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Abstract

Single-index models are a class of functions given by an unknown univariate
“link” function applied to an unknown one-dimensional projection of the input.
These models are particularly relevant in high dimension, when the data might
present low-dimensional structure that learning algorithms should adapt to. While
several statistical aspects of this model, such as the sample complexity of recov-
ering the relevant (one-dimensional) subspace, are well-understood, they rely on
tailored algorithms that exploit the specific structure of the target function. In this
work, we introduce a natural class of shallow neural networks and study its ability
to learn single-index models via gradient flow. More precisely, we consider shal-
low networks in which biases of the neurons are frozen at random initialization.
We show that the corresponding optimization landscape is benign, which in turn
leads to generalization guarantees that match the near-optimal sample complexity
of dedicated semi-parametric methods.

1 Introduction

High-dimensional learning with both computational and statistical guarantees, which is particularly
relevant given the current scaling trends, remains an outstanding challenge. One important question
which has received considerable attention is on understanding the advantages of using non-linear
learning models, such as neural networks, over more mature (from a theoretical standpoint) coun-
terparts, such as kernel methods [56, 57, 84, 22]. Perhaps surprisingly, the question remains largely
open even for shallow neural networks.

While approximation benefits of shallow neural networks over non-adaptive kernels have been
known for decades [9, 69], another important piece of the theoretical puzzle was provided by [5],
whose analysis hinted at an inherent statistical advantage of neural networks for extracting infor-
mation from high-dimensional data with a “hidden” low-dimensional structure. Providing computa-
tional guarantees, the remaining piece of this puzzle, is still mostly unresolved.

Several computational hardness results for learning functions that can be efficiently approximated
by shallow neural networks have been established in the literature [30, 41, 28, 78, 20], ruling out
positive results in the general setting. On the other hand, progress has been made on the positive
side [1, 2, 73] by focusing on function classes with strong structural properties, thereby showcasing
the adaptive representation learning capabilities of neural networks.

This work aligns with the latter effort, and focuses on the class of single-index models. Single-
index models are high-dimensional functions F : Rd

! R of the form F⇤(x) = f⇤(h✓⇤, xi),
where both the univariate “link” function f⇤ : R ! R and relevant (one-dimensional) subspace
✓⇤ 2 Sd�1 are unknown. These models have been extensively studied in the statistics literature [45,
48, 26, 46, 33], leading to dedicated algorithmic procedures, and can be provably approximated with
shallow neural networks without incurring in a curse-of-dimensionality [5]. In contrast, the analysis
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of neural network learning using gradient-based methods has focused on the so-called “Teacher-
Student” setup [43, 39, 85, 86, 10], where the link function f⇤ is assumed to be known and used as
the activation function for the student.

The mix of a high-dimensional parametric component (the hidden direction) with a non-parametric
one in low dimension (the link function) in single-index models naturally suggests a shallow neu-
ral network architecture where the inner weights are shared and “active”, while the biases are
“lazy” [23]. We instantiate such an architecture by freezing the biases at random initialization,
and analyze gradient descent on the free parameters in the continuous-time limit.

Our main results establish that as soon as the width N of the network is larger than a quantity
which depends solely on smoothness properties of the (univariate) link function f⇤, gradient flow
recovers the unknown direction ✓⇤ with near optimal sample complexity O(ds), where s is the so-
called information-exponent of the link function [10] (at least when s � 3, see Theorem 6.1 for the
formal result), and approximates the univariate link function f⇤ near-optimally (see Corollary 6.4).
The information exponent roughly captures the signal strength, which here refers to the alignment
between the network direction ✓ and the hidden direction ✓⇤, at typical initializations.

The success of gradient flow relies on the benign optimization landscape of the empirical loss,
though the presence of degenerate saddles necessitates a careful analysis leveraging uniform con-
vergence of the empirical landscape [60, 35]. We show that gradient flow over our proposed neural
network architecture solves two distinct problems—univariate non-parametric kernel ridge regres-
sion and non-convex optimization in high dimension—simultaneously and efficiently, cementing its
role as a versatile algorithm for high-dimensional learning. We illustrate our theoretical results with
experiments in Section A.

2 Related Work

Single-index and multi-index models. A useful modeling assumption in high-dimensional re-
gression is that the regression function F (x) = E[y|x] only depends on one or a few direc-
tions. This leads to the single-index model F (x) = f⇤(h✓⇤, xi), and multi-index model F (x) =
f⇤(h✓⇤1 , xi, . . . , h✓

⇤

k, xi), with k typically much smaller than the dimension. Such models have a
long history in the statistics literature and different methods exist for various estimation problems,
including projection pursuit [36, 47], slicing [52], gradient-based estimators [53], and moment-based
estimators [26]. When the function f⇤ is also to be estimated, we face a semi-parametric problem
involving parameter recovery of ✓⇤ and non-parametric estimation of f⇤. Our work is closely re-
lated to [33], which also characterizes the population landscape of certain objectives by leveraging
Gaussian data. Multi-index models are also studied in [5] in the context of shallow neural net-
works, where it is shown that certain models of infinite-width shallow networks can adapt to such
low-dimensional structure, though no tractable algorithms are introduced.

The works [8, 19, 66] show that certain neural networks trained close to initialization can learn
certain sparse polynomials which take the form of multi-index models, but such networks do not
directly aim to learn target directions. Recently, [1] studied the learnability of functions on the
hypercube by shallow neural networks with stochastic gradient descent and introduces the merged
staircase property, which provides necessary and sufficient conditions for learnability with linear
sample complexity n = O(d). While they learn a broader class of functions (including multi-index
model) for a more efficient sample complexity regime (O(d) vs O(ds)), their setup is restricted to
simple discrete data distributions, while our work captures the regime of semi-parametric estima-
tion by considering Gaussian data without the sparsity requirements on F implied by their merged
staircase property.

Concurrently to our work, [4] and [27] studied the learnability of certain single and multi-index mod-
els on Gaussian data with shallow networks, by performing a single gradient step on the first layer
before fitting the second layer. While the single step is sufficient to provide a separation from kernel
methods in these works, we show that optimizing both layers jointly until convergence (for a more
simplistic architecture) can significantly improve the rates, by fully decoupling the non-parametric
learning part from the high-dimensional inference of the hidden direction. Finally, recently [64]
studied the ability of shallow neural networks to learn certain single and multi-index models, show-
ing in particular that SGD-trained ReLU networks can learn single-index functions with monotonic
index function (corresponding in our setting to s = 1) with linear (up to logarithmic factors) sam-
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ple complexity. Our results therefore extend such positive guarantees to a broader class of index
functions with arbitrary information exponent.

Teacher–student models. In the context of neural networks, several works have considered the
teacher–student setting [34], where the target function F takes the form of a neural network with the
same activation as the network used for learning [43, 39, 85, 77, 86, 10, 82]. In this case the problem
does not involve non-parametric estimation as in our setup, but this line of work often involves
studying optimization landscapes similar to ours for estimating hidden directions. In particular,
the population landscape appearing in [10] is similar to ours, based on Hermite coefficients of link
functions. The follow-up work [11] extends this to multiple student neuron directions, but still
focuses on parametric rather than non-parametric statistical problems.

Kernels and random features. In order to obtain non-parametric estimation guarantees for learn-
ing the target function f⇤ of the single-index model, our work builds on the kernel methods literature
for approximation and non-parametric regression [76, 13, 7], their links with neural networks [24, 5],
and in particular on random feature approximation [70, 6, 72, 61].

Non-convex and non-smooth optimization landscapes. There is a vast literature studying
tractable non-convex optimization landscapes, arising from high-dimensional statistics and statis-
tical physics [59, 58, 37, 12, 79, 17, 39, 71, 55]. A particular aspect of our setup is that the opti-
mization landscape does not have the strict saddle property, which is often leveraged to establish
global convergence [50]. [60, 35] study concentration properties of the empirical landscape to the
population one for non-convex problems including generalized linear models. Our results rely on
similar concentration analyses, but depart from these previous work by also allowing optimization
of the link function, and by supporting the non-smoothness arising from ReLU activations. On the
algorithmic side, we consider gradient flows on non-convex and non-smooth landscapes, which re-
quire careful technical treatment, but have been studied by previous works [32, 29, 49]. We refer the
interested reader to Appendix F for more details on this technical issue.

3 Preliminaries

We focus on regression problems under a single-index model with Gaussian input data. Specifically,
we assume d-dimensional inputs x ⇠ �d := N (0, Id), and labels

y = F ⇤(x) + ⇠ = f⇤(h✓
⇤, xi) + ⇠ ,

where ✓⇤ 2 Sd�1 and ⇠ ⇠ N (0,�2) is an independent, additive Gaussian noise. The normalization
✓⇤ 2 Sd�1 is to ensure that both f⇤ and ✓⇤ are identifiable.

Shallow networks and random features. We consider learning algorithms based on shallow neu-
ral networks of the form

G(x; c, ✓) = c>�(h✓, xi) =
1

p
N

NX

i=1

ci�("ih✓, xi � bi) ,

with ✓ 2 Sd�1, where �(u) = max{0, u} is the ReLU activation, bi ⇠ N (0, ⌧2) (we assume ⌧ >
1) are random “bias” scalars that are frozen throughout training, and "i are random signs with
Rademacher distribution (i.e., uniform over {±1}), independent from bi, and also frozen during
training. The resulting vector of random features is thus �(u) = 1

p
N
(�("iu� bi))i2[N ].

The choice of ReLU activation is motivated by its popularity among practitioners. As we shall
see, the fact that � is non-smooth introduces some technical challenges, but its piece-wise linear
structure enables dedicated arguments both in terms of approximation as well as in the study of the
optimization landscape. In Appendix G we discuss how our main results are affected when replacing
the ReLU by a smooth activation, especially when choosing it such that �0 is Lipschitz.

Empirical risk minimization. The supervised learning task is to estimate F ⇤ (and therefore both
f⇤ and ✓⇤) from samples {(xi, yi)}i=1...n. We will focus on mean-squared error with Tychonov
regularisation, determined by the following losses.
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Definition 3.1 (Population risk). We define the `2-regularized population loss by

L(c, ✓) = E
x,y

[(y �G(x; c, ✓))2] + �kck2 = E
x⇠�d

[(F ⇤(x)�G(x; c, ✓))2] + �2 + �kck2 .

Definition 3.2 (Empirical risk). We define the `2-regularized empirical loss by

Ln(c, ✓) =
1

n

nX

i=1

�
c>�(h✓, xii)� yi

�2
+ �kck2 . (1)

Hermite decomposition. Given that our data is normally distributed, we consider the family
of (normalized) Hermite polynomials {hj}j2N, which form an orthonormal basis of L2(�), the
space of squared-integrable function under the Gaussian measure � := N (0, 1). We will denote
by f⇤ =

P
j ↵jhj the Hermite decomposition of the target link function, which we assume is in

L2(�) henceforth.

We apply the following useful properties of Hermite polynomials [67, Chapter 11.2]:

h0

j =
p
jhj�1 and hhj(h✓, ·i), hj0(h✓

0, ·i)i�d = �j,j0h✓, ✓
0
i
j ,

where h·, ·i�d is the inner product in L2(�d) and � the Kronecker delta. We will assume throughout
that kf⇤k2� =

P
j ↵

2
j , kf 0

⇤
k
2
� =

P
j j↵

2
j , and kf 00

⇤
k
2
� =

P
j j(j � 1)↵2

j are all finite (see As-
sumption 5.2). We will also consider the weighted Sobolev space H2(�), which contains functions
f =

P
j ↵jhj 2 L2(�) such that

P
j j

2
|↵j |

2 < 1.

Random features to Hermite coefficients. To precisely characterize the landscape of L(c, ✓), we
introduce notation to represent each random feature function in terms of Hermite polynomials hj .
We define the linear integral operator T : L2(�) ! RN by

(T f)i := hf,�✏ibii� :=
1

p
N

E
z⇠�

[f(z)�("iz � bi)] , i 2 [N ] . (2)

Note that T has rank N almost surely.

The operator T has an adjoint T ⇤ : RN
! L2(�) defined as (T ⇤c)(u) = 1

p
N

PN
i=1 ci�("iu�bi) =

c>�(u). Finally, for any j 2 N, let Tj 2 RN defined as Tj = T hj . We can then write down the
Hermite expansion of the student network:

G(x; c, ✓) = c>�(h✓, xi) =
X

j�0

hc, Tjihj(h✓, xi).

Denoting m = h✓, ✓⇤i, the regularized population objective can be expressed as

L(c, ✓) =
X

j

↵2
j +

X

j

hc, Tji
2
� 2

X

j

↵jhc, Tjim
j + �kck2, (3)

where the term
P

j ↵
2
j is a constant that can be ignored. Let Q := T T

⇤
2 RN⇥N be a feature

covariance matrix and Q� = Q + �I . Note that Q� is positive definite for � > 0. We define the
regularized projection P̂� = ⌃̂(⌃̂ + �I)�1 onto the random feature space for ⌃̂ = T

⇤
T . Observe

that (P̂�f)(u) = c⇤>�(u), where c⇤ 2 RN is the solution to the following objective:

min
c2RN

��f � c>�
��2
�
+ �kck22 . (4)

Geometry on the sphere. Because the direction ✓ is constrained to lie on the sphere, our opti-
mization algorithms rely on spherical (Riemannian) gradients, which are defined as follows:

r
Sd�1

✓ L(c, ✓) = ⇧✓?r✓L(c, ✓) ,

where ⇧✓?v = v � h✓, vi✓. We say that (c, ✓) is a critical point of L if rSd�1

✓ L(c, ✓) = 0 and
rcL(c, ✓) = 0.
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4 Univariate Approximation using Random Features

Before addressing the high-dimensionality of the learning problem, we first focus on the non-
parametric approximation aspects of the univariate link function. As usual, we start by deriving
approximation rates of the infinitely-wide model, given by a RKHS, and then establish approxima-
tion rates for our random feature model.

Univariate RKHS. If we fix the direction ✓, learning c alone may be seen as a random feature
model [70] that approximates a kernel method with the following kernel.

(u, v) = Eb⇠�⌧ ,"⇠Rad[�("u� b)�("v � b)] , u, v 2 R , (5)

where �⌧ = N (0, ⌧2) is the Gaussian measure on R with mean zero and variance ⌧2, and " is a
random sign with a Rademacher distribution. The kernel  corresponds to an RKHS H, given by

H :=

⇢
f : R ! R | f(u) =

1
p
2

Z
[c+(b)�(u� b) + c�(b)�(�u� b)] d�⌧ (b), c+, c� 2 L2(�⌧ )

�
.

The following lemma characterizes the corresponding RKHS norm k · kH, and follows from The-
orem B.8, by noting that (u, v) = h (u), (v)iL2(�⌧ )2 , with  (u) = 1

p
2
(�(u � ·),�(�u � ·)).

Lemma 4.1 (RKHS norm). The RKHS norm in H is given by

kfk2
H

= inf

⇢
kc+k

2
�⌧

+ kc�k
2
�⌧
; f(u) =

1
p
2

Z
[c+(b)�(u� b) + c�(b)�(�u� b)] d�⌧ (b)

�
.

(6)

The choice of ReLU for the activation function gives us more explicit control over the RKHS norm,
based on Sobolev representations, as already exploited by several works [68, 5, 75].
Lemma 4.2 (RKHS norm bound). Let f 2 H2(�) \ C2(R) and ⌧ > 1. If f and f 0 both have
polynomial growth and

R
|f 00(t)|2

�⌧ (t)
dt < 1, then f 2 H with

kfk2
H

 6⌧

✓Z
|f 00(t)|2

�⌧ (t)
dt+ kfk2� + 6kf 0

k
2
� + 2hf, f 00

i�

◆
. (7)

The proof is in Appendix C.1.

RKHS approximation properties. Let A(f,�) be the (regularized) L2 approximation error for
functions in the space H with respect to the target function f and measure �. Formally,

A(f,�) := min
g2H

kf � gk2� + �kgk2
H

.

We will now show that the approximation error of the RKHS corresponding to an infinite number
of random features can be bounded in terms of the regularization � and the �-norm of the second
derivative of the target function. For that purpose, we consider the following ‘source’ condition to
ensure a polynomial approximation error in �.
Assumption 4.3 (Containment in L4(�)). Let F = {f 2 H2(�) | f 00

2 L4(�)}. We assume f 2 F

and define K := inf
�
B � 1 | kf 00

kL4(�)  Bkf 00
kL2(�)

 
.

Assumption 4.3 provides a sufficient condition for approximating f with functions in the RKHS.
The family of approximants {hM 2 H | M > 0} we use in Lemma 4.4 are exactly equal to f on
[�M,M ] and are linear outside of [�M,M ]. The L4 assumption on f 00 ensures control over the
RKHS norm of hM . Note that by Jensen’s inequality, L4(�) ⇢ L2(�), so K is always well-defined
for f 00

2 L4(�). Sigmoidal functions, compactly supported smooth functions, and, more generally,
functions with polynomial growth satisfy Assumption 4.3.
Lemma 4.4 (RKHS approximation error). Let � 2 (0, 1) and f 2 F . Then, there exists a universal
constant C > 0 such that

A(f,�)  C
⇣
⌧1+�

kf 00
k
2
4 · �

� + �C2
f

⌘
, (8)

where � = 1�1/⌧2

3+1/⌧2 and Cf = max{kfk� , kf 0
k� , kf 00

k�}.
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The proof appears in Appendix C.2. This lemma allows us to control the RKHS approximation
error of a target function in terms of their Hermite decompositions. The main technical difficulty is
that the RKHS integral operator ⌃ does not diagonalise in the Hermite basis; we address this with
a dedicated argument exploiting the RKHS Sobolev representation of Lemma 4.2. The assumption
that f 00

2 L4(�) (Assumption 4.3) is sufficient for our purposes but not necessary for polynomial-
in-� approximation rates. In Section H, we show that the ReLU function �(t) = max(0, t), which
is Lipschitz but not in H2(�), as the target satisfies A(�,�) . ⌧2�2/3 using a direct argument.
Extending the class of functions approximable by H with polynomial-in-� rate is an interesting
future direction.

Random feature approximation. We now consider (finite) random feature approximations to
functions in the RKHS. Lemma C.2 shows that the best possible loss of a linear combination of
sufficiently many finite features is bounded above by the best approximation with infinitely many
features with high probability. More specifically, as long as N & ��1, the random feature ap-
proximation error behaves like the RKHS approximation error. The proof leverages the ‘degrees of
freedom’ of the kernel and closely tracks [6].

5 Population Landscape under Frozen Random Biases

To understand optimization and generalization properties of gradient flow on the empirical loss
Ln(c, ✓), we first the study optimization landscape of the population loss L(c, ✓). We characterize
the critical points of the population loss and show that gradient flow on a shallow neural network
of sufficient width N converges only when its direction vector ✓ is either parallel or orthogonal to
the target direction ✓⇤. Importantly, the sufficient number of random features N depends on the
`2-regularization parameter � 2 (0, 1), but not on the input dimension d. In Section 6, we further
show that sufficiently large n, the number of training samples, guarantees similar properties for the
empirical landscape and thus has favorable generalization properties for most initializations.

One of the main measures of complexity for the target link function f⇤ is its information exponent
(see e.g., [10]), defined as follows.
Definition 5.1 (Information exponent). Let f : R ! R be any function such that f 2 L2(�).
The information exponent of f , which we denote by s, is the index of the first non-zero Hermite
coefficient. That is, s := min{j 2 N : ↵j 6= 0}.

We make the following regularity assumptions on the target link function f⇤ to ensure small approx-
imation error by random features, and benign population and empirical landscape.
Assumption 5.2 (Regularity of f⇤). We consider f⇤ 2 L2(�), with f⇤ =

P
j ↵jhj . Assume 1)

f⇤ is Lipschitz, 2)
P

j j
4
|↵j |

2 < 1, and 3) f 00

⇤
(z) :=

P
j

p
(j + 2)(j + 1)↵j+2hj(z) is in L4(�)

(Assumption 4.3)

We also suppose w.l.o.g. that f⇤ is normalized so that kf⇤k� = 1. To analyze the critical points of
L(c, ✓), we introduce the projected population loss L̄(✓), which can be seen as a semiparametric
least squares (SLS) objective [48].

L̄(✓) := min
c

L(c, ✓) .

Theorem 5.3 (Critical points of the population loss). Assume f⇤ satisfies Assumption 5.2 and has
information exponent s � 1. For ⌧ > 1, and � 2 (0, 1), there exists �⇤  1 depending only on ⌧
and the target link function f⇤ and a universal constant C > 0 such that if

� < �⇤ and N �
C

�
log

✓
1

��

◆
(9)

then with probability 1�� over the random biases bj and signs "j , j = 1 . . . N , the set of first-order
critical points ⌦ := {(c, ✓) : rSd�1

✓ L(c, ✓) = 0, rcL(c, ✓) = 0} satisfies:

1. (orientation relative to ✓⇤) if (c, ✓) 2 ⌦, then either ✓ 2 {±✓⇤} or h✓, ✓⇤i = 0.

2. (existence and uniqueness of c) if rSd�1

✓ L̄(✓) = 0, then there exists a unique c 2 RN such
that (c, ✓) 2 ⌦.
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Theorem 5.3 thus establishes a benign optimization landscape in the population limit, rejoining
several known non-convex objectives with similar behavior, such as tensor decomposition [40] or
matrix completion [38]. Importantly, this optimization landscape has the same topology as the one
that arises from using the Hermite basis, the tailored choice for data generated by a single-index
model in Gaussian space [33, Theorem 5], instead of random scalar features. We view this as an
interesting robustness property of shallow neural networks, at least in the regime where biases are
randomly frozen.

6 Empirical Landscape and Generalization Guarantees

Section 5 shows that the population landscape has a relatively simple structure given N = ⌦d(1)
random features. We now study the optimization properties of its finite-sample counterpart.

We consider the estimator F̂ (x) := f̂(hx, ✓̂i), where (f̂ , ✓̂) are obtained by running gradient flow on
c and ✓ to minimize Ln(c, ✓). Such strategy appears to be reasonable in light of the properties of the
population landscape, since its local minimizers are also global and correspond to f̃ = P̂�f⇤ and
✓̃ = ✓⇤ (Theorem 5.3). For a sufficiently large sample size n, one expects the empirical landscape Ln

to concentrate around its expectation L and inherit its benign optimization properties. However, the
presence of a degenerate saddle at (c,m) = (0, 0) for m = h✓, ✓⇤i flattens the landscape around the
“equator” {✓ : h✓, ✓⇤i = 0}. Thus, more samples are required to ensure that gradient flow escapes
from the equatorial region despite its dangerously close random initialization |h✓0, ✓⇤i| = ⇥(1/

p
d).

Prior works have obtained sample complexity of n = O(ds), where we recall that s is the informa-
tion exponent of the target function f⇤, for recovering ✓⇤ either by employing a learning algorithm
that explicitly learns individual Hermite polynomials [33] or by assuming that f⇤ is known a priori
[10].1 The intuition behind this sample complexity is roughly as follows.

• The empirical optimization landscape (when regarded as a function only of the direction ✓) near
the equator (|m| ⌧ 1) is of the form L(✓) ⇣ ms.

• In order to certify that the optimization algorithm does not converge to a suboptimal critical point
(i.e., krL(✓)k  ✏) on the equator, one requires that m � ✏1/(s�1).

• A uniform gradient convergence bound of the form krL(✓) � rLn(✓)k = O(
p
d/n) and the

fact that m = ⇥(1/
p
d) at initialization together imply that n = O(ds) samples are sufficient to

escape from the “influence” of the equator.

In order to repurpose these arguments to our setting, the relative scaling of the top-layer weights c
relative to the direction vector ✓ is crucial, as has also been observed in the literature on lazy-vs-rich
regimes [23, 84] in the context of overparametrized neural networks.

We consider an idealized version of Gradient Descent over the empirical loss Ln in the infinitesi-
mally small learning rate regime. This results in a gradient flow ODE of the form:

ċ(t) = �⇣(t)rcLn(c, ✓)

✓̇(t) = �r
Sd�1

✓ Ln(c, ✓) , (10)

where ⇣ is the relative scale between c and ✓, and r
Sd�1

✓ is the Riemannian gradient.

Specifically, we study a setting where ⇣(t) = 1(t > T0) for an appropriately chosen time T0.
This choice produces a two-stage gradient-flow. During the first phase, up until time T0, we only
optimize the first-layer parameter ✓ from a random initialization. In the second phase, the parameters
c and ✓ are jointly optimized. Additionally, the first phase only utilizes a small fraction N0

N ⌧ 1
of the random features employed in the second phase. Our procedure implements this by randomly
initializing c(0) 2 RN as a sparse vector with N0 non-zero components. The overall approach is
described in Procedure 1.

1Actually, in [10] the authors obtain a slightly improved sample complexity of eO(ds�1) for s � 3 by
directly analyzing SGD with fixed step-size, as well as a matching lower bound (for SGD in the small step-size
regime) up to polylogarithmic factors.
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Our main result, proved in Appendix E, establishes that this gradient flow efficiently finds an ap-
proximate minimizer of the population loss, with an error (explicitly quantified as a function of n)
that reveals the fundamental role of the information exponent s of f⇤. On top of the regularity con-
ditions on the target link function of Assumption 5.2, the upper bound on �, and the lower bound on
N from Eq. (9) of Theorem 5.3, the main result imposes a (compatible) upper bound on N and an
appropriate choice of initial norm (⇢) and sparsity (N0/N ) for c(0). In this section, we are interested
in behavior as n, d, and N grow asymptotically and hence treat the target function f⇤ and terms de-
rived from it (including Hermite coefficients ↵j and information exponent s), along with the bias
parameter ⌧ and regularity parameter �, as constants and omit them from asymptotic notation.
Theorem 6.1 (Gradient flow finds approximate minimizers). For � 2 (0, 1/4) and f⇤ satisfying
Assumption 5.2, suppose the following are true: (i) � = O(1) and � = ⌦(

p
�crit), where �crit :=

max{
q

d+N
n , (d

2

n )2s/(2s�1)
}, (ii) n = e⌦(max{ (d+N)ds�1

�4 , d(s+3)/2

�2 }), (iii) N = ⌦( 1� log 1
�� ) &

N = eO(���1
crit), (iv) N0 = ⇥(log( 1� )), (v) ⇢ = ⇥(

p
NN�(2+s)/2

0 (⌧2 + �N/N0)�1), (vi) T0 =

⇥̃(ds/2�1), and (vii) T1 = ⇥̃( �4n
d+N ). Then, if we run Procedure 1 for T = T0 + T1 time steps with

the above parameters, with probability at least 1
2 � � we have

1� |h✓T , ✓
⇤
i| = eO

✓
��4 max

⇢
d+N

n
,
d4

n2

�◆
. (11)

The empirical gradient flow therefore escapes the influence of the degenerate saddle with sample
complexity n = ⇥̃(ds) when � = ⇥(1) and s > 2. This is an instance of gradient flow successfully
optimizing a non-convex objective without the strict saddle property as soon as s > 2, building from
the simpler optimization landscapes of [33, 10]. This is in contrast, for example, with spiked tensor
recovery problems [12] where the signal strength is substantially weaker, leading to complexity in
the optimization landscape. This sample complexity nearly matches the tight lower bound n � ds�1

of [10], obtained in the case s > 2 and applies to SGD rather than batch gradient descent, as is our
case. For s 2 {1, 2}, the sample complexity becomes d2 and d2.5, respectively, but we note that
these may be improved to ds when using a smooth activation (see Appendix G). For s = 2, this is
comparable to [27], which requires ⌦(d2) samples, but still above the n � d log d of [10].

We emphasize that the “near-optimality” of our sample complexity n = ⇥̃(ds) only pertains to
gradient-based methods in small learning rate regimes [10]. In fact, alternative methods have been
shown to achieve a better sample complexity of eO(dds/2e) in the setting where f⇤ is a certain degree-
s polynomial with information exponent s [19], leveraging tensor factorization tools. We leave it as
an interesting open question to further understand the nature of this gap.

We note that the dependence on d + N in the recovery guarantee can likely be improved to d
using a more refined norm-based landscape concentration analysis. We also remark that if we chose
the number of random features N = ⇥( 1� log 1

�� ), then the requirement � = ⌦(
p
�crit) for large

enough sample size n imposes � � n�1/5. This lower bound on � guarantees that critical points
near initialization can be escaped, but may slow down learning. Nevertheless, this is sufficient to
obtain an excess risk that vanishes with n, with a rate independent of d, as we now show.
Corollary 6.2 (Excess risk of Algorithm 1). Under the assumptions of Theorem 6.1, and further
assuming n & d3, an appropriate choice of � yields an excess risk guarantee of the form

kF̂ � F ⇤
k
2
�d

= eO
 ✓

d

n

◆ �
�+4

+

✓
1

n

◆ �
�+5

!
, (12)

where � is defined as in Lemma 4.4.

This result indicates that the joint training is consistent, with excess risk that vanishes with a rate
with explicit dependence on the ambient dimension d and the non-parametric exponent �. However,
it requires a regularisation strength � = ⇥

⇣
max

n�
1
n

� 1
�+5 ,

�
d
n

� 1
�+4

o⌘
to ensure enough gradient

concentration, which happens to be larger than the optimal regularisation of the univariate kernel
ridge regression associated with learning f⇤. We are thus ‘over-regularising’ as a consequence of
the joint training, resulting in a slower rate than what would be dictated by estimating ✓⇤ and f⇤
separately. A simple mechanism to break this inefficiency is by considering a fine-tuning step of the
second-layer terms.
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Procedure 1 Gradient Flow
Require: N0, ⇢, T0, T1, N , and �.

Initialize ✓(0) ⇠ Unif(Sd�1), c(0) ⇠ Unif({c 2 RN ; kck2 = ⇢; kck0 = N0}).
Run Gradient Flow (10) with ⇣(t) = 1(t > T0) up to time T = T0 + T1.
Set ✓̂ = ✓(T ), ĉ = c(T ).

Procedure 2 Fine-Tuning

Require: ✓̂ from Procedure 1, and �n0 .
Set ĉ = argminc L0

n0(c, ✓̂) as in (13).

Fine-tuning the second layer. After running Algorithm 1, we may include a final fine-tuning
phase of training for second layer weights c alone, using a separate training sample (x0

i, y
0

i), i =
1, . . . , n0 and a possibly different regularization parameter �n0 . More precisely, we set

ĉ = argmin
c

n
L0

n0(c, ✓̂) :=
1

n0

n0X

i=1

(c>�(h✓̂, x0

ii)� y0i)
2 + �n0kck2

o
, (13)

where ✓̂ denotes the output of the previous gradient descent phase. Note that this is a strongly convex
optimization problem, and can thus be optimized efficiently using gradient methods or by solving
a linear system. While this may not be needed in practice, we use a different training sample for
technical reasons, namely to break the dependence between the data and the kernel, which depends
on the initial training sample through ✓̂. We note that such sample splitting strategies are commonly
used in other contexts in the statistics literature (e.g., [15, 21]). We obtain the following guarantee.
Proposition 6.3 (Excess risk of fine-tuning). Let � 2 (0, 1/4). Let m = h✓⇤, ✓̂i, where ✓̂ is
obtained from the previous gradient descent phase, and let ĉ be the ridge regression estimator
obtained from a fresh dataset D0 of n0 samples, N random features, and regularization parame-
ter �n0 := (�2⌧2/kf 00

⇤
k
2
�n

0)1/(�+1), and let F̂ (x) = ĉ>�(h✓̂, xi). Assume

n0 & max
n
�2⌧2/kf 00

⇤
k
2
� , (kf

00

⇤
k
2
�/�

2⌧2)1/� , kf⇤k
2
1
/(�2⌧2)�/(�+1)

o
, and

N & C⌧

�
n0
kf 00

⇤
k
2
�/�

2⌧2
� 1

�+1 log
⇣
n01/(�+1)��1

⌘
.

Then with probability at least 1� � over the random features, we have

E
D0
[kF̂ � F ⇤

k
2
�d
|✓̂] . kf 00

⇤
k

2
�+1
�

✓
�2⌧2

n0

◆ �
�+1

+ kf 0

⇤
k
2
�(1� |m|) , (14)

where the expectation is over the n0 fresh samples, and is conditioned on the previously obtained ✓̂.

Decoupling the regularization parameters of the two phases (along with number of random fea-
tures N ) allows us to keep a large � in the first phase, leading to fast recovery as per Theorem 6.1,
while obtaining vanishing excess risk through a decreasing �n0 . This is illustrated in the result on
the excess risk for Algorithm 2.
Corollary 6.4 (Excess risk of Algorithm 2). Let � 2 (0, 1/4). As in Theorem 6.1, let µs =
hhs,⌃hsi > 0, and let f⇤ satisfy Assumption 5.2. Let � = ⇥(1), and assume the following on
the sample sizes and number of random features for the first phase (n,N,N0) and fine-tuning phase
(n0, N 0):

N = N0 = ⇥

✓
1

�
log

1

��

◆
, n = e⌦

⇣
max{ds, d(s+3)/2

}

⌘
, N 0 = e⌦

⇣
n0

1
�+1

⌘
.

and let ⇢ be as in Theorem 6.1. With probability at least 1/2 � 2� over the initial n samples,
initialization, random features, we have

E
D0
[kF̂ � F✓⇤k

2
�d
]  eO

 
max

⇢
d

n
,
d4

n2

�
+

✓
1

n0

◆ �
�+1

!
, (15)

where the constants in eO do not depend on d other than through logarithmic factors.
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Comparing Corollaries 6.2 and 6.4, we observe that the fine-tuning stage recovers the optimal sample
complexity, where the non-parametric rate is fully independent of the ambient dimension d, while in
Corollary 6.2 there is still a dependence in the constants. We make the following additional remarks:

• The time-scale separation schedule for ⇣ in Theorem 6.1 is sufficient but possibly not necessary.
The analysis of vanilla dynamics (⇣(t) ⌘ 1) is challenging, since during the initial phase of
training there may be adverse interaction between c and ✓, which under naive analysis lead to
sub-optimal sample complexity of n � O(d2s). Observe that this separate analysis of ‘weak’ and
‘strong’ recovery phases of learning appears in most contemporary related work [27, 1, 4, 10, 11].

• The time discretization to turn Procedure 1 into a proper algorithm should follow from standard
time discretization arguments, although the case where � = ReLU requires special care due to
the non-smoothness of the loss (see Appendix F for further discussion). In such setting, such
discretization arguments do not hold for vanilla gradient descent in the worst-case [51], although
these may be recovered by appropriately smoothing the objective prior to computing the gradient,
or by using instead a smooth activation function (see Appendix G).

7 Conclusion

This work studies the ability of shallow neural networks to learn single-index models with gradi-
ent descent. Our main results are positive, and demonstrate their ability to solve a semi-parametric
problem with nearly optimal guarantees. Interestingly, this success story combines elements from
the feature-learning regime, i.e., the ability to efficiently identify the hidden direction in high-
dimensions under a non-convex objective, with ingredients from the lazy-regime. Our technical
analysis leverages tools from high-dimensional probability (such as uniform gradient concentration)
and RKHS approximation, and complements the growing body of theoretical work on the efficacy of
gradient methods for non-convex objectives. We have followed the standard approach of first estab-
lishing benign topological properties of the population loss, and then extending them to the empirical
loss. There are nonetheless several unanswered questions that our work has not addressed.

Weaker regularity and discrete-time analysis. Our approximation rate for ReLU as the target
(see Appendix H) suggests that the polynomial-in-� approximation rate may be extended to func-
tion classes beyond F ⇢ H2(�), such as Lipschitz functions with smooth tail behavior. Thus,
it would be interesting to extend our empirical landscape concentration results to such functions
satisfying weaker regularity assumptions, which currently rely on certain polynomial decay of the
Hermite coefficients (see Assumption 5.2). Additionally, by using a smooth activation function (see
Appendix G), our GF dynamics can be discretized and turned into GD with analogous sample and
time complexity. In that context, a natural goal is to compare quantitatively the differences between
GD with multiple passes over the training data and SGD by adapting tools from [10, 11].

Trainable biases and untied directions. Our proposed neural network architecture is non-standard,
in the sense that its biases are frozen at initialization and all neurons share the same inner weight.
For the purposes of learning single-index models, removing these restrictions would not bring any
statistical benefits. However, it would be interesting to extend our analysis to the general setting
where the first layer weights are not tied and biases are not frozen.

Extension to multi-index models. Multi-index models are natural extensions in which the hidden
direction ✓⇤ is replaced by a hidden low-dimensional subspace. Typically, multi-index models enjoy
similar statistical guarantees as single-index models [33, 5], and thus a natural question is whether
the same algorithmic tools developed here extend to the multi-index setting.

Gradient dynamics without warm-start. An unsatisfactory aspect of our results is the requirement
that the algorithm starts by only optimizing ✓ for t < T0. It would be interesting to understand
whether the vanilla dynamics can also succeed provably.
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useful discussions. We also thank the anonymous NeurIPS reviewers and area chair for helpful
feedback. JB, AB and MJ are partially supported by NSF RI-1816753, NSF CAREER CIF 1845360,
NSF CHS-1901091, NSF Scale MoDL DMS 2134216, Capital One and Samsung Electronics. CS
is supported by an NSF GRFP and by NSF grants CCF-1814873 and IIS-1838154.

10



References
[1] E. Abbe, E. Boix-Adsera, and T. Misiakiewicz. The merged-staircase property: a necessary and

nearly sufficient condition for sgd learning of sparse functions on two-layer neural networks.
arXiv preprint arXiv:2202.08658, 2022. 1, 2, 10

[2] Z. Allen-Zhu and Y. Li. Backward feature correction: How deep learning performs deep
learning. arXiv preprint arXiv:2001.04413, 2020. 1
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