see that: 1) in LSR and KLSR, for a fixed λ (or τ ), the τ (or λ)

with larger reg(L) provides higher clustering accuracy; 2) for a fixed λ and a fixed τ , if LSR has a
larger reg(L), its clustering accuracy is higher than that of KLSR, and vice versa. We conclude that
roughly a larger reg(L) indeed leads to a higher clustering accuracy, which is consistent with our
theoretical analysis in Section 3.2.

(i) Clustering accuracy and reg(L) (rescaled between 0
and 1) and clustering accuracy of LSR and KLSR on the
first 5 subjects of the Extended Yale Face B database.

(ii) Clustering accuracies of SSC, LRR, and BDR-
B with different hyperparameter λ in comparison to
AutoSC-GD with LSR and KLSR on the Extended
Yale Face B database. The value of λ used in BDR-
B has been divided by 10. The γ in BDR-B is cho-
sen from {0.01, 0.1, 1} and the best one is used for
each λ. In Case (b), the time costs of SSC, LRR,
BDR-B, and AutoSC-GD are 9.5s, 33.0s, 7.6s, and
1.6s respectively.

Figure 1: Examples about reg(L), clustering accuracy, and hyperparameters on Extended Yale B.

Now we show the superiority of LSR and KLSR compared to a few important AMC methods. Figure
1(ii) shows the clustering accuracy of SSC [Elhamifar and Vidal, 2013], LRR [Liu et al., 2013], and
BDR-B [Lu et al., 2018] with different hyperparameters and our method Auto-GD with LSR and
KLSR (detailed by Algorithm 1 in the supplementary material) on the Extended Yale Face B subset.
SSC and BDR-B are sensitive to the value of λ, especially for the relatively difficult task, say Figure
1(ii-b). LRR is not sensitive to the value of λ but its accuracy is low. LSR and KLSR are more
accurate and efficient than other methods.

The performance of AutoSC-BO We show the performance of AutoSC-BO with many AMC
methods such as SSC [Elhamifar and Vidal, 2013] and LSR. Taking the KLSR model (15) with
polynomial kernel as an example, the parameters are θ = (λ, b, q, τ)> and the constraints are given
by S = {λ ∈ R : λmin ≤ λ ≤ λmax; b ∈ R : bmin ≤ b ≤ bmax; q ∈ Z+ : qmin ≤ q ≤
qmax; τ ∈ Z+ : τmin ≤ τ ≤ τmax}. More details are in Appendix D.5. Shown in Table 2, larger
reg corresponds to higher clustering accuracy and KLSR with polynomial kernel (the optimal q is 1)
performs best. Figure 2 shows the performance of KSSC [Patel and Vidal, 2014] and KLSR in each
iteration of AutoSC-BO.

Table 2: Clustering accuracy of AutoSC-BO with many methods on Yale Face B dataset (first 10
subjects). All hyperparameters of the kernel functions were optimized via Bayesian optimization.

AMC ε-neigh
-borhood

Polynomial
kernel

Gaussian
kernel

KSSC
(Gauss)

KSSC
(Poly)

KLSR
(Gauss)

KLSR
(Poly)

regmax 0.776 1.294 1.307 0.892 1.388 2.217 2.379
Accuracy 0.325 0.389 0.393 0.584 0.859 0.963 0.966

Relative-Eigen-Gap versus Eigen-Gap We compare the proposed relative-eigen-gap (reg(L))
with eigen-gap (denoted by eg(L)), and the regularizer J(L, α) proposed by [Meila and Shortreed,
2006] with different α. Note that in AutoSC, we need to minimize J(L, α) instead. The clustering
results of AutoSC-GD are reported in Table 3 (details about the datasets are in Section 4). We see
that our reg(L) outperforms eg(L) and J(L, α) in all cases except AR.
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(i) reg(L) and clustering accuracy of KLSR and
KSSC in each iteration of BO.

(ii) reg(L) and hyperparameters of KLSR and KSSC
in each iteration of BO.

Figure 2: AutoSC-BO with KSSC and KLSR on the first 10 subjects of YaleB Face dataset.

Table 3: The comparison of AutoSC-GD with reg(L), eg(L), and J(L, α)
YaleB ORL COIL20 AR MNIST F-MNIST

eg(L) 0.790 0.768 0.619 0.805 0.663 0.562
J(L, 0) 0.823 0.795 0.750 0.804 0.726 0.516
J(L,−0.1) 0.818 0.788 0.768 0.826 0.718 0.519
J(L,−1) 0.812 0.785 0.769 0.817 0.722 0.523
J(L,−10) 0.804 0.788 0.768 0.832 0.731 0.539
J(L,−100) 0.788 0.765 0.769 0.817 0.735 0.545
reg(L) 0.897 0.795 0.782 0.786 0.755 0.595

4.2 Comparative studies of AutoSC and baselines

First we compare AutoSC with SSC, LRR [Liu et al., 2013], LSR [Lu et al., 2012], EDSC [Pan
Ji et al., 2014], KSSC, SSC-OMP [You et al., 2016b], BDR-Z [Lu et al., 2018], and BDR-B [Lu
et al., 2018] on six smaller datasets. The clustering accuracy and time cost are reported in Ta-
ble 4. AutoSC-GD and AutoSC-BO outperformed other methods significantly in almost all cases.
SSC-OMP and AutoSC-GD are more efficient than SSC, LRR, EDSC, and KSSC. The time cost of
AutoSC-BO is much higher than that of AutoSC-GD because the former optimizes all hyperparam-
eters including λ, τ , and kernel parameters (e.g. b, q).

Table 4: Clustering performance on the six small datasets. For the MNIST-1k and Fahsion-MNIST-
1k, we report the average results of 20 trials because the subset is formed randomly. AutoSC chose
LSR for Yale B and AR and chose KLSR for others datasets. The NMI results are in Table 7 (See
Appendix D.3).

SSC LRR LSR EDSC KSSC SSC-OMP BDR-Z BDR-B AutoSC-GD AutoSC-BO

Yale B acc 0.723 0.643 0.592 0.806 0.649 0.768 0.596 0.719 0.897 0.909
time 273.8 928.1 7.3 58.6 464.3 8.9 368.8 368.8 19.1 78.3

ORL acc 0.711 0.762 0.680 0.712 0.707 0.665 0.739 0.735 0.795 0.803
time 2.7 8.8 0.5 2.0 2.6 0.4 3.9 3.9 2.3 20.5

COIL20 acc 0.871 0.729 0.695 0.759 0.912 0.658 0.713 0.791 0.782 0.878
time 61.8 221.2 1.4 15.4 100.6 2.5 86.8 86.8 7.6 39.2

AR acc 0.718 0.769 0.665 0.673 0.726 0.669 0.745 0.751 0.786 0.826
time 317.5 1220.6 14.5 69.1 627.4 57.6 578.7 578.7 43.4 130.6

MNIST
-1k

acc 0.596
(0.054)

0.513
(0.037)

0.554
(0.041)

0.536
(0.035)

0.577
(0.053)

0.542
(0.038)

0.576
(0.037)

0.578
(0.043)

0.615
(0.041)

0.619
(0.038)

time 24.9 69.1 0.8 5.2 32.8 1.3 26.9 26.9 2.5 21.7

Fashion-
MNIST-1k

acc 0.553
(0.025)

0.515
(0.014)

0.563
(0.023)

0.544
(0.017)

0.548
(0.016)

0.566
(0.034)

0.574
(0.019)

0.563
(0.031)

0.581
(0.025)

0.584
(0.021)

time 24.1 68.5 0.7 5.1 35.9 1.2 25.7 25.7 2.6 22.7
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We compare our method with LSR, LSC-K [Chen and Cai, 2011], SSC-OMP [You et al., 2016b],
and S5C [Matsushima and Brbic, 2019], and S3COMP-C [Chen et al., 2020] on the larger datasets.
The parameter settings are in Appendix D.6. Table 5 shows the clustering accuracy and standard
deviation of 10 repeated trials on the raw-pixel data of MNIST and Fashion-MNIST. Table 6 shows
the results on MNIST and Fashion-MNIST features and GTSRB. Our methods have the highest
clustering accuracy in every case. Note that if NSE is ablated, the accuracy of AutoSC-GD on
MNIST(features)-10k, -20k, and -30k are 0.9772, 0.9783 and 0.9864 respectively, higher than those
of AutoSC-GD+NSE, though the time costs increased.

It is worth mentioning that, to the best of our knowledge, the deep clustering method of [Zhang et al.,
2019a] has SOTA performance on Yale B (acc=0.98) and ORL (acc=0.89), the method proposed by
[Zhang et al., 2019b] has SOTA performance on Fashion-MNIST (acc=0.72), the method proposed
by [Mahon and Lukasiewicz, 2021] has SOTA performance on MNIST (acc=0.99), and our method
has SOTA performance on GTSRB. Nevertheless, we focus on automated spectral clustering.

Table 5: Clustering accuracy and time cost (second) on MNIST and Fashion MNIST. “—” means
the computation is out of memory.

LSR LSC-K SSC-OMP S5C S3COMP-C AutoSC-GD+NSE AutoSC-BO+NSE

MNIST-10k acc 0.583(0.007) 0.652(0.037) 0.431(0.014) 0.646(0.045) 0.623(0.028) 0.687(0.035) 0.679(0.034)
time 154.9 18.9 26.4 82.3 710.4/20 16.2 48.3

MNIST acc — 0.665(0.021) 0.453(0.017) 0.627(0.025) — 0.755(0.022) 0.750(0.009)
time — 329.2 1178.3 961.5 — 86.9 123.6

Fashion-
MNIST-10k

acc 0.561(0.008) 0.571(0.025) 0.509(0.038) 0.565(0.021) 0.569(0.024) 0.576(0.011) 0.572(0.019)
time 153.6 18.6 26.8 107.3 707.2/20 17.3 50.9

Fashion-
MNIST

acc — 0.561(0.015) 0.359(0.017) 0.559(0.013) — 0.586(0.008) 0.578(0.012)
time — 335.1 1156.6 932.6 — 88.7 122.8

Table 6: Clustering accuracy (mean value and standard deviation) and time cost (second) on MNIST
and Fashion-MNIST with feature extraction. “/” means the algorithm was performed on a computa-
tional platform not comparable to ours. The underlined values are from [Chen et al., 2020].

LSC-K SSC-OMP S5C S3COMP-C AutoSC-GD+NSE AutoSC-BO+NSE

MNIST acc 0.8659(0.0215) 0.8159 0.7829(0.0283) 0.9632 0.9775(0.0034) 0.9741(0.0044)
time 273.6 280.6 907.5 416.8 59.2 115.3

Fashion-
MNIST

acc 0.6131(0.0298) 0.3796(0.0217) 0.6057(0.0227) — 0.6398(0.0133) 0.6461(0.0104)
time 251.8 1013.9 913.2 — 61.9 112.6

GTSRB acc 0.8711(0.0510) 0.8252 0.9044(0.0267) 0.9554 0.9873(0.0126) 0.9881(0.0078)
time 31.2 / 98.7 / 16.8 69.4

5 Conclusion

We have proposed an automated spectral clustering method. Extensive experiments showed the ef-
fectiveness and superiority of our methods over baseline methods. The efficiency improvement is
from the closed-form solutions of the least squares regressions. The accuracy improvement is from
the effectiveness of LSR and KLSR with thresholding and the automation of model and hyperparam-
eter selection. One limitation of this work is that we only considered automated spectral clustering
while there are many other clustering methods (e.g. [Fan, 2021]) not relying on affinity matrix.
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(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15


	Introduction
	Related work
	Automated Spectral Clustering (AutoSC)
	Preliminary Knowledge
	Relative Eigen-Gap Guided Search
	AutoSC via Bayesian Optimization
	Discussion on AMC Methods for AutoSC and LSR with Thresholding
	AutoSC+NSE for Large-Scale Data

	Experiments
	Intuitive validation of AutoSC
	Comparative studies of AutoSC and baselines

	Conclusion
	More discussion about LSR and KLSR
	The algorithm of AutoSC+NSE
	More theoretical results
	Theoretical guarantee for KLSR
	Theoretical analysis for NSE

	More about the experiments
	Dataset description
	Hyperparameter settings for the small datasets
	Clustering results in terms of NMI
	The stability of AutoSC
	More about AutoSC-BO in the experiments
	Hyperparameter settings of large-scale clustering
	Influence of hyper-parameters in AutoSC+NSE

	Proof for the theoretical results
	Proof for Claim 3.2
	Proof for Claim 3.3
	Proof for Theorem 3.4
	Proof for Proposition A.1
	Proof for Theorem 3.7
	Proof for Proposition 3.8
	Proof for Theorem C.3
	Proof for Proposition C.4


