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Abstract

Adapting large pre-trained models (PTMs) through fine-tuning imposes prohibitive
computational and storage burdens. Recent studies of delta tuning (DT), i.e.,
parameter-efficient tuning, find that only optimizing a small portion of parameters
conditioned on PTMs could yield on-par performance compared to conventional
fine-tuning. Generally, DT methods exquisitely design delta modules (DT modules)
which could be applied to arbitrary fine-grained positions inside PTMs. However,
the effectiveness of these fine-grained positions largely relies on sophisticated
manual designation, thereby usually producing sub-optimal results. In contrast
to the manual designation, we explore constructing DT modules in an automatic
manner. We automatically Search for the Sparse Structure of Delta Tuning
(S3Delta). Based on a unified framework of various DT methods, S3Delta conducts
the differentiable DT structure search through bi-level optimization and proposes
shifted global sigmoid method to explicitly control the number of trainable pa-
rameters. Extensive experiments show that S3Delta surpasses manual and random
structures with less trainable parameters. The searched structures preserve more
than 99% fine-tuning performance with 0.01% trainable parameters. Moreover, the
advantage of S3Delta is amplified with extremely low trainable parameters budgets
(0.0009%∼0.01%). The searched structures are transferable and explainable,
providing suggestions and guidance for the future design of DT methods. Our
codes are publicly available at https://github.com/thunlp/S3Delta.

1 Introduction

Increasingly large pre-trained models (PTMs) [6, 27, 30, 31, 12] building upon Transformers [36]
have been emerging and achieving state-of-the-art results on a variety of downstream tasks. Despite
the blessing of effectiveness, these big models also bring the curse of prohibitive costs on computation
and storage during the adaptation because of the gradient computation of the whole model and the
giant size of the fine-tuned checkpoint.

To alleviate such costs, studies of delta tuning (DT) [7], also known as parameter-efficient tuning [15,
28, 42, 16, 25, 9, 20, 18], have been developed, which only train a small portion of PTMs and
keep the vast majority of parameters frozen. Studies have verified that delta tuning could achieve
competitive performance compared to conventional fine-tuning with very few trainable parameters,
resulting in considerable savings in model adaptation costs. Generally, these approaches manually
design delta modules (DT modules) to complete model adaptation. For example, adapter-based
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methods [15, 28, 25] inject two newly-introduced feed-forward layers to Transformers and only fine-
tune 0.5%-8% parameters to yield promising results; BitFit [42] only fine-tunes the bias terms (0.04%
- 0.1% parameters) within Transformers; LoRA [16] inserts trainable rank decomposition matrices
to each layer of Transformers and is successfully adopted on GPT-3 [2] with 175 billion parameters.

While early research focused on how to design practically effective DT modules, more recent research
has advanced the understanding of delta tuning more deeply. He et al. [13] bridge connections among
different approaches to form a unified framework. And Ding et al. [7] indicate that the combination
of different trainable modules could bring different levels of gain on downstream tasks. The above
empirical evidence implies that there may exist an optimal mixture of DT modules that is more
effective than manually designed structures. In fact, considering the fine-grained structure inside
PTMs, the positions where the DT modules could be applied are numerous, but not all DT modules
at all positions contribute equally to the task performance. How to find the optimal structure of
DT modules and remove the redundancy in the trainable parameters is essential for a more efficient
adaption method. Predictably, such optimal structure is difficult to construct artificially and may
vary with specific tasks and models. Therefore, we propose to automatically search the optimal
structure that contains a mixture of DT modules at diverse positions inside PTMs. Also importantly,
the structure should be sparse to ensure the parameter efficiency.

We present Sparse Structure Search for Delta Tuning (S3Delta) to automatically search such
optimal trainable structure, which could flexibly control the number of trainable parameters
according to practical requirements. The searching process and the optimization of S3Delta is
guided by performance to ensure the effectiveness on specific tasks. Moreover, the structures
change automatically to suit the preset limitation of the number of trainable parameters. In contrast,
heuristically designed structures are usually coarse-grained and independent of performance and
budget, making them neither optimal nor flexible to adjust the number of trainable parameters.

In terms of the specific methodology, we firstly construct a unified search space by applying
probabilistic gating controlled by structural parameters to all potential DT modules. Then, we
develop a framework of differentiable DT structure search by treating the problem as a constrained
neural architecture search problem. In our framework, the structural parameters are updated via
bi-level optimization [22]. Unlike the traditional neural architecture search that learns from scratch,
we implement the first neural structure search based on a pre-defined backbone and under the delta
tuning scenario. To search under a pre-defined budget of trainable parameters, we develop a shifted
global sigmoid to explicitly control the number of activated DT modules in the searching phase.

We conducted extensive experiments to study the effectiveness of S3Delta. Firstly, the experiments
show that with 0.01% parameters, we are able to recover 99% and 98% fine-tuning performance on
GLUE [38] and SuperGLUE [37], respectively. Secondly, the searched structure surpasses the human-
designed structures considerably while consuming less (∼ 1/5) trainable parameters. Moreover,
the advantage enlarges when the number of trainable parameters is minimal (0.0009%∼ 0.01%).
Furthermore, the searched structures are transferable across tasks, which significantly strengthens the
usefulness of the searched structures. Apart from the performance boost, we visualize and explain
the searched structures, which is beneficial to the future design of new DT methods.

2 Related Work

Delta Tuning (DT). Our work is related to the studies of delta tuning (DT) for pre-trained models [7].
Generally, DT only optimizes a small portion of parameters and leaves the vast majority of
parameters untouched for the adaptation to downstream tasks. Pioneer work select parts of the
PTMs to be trainable [35, 11, 10]. Adapter [15] is one of the earliest methods that apply the concept
of parameter-wise efficiency to pre-trained language models, which inserts linear neural modules
to every Transformer layer and achieves on-par results to full fine-tuning. As the PTMs scaling
in recent years, DT is valued for its efficiency in computing and storage. This has spawned not
only empirical studies [28, 14] and variants on the adapter [28, 25, 34], but also a range of other
approaches. Prefix tuning [20] prepends embeddings to the hidden states of the Transformer model,
and prompt tuning [18] further simplifies the strategy and only prepends such embeddings to the
input layer. There are also approaches which specify some of the parameters inside PTMs that can be
trainable to achieve good results, such as Masking [43], BitFit [42], DiffPruning [9], etc. LoRA [16]
assumes that the change in model weights is intrinsically low-rank after fine-tuning, and uses
trainable rank-decomposition matrices for model adaptation. In addition to specific methods, some
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studies have comprehensively investigated DT methods. He et al. [13] models multiple methods
in a unified manner, Ding et al. [7] provides a theoretical discussion and comprehensive empirical
study of these methods. Our work proposes to automatically search for trainable structures in the
context of DT, which is a different perspective from all the aforementioned work. In terms of the
structure of DT, AdapterDrop [33] explores dropping a fraction of Adapter modules based on manual
trials. A concurrent work [26] learns switches on Adapter modules to select the beneficial adapter
modules. However, it is not optimized under a preset number of trainable parameters. They are also
both limited to adapter-based methods. On the contrary, our proposed method can search within
a mixture of almost all DT modules under a constrained trainable parameter budget.

Neural Architecture Search (NAS). Our work conducts structure search in the scope of DT,
which is related to the Neural Architecture Search algorithms. A line of NAS algorithms uses
Reinforcement Learning or Evolutionary Algorithms to explore the best structure with reward from
training the structure from scratch [44, 45, 32, 29], which usually consumes prohibitive computation
resources. Another line of NAS algorithms [22, 21, 5] approaches the problem with gradient-based
optimization. DARTS [22] relaxes the discrete structure using continuous structural parameters,
which are optimized with gradient-based optimization. DARTS achieves competitive performances
with much fewer computational resources. We take inspirations from DARTS in optimizing the
structural parameters of S3Delta. We are also the first to conduct NAS conditioned on a pre-trained
backbone model. We also take inspiration from the NAS algorithms with binary gates [3, 40].

3 Method

In this section, we firstly introduce the preliminaries of pre-trained model adaptation, transformer
architecture, and the delta tuning. Then we introduce our method S3Delta in detail.

3.1 Preliminaries

Pretrained Model Adaptation. The recent prevalent pre-train then fine-tune paradigm in deep
learning takes advantage of a pre-trained model M with parameters Θ and continues to optimize Θ
on a downstream task D = {Dtrain,Dval,Dtest} under an objective function L. In fine-tuning, all the
parameters of the pre-trained model are optimized using the train split to minimize L, i.e.,

minΘ L(M(Θ),Dtrain). (1)

Transformer Architecture. The pre-trained models typically adopt the Transformer model [36]
as their backbone. The Transformer model is composed of multiple stacked Transformer layers
that processes the hidden state sequentially through different computation modules, such as
Self-Attention module (SelfAttn), Cross-Attention module (CrossAttn), Feed-Forward module (FFN),
and Layer Normalization module (LN), etc., and details of each module are in Appendix A. The
computation process in the Transformer can be abstracted by a sequence of transformations of the
hidden representation. In each computation step, the input hidden representation Hin ∈ Rs×d1 is
transformed into an output hidden representation Hout ∈ Rs×d2 , where s is the sequence length of
the input and d1, d2 are the hidden dimensions,

Hout = m(Hin). (2)

Delta Tuning (DT). DT methods only train a small portion of parameters conditioned on the backbone
PTMs to improve the adaptation efficiency [15, 28, 42, 16, 25, 9, 20, 18]. Although the specific
forms of the various DT modules are substantially different, He et al. [13] unify them as modifications
∆ of the hidden state 3,

Hout = m(Hin) + ∆. (3)

The formulas of some DT methods under the unified view are listed in Table 1. The DT modules can
be applied to extensive positions on the backbone PTMs, which are listed in the rightmost column
in Table 1. In training, we freeze all the parameters in the backbone module m, i.e., Θ, and set

3We use a little bit more flexible notation than [13], which takes into account the frozen backbone module
m and thus can distinguish the DT modules that take either Hout or Hin as their input.
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Table 1: Different DT methods are the specializations of the unified view (Equation (3)) and can be
applied to extensive positions on the PTMs.

Method Transformation ∆ Potential Positions

LoRA [16] Hout = Hin(W +AB) H0AB Weight matrices
Adapter [15] Hout = m(Hin) + f(m(Hin)Wdown)Wup f(m(Hin)Wdown)Wup After any modules

Parallel Adapter [13] Hout = m(Hin) + f(HinWdown)Wup f(HinWdown)Wup Between any two modules
BitFit [42] Hout = m(Hin) + bδ bδ Linear layers

LNFit 4 Hout = Hin

Var(Hin) (s+ sδ) + b Hin

Var(Hin)sδ Layer Normalization modules

Explicit
sparsity control

Differentiable sampling
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Figure 1: The framework of S3Delta. We propose a unified search space with probabilistic gating
to enable search among a mixture of DT methods. We find the optimal sparse structure using the
differentiable DT structure search and explicit sparsity control.

parameters introduced in computing ∆, denoted by δ, as the only trainable parameters. Therefore,
the adaptation objective in DT is

minδ L(M(Θ, δ),Dtrain). (4)

For the convenience of notation, we simplify Equation (4) into

minδ Ltrain(δ). (5)

3.2 Sparse Structure Search for Delta Tuning

Our target is to search for the optimal structure of DT constrained by a pre-defined and limited
trainable parameter budget B. To achieve this, we design Sparse Structure Search for Delta Tuning
(S3Delta), which is driven by three essential components: a unified search space with probabilistic
gating, an efficient differentiable DT structure search algorithm, and an explicit sparsity control
algorithm using shifted global sigmoid.

Unified Search Space with Probabilistic Gating. The potential positions in the backbone models
to which DT modules could be applied are extensive, especially when we consider a mixture of
different types of DT modules through the unified view (Equation (3)). However, not all positions
contribute to the task performance equally, and only a fraction of positions should be activated
to avoid redundancy of the trainable parameters. To this end, we design a probabilistic gating
mechanism over all possible DT modules’ positions. Specifically, for each DT module that computes
∆i for the hidden representation, we activate the modification ∆i with probability pi ∈ [0, 1],

Hout
i = m(Hin

i ) + zi∆i, (6)

where zi ∈ {0, 1} ∼ B(1, pi) is a random sample from Bernoulli distribution.

Differentiable DT Structure Search. Finding the optimal structure from a search space with abun-
dant potential positions is challenging due to the compositionality of activated positions. Furthermore,

4LNFit only trains the variance vector in the Layer Normalization module of the PTMs, which is inspired
by Frankle et al. [8] who only train the Batch Normalization module in Convolutional Neural Networks.
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directly comparing the fully trained model with each DT structure is intractable. In our work, we
propose to optimize the gating probability pi with gradient-based optimization. To make the sampling
process differentiable, we use the Binary Concrete Distribution [24, 17] as a soft and differentiable
approximation to the Bernoulli distribution,

ẑi = σ

(
1

β
log

upi
(1− u)(1− pi)

)
, (7)

where u ∼ U(0, 1) is a random sample from the uniform distribution in [0, 1] and β is the temperature
to control the sharpness of the distribution ẑi distribution 5. Similar distributions are used in learning
sparse networks [23] or pruning dense networks [39]. By replacing the hard sample zi with the soft
approximation ẑi , we can back-propagate through pi in training. However, directly optimizing pi
in the probability space [0, 1] may lead to numerical instability, therefore, we parameterize it with
structural parameters αi ∈ R, i.e., pi = g(αi). And we denote all the structure parameters as α.

We optimize α through bi-level optimization [1, 22], i.e., optimizing α conditioned on the optimized
parameters δ∗ of the DT modules. The inner and outer level of optimization are conducted on separate
splits of training data, denoted by Dδ,Dα, which is analogous to validating structures trained on Dδ

using a different split Dα to avoid over-fitting to Dδ . Thus, the optimization objective is

minα Lα(M(Θ, δ∗,α)), (8)
s.t. δ∗ = argminδ Lδ(M(Θ, δ,α)). (9)

Following DARTS [22], we make approximations to the gradient of the structural parameters by
applying chain rule and taking finite difference approximations 6,

∇αLα (δ∗,α) (10)
≈∇αLα (δ − ξ∇δLδ(δ,α),α) (11)

≈∇αLα

(
δ′,α

)
− ξ∇2

α,δLδ(δ,α)∇δ′Lα

(
δ′,α

)
(12)

≈∇αLα(δ
′,α)− ξ

∇αLδ(δ
+,α)−∇αLδ(δ

−,α)

2ϵ
, (13)

where the optimal δ∗ is approximated by the parameters of one-step update δ′ = δ−ξ∇δLδ(δ,α). ξ
is the learning rate of parameters δ, and ϵ is a small scalar used in the finite difference approximation.

Explicit Sparsity Control with Shifted Global Sigmoid. Most of the DT modules in the search
space are redundant and contribute little to the performance. However, the search algorithm may
not be aware of the sparsity target and degenerate to greedily adding more DT modules. As opposed
to previous sparse network learning methods [23, 9] which punish the dense structures with L0

regularization, we explicitly control the sparsity of structure at the target level during the search
through a shifted global sigmoid parameterization. (See Section 4.9 for comparing the two methods),

pi = p̃i

∑
i Detach(p̃i)∑

i p̃i
, (14)

where p̃i = Sigmoid(
αi − ζ

τ
). (15)

The Detach(·) operator turns a parameter that requires gradient into a scalar that is free from gradient
computation. Equation (14) doesn’t change the value of p̃i, but it enforces the competition among
different positions and DT modules, which is similar to Softmax operation (See Appendix C.2 for
details).

5The distribution of ẑi has the property that P (ẑi > 0.5) = pi, and when β approximate 0, the distribution
of ẑi converges to B(1, pi) (See Appendix C.1), which makes it a suitable surrogate for Bernoulli distribution.

6We use the same ẑi sample to compute ∇αLδ(δ
+,α), ∇αLδ(δ

−,α), ∇δLδ(δ,α), and ∇αLα (δ′,α).
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In Equation (15), ζ is a scalar. Increasing ζ’s value will monotonically reduce pi to 0 while keeping
pi in [0, 1]. So the expected number of trainable parameters E[N ] is a monotonic function w.r.t. ζ,

E[N ] = E

[∑
i

I(zi = 1)|δi|

]
≈ E

[∑
i

I(ẑi > 0.5)|δi|

]
=

∑
i

pi|δi|, (16)

where the |δi| is the number of parameters introduced in computing ∆i. Thus, we can dynamically
adjust ζ to make E[N ] approach B via monotonic optimization,

ζ∗ = argminζ(
∑
i

pi|δi| − B), where
∑
i

pi|δi| ≤ B. (17)

Evaluation of the Searched Structure. To determine the final structure of DT, instead of sampling
from pi, we choose the set of positions where the sum of pi is the highest while still being within the
budget B. This deterministic algorithm reduces the variance of the final structures. After obtaining the
final structure, we re-initialize and re-train the parameters in the DT modules to converge on Dtrain.

Algorithm 1 Algorithm of S3Delta

Initialize all DT modules in the search space, and initialize α.
while not converged do

1. Calculate ζ, pi, and sample ẑi.
2. Compute the each loss terms by forward and backward propagation.
3. Update α according to Equation (13).
4. Update δ using ∇δLδ(δ,α).

end while
Determine and evaluate the final structure.

4 Experiments

4.1 Datasets and PTMs

We apply S3Delta to multitask benchmarks GLUE [38] and SuperGLUE [37] following previous
works. All datasets are downloaded from the HuggingFace Datasets [19]. Since the test splits of these
datasets are held officially and invisible to the researchers, we conduct random splits from either
train set or validation set to make the new train, validation, and test splits, which is critical to ensure
fair evaluations according to Chen et al. [4]. We repeat 4 times using different random seeds for
experiments in Table 2, and 8 times for experiments in Figure 2. The details are in Appendix B. We
use the T5large model (703M parameters) as the backbone PTMs.

4.2 Baselines

We compare S3Delta with several widely used baselines (See Appendix B for details).

Fine-tune. Traditional fine-tuning trains all parameters in the PTMs.

LoRA. We apply LoRA linear layer to the Self-Attention’s query modules and value modules as Hu
et al. [16] suggest. We include two rank levels (r = 8 and r = 1) in our experiments.

Adapter. We adopt the first adapter method proposed by Houlsby et al. [15]. Their method requires
more parameters than the other methods but achieves good empirical results.

Low Rank Adapter (Adapter-LR). We adopt the Low Rank Adapter as an efficient variant of the
adapter-based method. It is proposed in [25] as a simple but effective baseline. The rank is set to 1.

BitFit. BitFit proposes to only adapt the bias layer in the model. We adopt the same setting as Zaken
et al. [42] that tunes the bias inside all linear modules, and the Layer Normalization layer7.

LNFit. We train the variance vector of all Layer Normalization layers’, including the Layer Normal-
ization after the whole transformer encoder.

7Although T5 has no bias in linear modules, we can treat it as bias vectors with zero initialization.
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Table 2: Results on GLUE [38] benchmark (above) and SuperGLUE [37] benchmark (below).
Green and blue represent the best and second best scores, respectively, among the methods in our

search space. The first three rows represent the results of fine-tuning and other DT methods, which
are not used in our search space due to high trainable parameter ratios. On SuperGLUE tasks, since
the results on COPA vary dramatically (±26.00), the average results of SuperGLUE become easily
dominated by the results on COPA. Therefore we also report the average results that exclude COPA
(AVG−COPA). The widths of the yellow rectangles are proportional to the trainable parameter ratios.

GLUE
Parameter Ratios Method CoLA SST2 MRPC QQP STSB MNLI QNLI AVG

10000%% Fine-tune 62.25 ± 3.96 95.87 ± 0.42 91.86 ± 1.19 89.50 ± 0.22 91.86 ± 0.46 89.61 ± 0.30 94.22 ± 0.35 87.88
65.33%% Adapter 59.03 ± 3.06 95.90 ± 0.29 93.02 ± 0.28 88.39 ± 0.06 91.77 ± 0.25 89.53 ± 0.07 94.17 ± 0.19 87.40
21.32%% LoRA(r=8) 58.43 ± 4.16 95.79 ± 0.27 92.21 ± 0.88 88.35 ± 0.25 91.78 ± 0.31 89.38 ± 0.32 94.14 ± 0.12 87.15

Methods in the Search Space

8.13%% BitFit 56.98 ± 3.89 96.24 ± 0.33 92.16 ± 0.68 88.12 ± 0.07 91.59 ± 0.08 89.10 ± 0.09 94.07 ± 0.21 86.90
4.12%% Adapter-LR 56.78 ± 4.80 95.90 ± 0.14 92.76 ± 0.67 88.08 ± 0.13 91.26 ± 0.31 89.30 ± 0.14 93.94 ± 0.07 86.86
2.67%% LoRA(r=1) 56.77 ± 2.29 95.81 ± 0.27 92.45 ± 1.00 88.08 ± 0.11 91.54 ± 0.33 89.16 ± 0.17 94.10 ± 0.05 86.84
1.70%% LNFit 56.15 ± 4.06 95.81 ± 0.20 91.71 ± 0.39 88.17 ± 0.10 91.37 ± 0.24 89.11 ± 0.09 93.99 ± 0.20 86.62

1.39%% S3Delta-M 59.34 ± 4.75 95.84 ± 0.14 92.13 ± 2.09 88.04 ± 0.23 91.58 ± 0.25 89.14 ± 0.13 94.12 ± 0.12 87.17
1.39%% S3Delta-L 56.71 ± 3.03 95.93 ± 0.15 93.27 ± 1.39 88.14 ± 0.08 91.58 ± 0.49 88.81 ± 0.44 93.95 ± 0.11 86.91
0.35%% S3Delta-M 54.56 ± 3.66 95.93 ± 0.24 92.14 ± 1.10 88.02 ± 0.20 91.38 ± 0.34 89.04 ± 0.25 93.93 ± 0.14 86.43

SuperGLUE
Parameter Ratios Method BoolQ CB COPA MultiRC ReCORD RTE WIC AVG AVG−COPA

10000%% Fine-tune 86.67 ± 0.21 96.43 ± 2.92 73.50 ± 5.26 76.65 ± 1.01 85.03 ± 0.67 88.49 ± 2.12 73.12 ± 1.71 82.84 84.40
65.33%% Adapter 85.98 ± 0.68 94.64 ± 6.19 63.00 ± 7.75 77.60 ± 0.84 85.96 ± 0.37 89.21 ± 2.94 71.63 ± 0.90 81.15 84.17
21.32%% LoRA(r=8) 85.06 ± 0.70 91.96 ± 3.42 51.00 ± 4.16 76.94 ± 1.16 85.84 ± 0.21 87.05 ± 0.59 72.10 ± 1.31 78.56 83.16

Methods in the Search Space

8.13%% BitFit 85.02 ± 0.48 89.29 ± 2.92 75.00 ± 8.08 75.79 ± 1.15 85.85 ± 0.32 86.15 ± 1.48 72.34 ± 1.61 81.35 82.41
4.12%% Adapter-LR 84.53 ± 0.37 84.82 ± 8.44 49.50 ± 6.81 76.67 ± 1.37 86.04 ± 0.09 85.61 ± 2.42 71.39 ± 0.70 76.94 81.51
2.67%% LoRA(r=1) 85.60 ± 0.45 84.82 ± 1.79 67.50 ± 5.00 76.71 ± 1.05 85.95 ± 0.36 86.87 ± 1.08 71.32 ± 1.29 79.82 81.88
1.70%% LNFit 84.07 ± 0.50 82.14 ± 2.92 49.00 ± 1.15 75.52 ± 1.16 86.14 ± 0.11 86.69 ± 1.81 69.28 ± 1.49 76.12 80.64

1.39%% S3Delta-M 84.92 ± 0.68 92.86 ± 2.92 70.50 ± 3.79 76.38 ± 0.92 86.10 ± 0.11 86.69 ± 1.90 71.63 ± 1.07 81.30 83.10
1.39%% S3Delta-L 85.00 ± 0.67 90.18 ± 6.10 60.00 ± 9.52 76.17 ± 1.41 86.02 ± 0.15 85.79 ± 1.36 71.63 ± 1.39 79.26 82.46
0.35%% S3Delta-M 83.56 ± 0.53 87.50 ± 4.61 54.00 ± 4.32 76.09 ± 0.97 86.10 ± 0.26 85.79 ± 1.89 68.42 ± 1.89 77.35 81.24

We do not include Prompt Tuning [18] as our baseline because it takes much longer steps to converge
and doesn’t achieve competitive performance on T5large [18].

4.3 S3Delta Search Spaces and Budgets

The search space has a noteworthy influence on the performance of S3Delta. In our experiment, we
define two kinds of search space.

Mix. The first search space considers a mixture of LoRA, Adapter-LR, Bitfit, and LNFIT modules.
LoRA can be applied to any linear modules in the transformer block, including the query(Q), key(K),
value(V), output(O) sub-modules of the attention module(ATTN), and the two sub layer W1 and W2
in Feed Forward modules(FFN). The Adapter-LR can theoretically be applied to any position in the
computational graph. However, to avoid overcomplicating the search space, we limit it to the outputs
of the ATTN module and the FFN modules. For BitFit, the potential applied positions are all the
linear modules (Q, K, V, O, W1, W2) and the Layer Normalization modules (LN). For LNFit, the
potential positions are all the LN modules. In this search space, there are 916 potential DT modules
to be selected and the total number of candidate structures is 2916 if we do not consider the budget
constraint. We denote the structures searched on this search space as S3Delta-M.

LoRA. We narrow down the search space into a single type of DT module. We choose LoRA as an
example. The potential positions are the same as the LoRA modules in Mix search space. There are
288 potential positions in total. We denote the structures searched on this search space as S3Delta-L.

We also explore different numbers of trainable parameters. Experiments in Table 2 are conducted
on 1.39%% and 0.35%% trainable parameters ratios. More sparsity levels are tested in section 4.5.

4.4 Results on GLUE and SuperGLUE

Table 2 shows the performance of different methods on GLUE and SuperGLUE tasks. Comparing
S3Delta with the manual structures within the search space, we find that S3Delta-M (1.39%%)
achieves the highest average score on GLUE and SuperGLUE (without COPA) despite using the
least number of trainable parameters (∼ 1/5 compared to BitFit). S3Delta-M (0.35%%) also
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Figure 2: Performances under different trainable parameters ratios. The x-axis represents the ratio of
the number of trainable parameters to the backbone PTM’s parameters. The scaled y-axis represents
the scores. The accuracy of fine-tuning is in gray horizontal line. The result of LoRA (r=1) and Low
Rank Adapter are plotted in grey dot.

surpasses Adapter-LR, LoRA (r=1), LNFit using approximately 1/12, 1/8, 1/5 trainable parameters,
respectively. Narrowing the search space from Mix to LoRA leads to a moderate decrease in
performance, which justifies the need to search among a mixture of DT modules. It may also hint
that the combination of different DT modules could lead to stronger performance. However, even
though the performance of S3Delta-L is not optimal, it compares favorably to LoRA(r=1), which
also shows that the human designed structures, though benefit from applying DT modules uniformly
on the PTMs, is sub-optimal. Compared with fine-tuning, S3Delta-M (1.39%%) preserves 99.2%
and 98.1% performance on GLUE and SuperGLUE, respectively. In fact, we must emphasize
that S3Delta is orthogonal to specific DT modules. The performance of S3Delta can benefit from
the future invention of better DT modules, thus potentially achieving comparable or even superior
performance to fine-tuning with extremely limited trainable parameters.

4.5 Performance under Different Sparsity Levels

To explore the limit of trainable parameter reduction, we train different methods with decreasing
sparsity levels from 5.6%% to 0.086%%. To apply baseline methods on target numbers of trainable
parameters, we randomly sample a set of potential positions in their corresponding search space
to reach the target sparsity level. In Figure 2, we demonstrate the results on three datasets, RTE,
MultiRC and MRPC. We can see that S3Delta-M and S3Delta-L have considerable advantages
in extremely low trainable parameter budgets. For example, S3Delta-M trains only 0.086%%
parameters whereas recovering 96.8%,98.7%,97.5% of the FT performances on RTE, MultiRC,
MRPC, respectively. With 5.6%% trainable parameters on MultiRC and MPRC, all the methods
saturate to FT performance, proving the feasibility of removing redundant parameters with S3Delta.

4.6 Transferability of the Searched Structures

Another essential characteristic of S3Delta is the transferability of the searched structure. In Table 4,
we split the GLUE benchmark into source datasets and target datasets. We search on the source
dataset (Mix search space) and train the searched structure on the target datasets. We can see that
the searched structures are highly transferable, even surpassing the structures direct searched on the
target datasets sometimes. The transferability guarantees the reusability of the searched structures.

4.7 Efficiency of the Search Process

Although S3Delta focuses on the parameter-efficiency of the searched structures, we also analyze the
searching efficiency in Table 3. Generally speaking, the search for an optimal structure consumes
5∼8 times training time and 2 times GPU memory (Due to bi-level optimization). However, it is
affordable compared to manually designing different structures and running numerous evaluations.

4.8 Visualization and Explanations of the Search Structures

To understand the searched structures, we draw the heat maps of the pi on different datasets in
Appendix D.2. We find obvious patterns and similarities in most datasets. Therefore, we average the pi
across datasets to see the overall pattern of the searched structure. Figure 3 shows the heatmap of pi of
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Table 3: The computational resources
in the searching phase and re-training
phase, Computation time, memory
consumption are listed.

Dataset Search Re-train Ratio

Time/min

RTE 148.6 30.0 5.0
STSB 139.3 26.3 5.3
CoLA 145.6 17.0 8.6

Memory/GB

RTE 27.7 16.6 1.7
STSB 28.9 10.6 2.7
CoLA 16.1 8.9 1.8
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Figure 3: Visualization of pi of S3Delta-M. The numbers
on the squares are the average of pi across all datasets and
all seeds. The deeper the color is, the more activated is the
DT module. The x-axis represents different layers of PTMs
(E denotes Encoder, and D denotes Decoder), and the y-axis
represents different positions (modules) of PTMs.
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Figure 5: Visualization of pi of DT modules in S3Delta-L.

Table 4: Structure transfer from source datasets and target
datasets. The target datasets are in the row name, and the
source datasets are in the column names. “No transfer”
means the structure is searched on the target dataset.

Source Target Datasets

STSB QQP QNLI CoLA

No transfer 91.58 ± 0.25 88.03 ± 0.23 94.11 ± 0.12 59.34 ± 4.75
MRPC 91.63 ± 0.31 88.16 ± 0.08 93.96 ± 0.06 56.41 ± 3.81
MNLI 91.39 ± 0.67 88.06 ± 0.08 94.13 ± 0.10 56.38 ± 3.98
SST2 91.37 ± 0.23 88.02 ± 0.10 94.14 ± 0.16 55.58 ± 4.13

S3Delta-M. We can see that (1) The BitFit modules in the Self-Attention modules and Cross-Attention
modules in the higher decoder layers are highly preferred, proving that the BitFit modules are simple
and effective. This observation is also beyond the intuition of human experts, as most previous work
ignores the contribution of training or applying DT methods to Cross-Attention modules; (2) The
last layers of the encoder and decoder are emphasized, which is close to the traditional use of PTMs
as feature extractors by training only the last layer; (3) We also observe that BitFit modules tend to
be distributed approximately evenly across the higher layers (See Appendix D.2 for details). Figure 5
shows the pi of S3Delta-L. The trend of choosing higher layers still exists. Interestingly, the query
sub-modules are prioritized in the encoder, while the value sub-modules are stressed in the decoder.

4.9 Ablation Study
To explicitly control sparsity, we propose shifted global sigmoid, which differs from the L0 regulariza-
tion used in previous work [23]. We compare the results of regularization using shifted global sigmoid
and L0 on three datasets. From Figure 4, it is clear that shifted global sigmoid has an advantage over
L0 regularization at almost all sparsity, and the advantage increases with increasing sparsity.

5 Conclusion
In this paper, we propose Sparse Structure Search for Delta Tuning (S3Delta), which conducts
differentiable DT structure search with explicit sparsity control in a unified search space of a mixture
of various DT modules. Experiments demonstrate the effectiveness of S3Delta to find the optimal
structure of DT modules and push the limit of trainable parameter reduction. For future works, there
are open questions that are worth investigating. (1) Better search spaces or better DT modules could
be designed to further explore the potential of structure search. (2) The current NAS algorithms are
not tailored for the scenario where a pre-trained backbone model exists. Therefore, more specialized
search algorithms could be developed for DT structure search.
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