
Rethinking the Reverse-engineering of Trojan Triggers

Zhenting Wang
Rutgers University

zhenting.wang@rutgers.edu

Kai Mei
Rutgers University

kai.mei@rutgers.edu

Hailun Ding
Rutgers University

hailun.ding@rutgers.edu

Juan Zhai
Rutgers University

juan.zhai@rutgers.edu

Shiqing Ma
Rutgers University

sm2283@rutgers.edu

Abstract

Deep Neural Networks are vulnerable to Trojan (or backdoor) attacks. Reverse-
engineering methods can reconstruct the trigger and thus identify affected models.
Existing reverse-engineering methods only consider input space constraints, e.g.,
trigger size in the input space. Expressly, they assume the triggers are static patterns
in the input space and fail to detect models with feature space triggers such as image
style transformations. We observe that both input-space and feature-space Trojans
are associated with feature space hyperplanes. Based on this observation, we
design a novel reverse-engineering method that exploits the feature space constraint
to reverse-engineer Trojan triggers. Results on four datasets and seven different
attacks demonstrate that our solution effectively defends both input-space and
feature-space Trojans. It outperforms state-of-the-art reverse-engineering methods
and other types of defenses in both Trojaned model detection and mitigation tasks.
On average, the detection accuracy of our method is 93%. For Trojan mitigation,
our method can reduce the ASR (attack success rate) to only 0.26% with the
BA (benign accuracy) remaining nearly unchanged. Our code can be found at
https://github.com/RU-System-Software-and-Security/FeatureRE.

1 Introduction

DNNs are vulnerable to Trojan attacks [1–6]. After injecting a Trojan into the DNN model, the
adversary can manipulate the model prediction by adding a Trojan trigger to get the target label.
The adversary can inject the Trojan by performing the poisoning attack or supply chain attack. In
the poisoning attack, the adversary can control the training dataset and injects the Trojan by adding
samples with the Trojan trigger labeled as the target label. In the supply chain attack, the adversary
can replace a benign model with a Trojaned model by performing the supply chain attack. The Trojan
trigger is becoming more and more stealthy. Earlier works use static patterns, e.g., a yellow pad as
the trigger, which is known as the input space triggers. Researchers recently proposed using more
dynamic and input-aware techniques to generate stealthy triggers that mix with benign features, which
are referred to as the feature space triggers. For example, the trigger of the feature-space Trojans can
be a warping process [7] or a generative model [3, 8, 9]. The Trojan attack is a prominent threat to
the trustworthiness of DNN models, especially in security-critical applications, such as autonomous
driving [1], malware classification [10], and face recognition [11].

Prior works have proposed several ways to defend against Trojan attacks, such as removing poisons
in training [12–14], detecting Trojan samples at runtime [15–18], etc. Many of above methods can
only work for one type of Trojan attack. For example, training and pre-training time defense (e.g.,
removing poisoning data, training a benign model with poisoning data) fail to defend against the
supply chain attack. Trigger reverse-engineering [19–23] is a general method to defend against

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/RU-System-Software-and-Security/FeatureRE


different Trojan attacks under different threat models. It works by searching for if there exists an
input pattern that can be used as a trigger in the given model. If we can find such a trigger, the
model has a corresponding Trojan and is marked as malicious and vice versa. Existing reverse-
engineering methods assume that the Trojan triggers are static patterns in the input space and develop
an optimization problem that looks for an input pattern that can be used as the trigger. This assumption
is valid for input space attacks [1, 2, 24] that use static triggers (e.g., a colored patch). Feature space
attacks [3–5, 7–9, 25] break this assumption. Existing trigger reverse-engineering methods [19–23]
constrain the optimization by using heuristics or empirical observations on existing attacks, such
as pixel values are in range [0, 255], and the trigger’s size is small. Such heuristics are also invalid
for feature space triggers that change all pixels in images. Reverse-engineering the feature space is
challenging. Unlike input space, there are no constraints that can be directly used.

Target Label=

Search Input space trigger and constrain Input Space

Target Label=F

Search Feature space trigger

and constrain Feature Space
Search Input space Transformation

based on feature space constrain

O
u
r 

R
E

E
x
is

ti
n
g
 R

E

Fig. 1: Existing reverse-engineering (RE) and ours.

In this paper, we propose a trig-
ger reverse-engineering method that
works for feature space triggers. Our
intuition is that features representing
the Trojan are orthogonal to other fea-
tures. Because a trigger works for
a set of samples (or all of them, de-
pending on the attack type), changing
the input content without removing
the Trojan features will not change
the prediction. That is, changing Tro-
jan and benign features will not affect
each other. Trojan features will form
a hyperplane in the high dimensional
space, which can constrain the search
in feature space. We then develop our
reverse-engineering method by exploiting the feature space constraint. Fig. 1 demonstrates our
idea. Existing reverse-engineering methods only consider the input space constraint. It conducts
reverse-engineering via searching a static trigger pattern in the input space. These methods fail to
reverse-engineer feature-space Trojans whose trigger is dynamic in the input space. Instead, our idea
is to exploit the feature space constraint and searching a feature space trigger using the constraint
that the Trojan features will form a hyperplane. At the same time, we also reverse-engineer the input
space Trojan transformation based on the feature space constraint. To the best of our knowledge, we
are the first to propose feature space reverse-engineering methods for backdoor detection.

Through reverse-engineered Trojans, we developed a Trojan detection and removal method. We
implemented a prototype FEATURERE (FEATURE-space REverse-engineering) in Python and
PyTorch and evaluated it on MNIST, GTSRB, CIFAR, and ImageNet dataset with seven different
attacks (i.e., BadNets [1], Filter attack [20], WaNet [7], Input-aware dynamic attack [8], ISSBA [9],
Clean-label attack [26], Label-specific attack [1], and SIG attack [27]). Our results show that
FEATURERE is effective. On average, the detection accuracy of our method is 93%, outperforming
existing techniques. For Trojan mitigation, our method can reduce the ASR (attack success rate)
to only 0.26% with the BA (benign accuracy) remaining nearly unchanged by using only ten clean
samples for each class.

Our contributions are summarized as follows. We first find the feature space properties of the Trojaned
model and reveal the relationship between Trojans and the feature space hyperplanes. We propose a
novel Trojan trigger reverse-engineering technique leveraging the feature space Trojan hyperplane.
We evaluate our prototype on four different datasets, five different network architectures, and seven
advanced Trojan attacks. Results show that our method outperforms SOTA approaches.

2 Background & Motivation

A DNN classifier is a function M : X 7→ Y where X is the input domain Rm and Y is a set of labels
K. A Trojan (or backdoor) attack against a DNN model M is a malicious way of perturbing the
input so that an adversarial input x′ (i.e., input with the perturbation pattern) will be classified to a
target/random label while the model maintains high accuracy for benign input x. The perturbation
pattern is known as the Trojan trigger. Trojan attacks can happen in training (e.g., data poisoning)

2



or model distribution (e.g., changing model weights or supply-chain attack). Existing works have
shown Trojan attacks against different DNN models, including computer vision models [1, 2, 24],
Graph Neural Networks (GNNs) [28, 29], Reinforcement Learning (RL) [30, 31], Natural Language
Processing (NLP) [32–37], recommendation systems [38], malware detection [10], pretrained mod-
els [21, 39, 40], active learning [41], and federated learning [42, 43]. The Trojan trigger can be a
simple input pattern (e.g., a yellow pad) [1, 2, 24] or a complex input transformation function (e.g., a
CycleGAN to change the input styles) [3, 5, 7–9]. If the trigger is static input space perturbations
(e.g., a yellow pad), the Trojan attack is known as input-space Trojan, and if the trigger is an input
feature (e.g., an image style), the attack is referred to as the feature-space Trojan.

There are different types of Trojan defenses. A line of work [13, 14, 44] attempts to remove poisoned
data samples by cleaning the training dataset. Training-based methods [45–47] train benign classifiers
even with the poisoned dataset. These training time approaches work for poisoning-based attacks
but fail to defend against supply chain attacks where the adversary injects the Trojan after the model
is trained. Another line of work, e.g., STRIP [15], SentiNet [16], and Februus [17] aim to detect
Trojan inputs during runtime. It is hard to distinguish between a misclassification and a Trojan
attack for a test input. These runtime detection methods make assumptions about the attack, which
stronger attacks can violate. For example, STRIP fails to detect the Trojan inputs when the Trojan
trigger locates around the center of an image or overlaps with the main object (e.g., feature space
attacks). Another limitation is that they examine the test inputs and perform various heavyweight
tests, significantly delaying the response time.

Trigger reverse engineering [19–23, 48–50] makes no assumptions about the attack method (e.g.,
poisoning or supply-chain attacks) and does not affect the runtime performance. It inspects the model
to check if a Trojan exists before deploying. Given a DNN model M and a small set of clean samples
X , trigger reverse engineering methods try to reconstruct injected triggers. If reverse engineering is
successful, the model is marked as malicious. Neural Cleanse (NC) [19] proposes to perform reverse
engineering by solving Eq. 1:

min
m,t

L (M ((1−m)⊙ x+m⊙ t) , yt) + r⋆ (1)

where x ∈ X and m is the trigger mask (i.e., a binary matrix with the same size as the input to
determine if the value will be replaced by the trigger or not), t is the trigger pattern (i.e., a matrix
with the same size as the input containing trigger values), and r⋆ are attack constraints (e.g., trigger
size is smaller than 1/4 of the image). L is the cross-entropy loss function. Most prior works [20–23]
follow the same methodology and inherently suffer from the same limitations. First, they assume that
an input space perturbation, denoted by (m, t), can represent a trigger. This assumption is valid for
input-space triggers but does not hold for feature space attacks. Second, r⋆ are heuristics observed
from existing attacks. For example, NC observed that most triggers have small sizes and limit the
trigger size to be no larger than a threshold value. Otherwise, the trigger will overlap with the main
object and decrease benign accuracy. In practice, more advanced attacks can break such heuristics.
For instance, DFST [3] leverages CycleGAN to transfer images from one style to another without
changing its semantics. It changes almost all pixels in a given image. This paper proposes a novel
reverse engineering method that overcomes the limitations above for image classifiers.

3 Methodology

3.1 Threat Model

This work aims to determine if a given model has a Trojan or not by reverse-engineering the
corresponding trigger. Following existing works [19, 20, 51], we assume access to the model and a
small dataset containing correctly labeled benign samples of each label. In practice, such datasets
can be gathered from the Internet. We make no assumptions on how the attacker injects the Trojan
(poisoning or supply-chain attack). The attack can be formally defined as: M(x) = y,M(F (x)) =
yT ,x ∈ X , where M is the Trojaned model, x is a clean input sample, and yT is the target label. F
is the function to construct Trojan samples. Input-space triggers add static input perturbations, and
feature space triggers are input transformations. The key difference between our work and existing
work is that we consider the feature space triggers.

3



3.2 Observation

In DNNs, the neuron activation values represent its functionality. The input neurons denote the
input space features, and inner neurons extract inner and more abstract features. Existing reverse-
engineering methods constrain the optimization problem in the input space using domain-specific
constraints or observations. For image classification tasks, the pixel value of each image has to be a
valid RGB value. Methods like NC observe that the trigger size must be smaller and cannot overlap
with the main object and propose corresponding constraints. The most challenging problem for
reverse-engineering feature space triggers is how to constrain the optimization properly. Note that
there exist a set of neurons; when activating to specific values, the Trojan behavior will be triggered.
Due to the black-box nature of DNNs, it is hard to identify which neurons are related to the Trojan
behavior. Moreover, if enlarge the weight values with the same scale, the output of the DNN will be
the same, and as such, it is hard to constrain concrete activation values. Without a proper constraint,
we cannot form an optimization problem.

Our key observation to solve this problem is that neuron activation values representing the Trojan
behavior are orthogonal to others. Recall that one property of DNN Trojans is that when adding
the trigger to any given input, the model will predict the output to a specific label. That is, the
trigger will always work regardless of the actual contents of the input. In the feature space, when
the model recognizes features of the Trojan, it will predict the label to the target label regardless
of the other features. These activation values will form a hyperplane space in the high dimensional
space so that they can be orthogonal to all others. Based on this intuition, we performed empirical
experiments to confirm our idea. Specifically, we first use six Trojan attacks (e.g., BadNets [1], Clean
label attack [26], Filter attack [20], and WaNet [7], SIG [27] and Input-aware dynamic attack [8])
to generate Trojaned ResNet18 models on CIFAR-10. We then visualize the feature space of the
last convolutional layers in these models. In Fig. 2, three dimensions, X, Y, and Z, represent the
feature space. We first apply PCA to get two eigenvectors of the benign training set; then, we
use the obtained eigenvectors as X-axis and Y-axis. For Z-axis, we first construct Trojan inputs to
activate the model’s Trojan behavior and find highly related neurons to Trojans. Then, we use DNN
interpretability techniques SHAP [52] to estimate the neuron’s importance to the Trojan behavior.
The neurons among the top 3% are compromised neurons. Z-axis denotes the activation values of
compromised neurons. Namely, z = ∥A(F (x)) ⊙ m∥ , where m denotes a mask revealing the
position of compromised neurons. Fig. 2 show that most Trojan inputs have a similar z-value. They
form a linear hyperplane in the feature space while benign ones do not.

Clean LabelBadNets

WaNetFilter Input-aware Dynamic

SIG

Fig. 2: Feature space of Trojaned models.

3.3 Feature Space Trojan Hyperplane Reverse-engineering

In this paper, We use A to represent the submodel from the input space to the feature space. B is
the submodel from the feature space to the output space. We also use a = A(x) to denote the inner

4



Algorithm 1 Feature-space Backdoor Reverse-engineering
Input: Model: M
Output: Trojaned or Not, Trojaned Pairs T

1: function REVERSE-ENGINEERING(M)
2: for (target class yt, source class ys ) in K do
3: for e ≤ E do
4: x = sample(Xys

)
5: cost1 = L (B ((1−m)⊙ a+m⊙ t) , yt)
6: if ∥F (x)− x∥ ≥ τ1 then
7: cost1 = cost1 + w1 · ∥F (x)− x∥
8: if std(m⊙A(F (x))) ≥ τ2 then
9: cost1 = cost1 + w2 · std(m⊙A(F (x)))

10: ∆θF = ∂cost1
∂θF

11: θF = θF − lr1 ·∆θF
12: cost2 = L (B ((1−m)⊙ a+m⊙ t) , yt)
13: if ∥m∥ ≥ τ3 then
14: cost2 = cost2 + w3 · ∥m∥
15: ∆m = ∂cost2

∂m
16: m = m− lr2 ·∆m

17: if ASR (B ((1−m)⊙ a+m⊙ t) , yt) > λ then
18: M is a Trojaned model,
19: T.append((ys, yt))

features of the model. Similar to the reverse-engineering in the input space, given a model M and a
small set of benign inputs X , we use a feature space mask m and a feature space pattern t to represent
the feature space Trojan hyperplane H = {a|m⊙ a = m⊙ t}. Specifically, we can update m and
t via the following optimization process: min

m,t
L (B ((1−m)⊙ a+m⊙ t) , yt). yt is the target

label. As discussed above, reverse-engineering the feature space is challenging. In the input space,
all values have natural physical semantics and constraints, e.g., a pixel value in the RGB value range.
Values in the feature space have uninterruptible meanings and are not strictly constrained. Whether
the result will have a physically meaningful semantic is also uncertain. We solve these challenges by
simultaneously optimizing the input space trigger function F and the feature space Trojan hyperplane
H to enforce that the trigger has semantic meanings. In detail, we compute the feature space
trigger pattern as the mean inner features on the samples generated by the trigger function, i.e.,
t = mean (m⊙A(F (X )). We also constrain the standard deviation of m⊙A(F (X ) to make sure
the features generated by the trigger function will lie on the relaxation of the reverse-engineered
hyperplane. Formally, our reverse-engineering can be written as the constrained optimization problem
shown in Eq. 2, where X is the small set of clean samples. We use deep neural networks to model
the trigger function (i.e., F = Gθ) because of their expressiveness [23, 53]. Specifically, we use
a representative deep neural network UNet [54]. Given a model and a small set of clean inputs,
the trigger function can be smoothly reconstructed via gradient-based methods, i.e., optimizing the
generative model Gθ. In our default setting, A and B are separated at the last convolutional layer.
More discussions are in the Appendix (§ 4.5).

min
F,m

L (B ((1−m)⊙ a+m⊙ t) , yt)

where t = mean (m⊙A(F (X )) , a ∈ A(X )

s.t. ∥F (X )−X∥ ≤ τ1, std(m⊙A(F (X ))) ≤ τ2, ∥m∥ ≤ τ3

(2)

There are several constraints in the optimization problem: ① The transformed samples should be
similar to the original image due to the properties of Trojan attacks, i.e., ∥F (x)−x∥ ≤ τ1. Typically,
the Trojan samples are visually similar to original samples for stealthy purposes. In detail, we
use MSE (Mean Squared Error) to calculate the distance between F (x) and x. ② The Trojan
features should lie in the relaxation of the reverse-engineered feature space Trojan hyperplane, i.e.,
P (a ∈ H⋆|x ∈ F (X )) should have high values. To achieve this goal, we constrain the standard

5



deviation of different Trojan samples’ activation values on each pixel in the hyperplane. ③ Similar to
input space trigger reverse-engineering [20], we set a bound for the size of the feature space trigger
mask, i.e., ∥m∥ ≤ τ3. Here τ1, τ2, and τ3 are threshold values. We discuss their influence in § 4.4.
The detailed reverse-engineering algorithm can be found in Algorithm 1, where K is a set containing
all possible (source class, target class) pairs of the model. FEATURERE scans all labels to identify
the Trojan target labels. w1, w2 and w3 are the coefficient values used in the optimization. Following
NC [19], we adjust them dynamically during optimization to make sure the reverse-engineered Trojan
satisfies the constraints. E is the maximal epoch number. In lines 5-11, it optimizes the trigger
function F and then the mask m of the feature space hyperplane in lines 12-16. In the end, we
determine the reverse-engineering is successful and the label yt is a Trojan target label if the attack
success rate of the reversed Trojan is above a threshold value λ (80% in this paper).

3.4 Trojan Mitigation

After we reverse-engineered the Trojans, we can mitigate it by breaking the reverse-engineered
feature space Trojan hyperplane. Based on our observation, the neurons in the feature space Trojan
hyperplane are highly related to the Trojan behaviors. Thus, we can mitigate the Trojans by breaking
the hyperplane. Inspired by Zhao et al. [55], we can break it by flipping the neurons on it. Our
neuron-flip process can be written as Eq. 3, where m is the reverse-engineered feature space mask, a
is the inner features. ai is the activation value on the ith neuron.

Flip(a) =

{
−ai, when ai in m

ai, when ai not in m
(3)

The mitigated model M′(x) = B (Flip(A(x))), where A and B are submodels of the model.

4 Experiments and Results

We first introduce our experiment setup (§ 4.1). We then evaluate the effectiveness of FEATURERE on
Trojan detection (§ 4.2) and mitigation tasks (§ 4.3). We also evaluate the robustness of FEATURERE
against different settings and the impacts of configurable parameters in FEATURERE (§ 4.4). In § 4.5,
we discuss how to split the model. The adaptive attack can be found in § 4.6.

4.1 Experiment Setup.

We implement FEATURERE with python 3.8 and PyTorch. All experiments are conducted on a
Ubuntu 18.04 machine equipped with 64 CPUs and six GeForce RTX 6000 GPUs.

Table 1: Overview of datasets.

Dataset Sample Size #Train Classes

MNIST 32*32*1 60000 10
GTSRB 32*32*3 39209 43

CIFAR-10 32*32*3 50000 10
ImageNet 224*224*3 100000 200

Datasets and Models. We use four publicly available
datasets to evaluate FEATURERE, including MNIST [56],
GTSRB [57], CIFAR-10 [58] and ImageNet [59]. We
summarize our datasets in Table 1. We show the dataset
names, the size of each input sample, the number of sam-
ples and the number of classes in each column. De-
tails of the datasets can be found in Appendix. For
model architectures, we use LeNet5 [56], Preact ResNet18
(PRN18) [60], ResNet18 [61], a VGG-style network spec-
ified in ULP [62], and a model consists of 4 convolutional layers and 2 dense layers used in
Xu et al. [51]. These datasets and models are widely used in Trojan-related researches [1–
3, 15, 19, 20, 51, 63].

Evaluation Metrics. We measure the effectiveness of the Trojan detection task by collecting the
detection accuracy (Acc). Given a set of models consist of benign and Trojaned models, the Acc
is the number of correctly classified models over the number of all models. We also show detailed
number of True Positives (TP, i.e., correctly detected Trojaned models), False Positives (FP, i.e.,
benign models classified as Trojaned models), False Negatives (FN, i.e., Trojaned models classified
as benign models) and True Negatives (TN, i.e., correctly classified benign models). For the Trojan
mitigation task, we evaluate the benign accuracy (BA) and attack success rate (ASR) [64]. BA is the
number of correctly classified clean inputs over the number of all clean samples. ASR is defined as
the number of Trojan samples that successfully attack models over the number of all Trojan samples.

6



Table 2: Comparison to reverse-engineering methods.

Dataset Network Attack ABS DeepInspect TABOR K-arm FeatureRE

TP FP FN TN Acc TP FP FN TN Acc TP FP FN TN Acc TP FP FN TN Acc TP FP FN TN Acc

MNIST LeNet5 WaNet 7 2 3 8 75% 4 0 6 10 70% 3 2 7 8 55% 5 0 5 10 75% 9 1 1 9 90%

GTSRB PRN18 WaNet 5 0 5 10 75% 5 1 5 9 70% 2 2 8 8 50% 4 0 6 10 70% 8 0 2 10 90%

CIFAR-10 ResNet18

BadNets 18 0 2 20 95% 20 2 0 18 95% 20 3 0 17 93% 20 0 0 20 100% 20 1 0 19 98%
Filter 13 0 7 20 83% 6 2 14 18 60% 5 3 15 17 55% 0 0 20 20 50% 18 1 2 19 93%

WaNet 11 0 9 20 78% 11 2 9 18 73% 3 3 17 17 50% 9 0 11 20 73% 18 1 2 19 93%
IA 3 0 17 20 58% 4 2 16 18 55% 3 3 17 17 50% 2 0 18 20 55% 19 1 1 19 95%

Table 3: Comparison to ULP.

Network Attack ULP FeatureRE

TP FP FN TN Acc TP FP FN TN Acc

VGG WaNet 1 0 19 20 53% 17 0 3 20 93%

Table 4: Comparison to Meta-classifier.

Network Attack Meta Classifier FeatureRE

TP FP FN TN Acc TP FP FN TN Acc

4Conv+2FC WaNet 16 4 4 16 80% 18 0 2 20 95%

Baselines and Attack Settings. We evaluate the performance of FEATURERE on Trojan detection,
and compare the results with four reverse-engineering based Trojan detection methods (i.e., ABS [20],
DeepInspect [23], TABOR [22], and K-arm [21]) and two classification based methods (i.e., ULP [62]
and Meta-classifier [51]). For Trojan mitigation task, we compare FEATURERE with two advanced
mitigation methods (i.e., NAD [65] and I-BAU [66]). We use the default parameter settings described
in the original papers of our baseline methods. To understand the performance of FEATURERE
and existing methods against various attack settings, we evaluate them against BadNets [1], Filter
Trojans [20], WaNets [7], IA (Input-dependent dynamic Trojans) [8], Clean-label [26], SIG [27]
and ISSBA (Invisible sample-specific Trojans) [9] attacks. These attacks are state-of-the-art attack
methods and are widely evaluated in Trojan defense papers [19, 20, 66, 45]. If not specified, we use
all-to-one (i.e., single-target) setting for all attacks. Label-specific setting is discussed in § 4.4.

4.2 Effectiveness on Trojan Detection

To measure the effectiveness on the Trojan detection task, we generate a set of benign and Trojaned
models, and then use FEATURERE and existing Trojan detection methods to classify each model. We
collect the Acc, TP, FP, FN and TN results of each method and compare them. Specifically, we first
evaluate the performance of FEATURERE and compare the results with four state-of-the-art reverse-
engineering based detection methods. We generate 20 Trojaned models as well as 20 benign models
on CIFAR-10 dataset for each attack (i.e., BadNets, Filter Trojan, WaNet and Input-aware dynamic
Trojan attack). For MNIST and GTSRB dataset, we train 10 Trojaned and 10 benign LeNet5 [56]
models on each dataset. We then compare FEATURERE with two state-of-the-art classification
based detection methods. Similarly, we generate 10 benign and 10 Trojaned models, and use Trojan
detection methods to classify these models. Notice that, in all Trojan detection tasks, we assume the
defender can only access 10 clean samples for each class, which is a common practice. [19–21] The
comparison results of reverse-engineering based methods are shown in Table 2. The results of two
classification based methods are demonstrated in Table 3 and Table 4. In each table, we show the
detailed settings, including dataset names, network architectures, and attack settings.

Comparison to Reverse-engineering based methods. From the results in Table 2, we observe
that FEATURERE achieves the best detection results compared with other methods. The average
Acc of FEATURERE is 93%, which is 17%, 23%, 35% and 23% higher than those of other defense
methods. The results show the benefit of FEATURERE. When looking into the generalization of
Trojan detection methods, we find that FEATURERE can achieve excellent results on both input-space
Trojans (i.e., BadNets) and feature-space Trojans (i.e., Filter, WaNet and IA attacks). However, the
performance of existing reverse-engineering methods on feature-space Trojans (i.e., Filter, WaNet
and IA attacks) is significantly worse than the performance on static Trojans. FEATURERE archives
94% average Acc but the Acc of TABOR on feature-space Trojans are only 53%, 50% and 50%,
respectively. Moreover, FEATURERE has 15.33 TP on average, but existing methods only have
7.87 TP. FEATURERE can generalize better than existing work because FEATURERE considers both
feature and input space constraints. Existing methods, on the contrary, only consider the input space

7



Table 5: Results on Trojan mitigation task (10 clean samples for each class are used).

Dataset Network Attack Undefended NAD I-BAU FeatureRE

BA ASR BA ASR BA ASR BA ASR

MNIST LeNet5 WaNet 99.22% 94.52% 65.87% 48.21% 94.87% 0.22% 99.20% 0.63%

GTSRB PRN18 WaNet 99.02% 99.70% 70.35% 62.76% 91.74% 0.86% 98.42% 0.00%

CIFAR-10 ResNet18
Filter 91.30% 98.98% 81.66% 28.23% 87.45% 18.22% 91.26% 0.29%

WaNet 91.84% 98.17% 83.60% 27.52% 87.52% 6.84% 91.79% 0.04%
IA 91.62% 92.44% 84.03% 34.00% 86.88% 10.33% 91.43% 0.38%

constraints. They can not detect feature-space Trojans whose trigger is complex and input-dependent,
and directly classify many Trojaned models with feature-space Trojans as benign.

Comparison to classification based methods. When comparing FEATURERE with classification
based methods, we notice that FEATURERE has better Acc, more TPs and TNs than classification
based methods ULP and Meta-classifier. As demonstrated in Table 3 and Table 4, the Acc of
FEATURERE is 93% and 95%, which is 40% and 15% higher than those of ULP and Meta-classifier.
Overall, the results indicate that FEATURERE is more effective than classification based methods
when detecting Trojaned models. Different from FEATURERE, which directly inspects models via
analyzing its inherent feature space properties, classification based methods highly depend on the
external trained dataset. Therefore, their results are not as precise as FEATURERE.

4.3 Effectiveness on Trojan Mitigation

We evaluate the effectiveness of FEATURERE on Trojan mitigation and compare the results with
state-of-the-art methods NAD and I-BAU. We use the Trojaned models generated by three attacks (i.e.,
Filter attack, WaNet and IA) and report their average BA and ASR after Trojan mitigation. We also
show the average BA and ASR of undefended Trojaned models. For all methods, the defenders can
access 10 clean samples for each class to conduct Trojan mitigation. We show the results in Table 5.

We find that FEATURERE is the most effective method for Trojan mitigation among all methods.
Compared to state-of-the-art Trojan mitigation methods, FEATURERE archives the lowest average
ASR and the highest average BA. On the one hand, using FEATURERE can decrease the average
ASR from 96.76% to 0.26%. Other methods can only decrease the average ASR to 40.14% and
7.29%. The results show the advantages of FEATURERE on Trojan mitigation. On the other hand, the
BA with FEATURERE is similar to undefended models. But the BA of other methods is significantly
lower than that of undefended models. By breaking the feature space hyperplane, FEATURERE can
successfully mitigate Trojans with minimal BA loss. Other methods, which cannot effectively find
Trojan-related features, cannot achieve good results.

4.4 Ablation Study

In this section, we evaluate the resistance of FEATURERE to various Trojan attack settings and large
datasets. We also evaluate the impacts of configurable parameters in FEATURERE, including the
constrain values used in Eq. 2 and the number of used clean samples. By default, the attack used for
measuring the impacts of configurable parameters is IA. We use 20 benign ResNet models and 20
Trojaned ResNet models on CIFAR-10 to test the detection results. Notice that we only evaluate the
performance on the Trojan detection task. Due to the page limits, we include the ablation study on
Trojan mitigation in Appendix (§ A.4).

Table 6: Resistance to more attacks.

Dataset Network Attack TP FP FN TN Acc

CIFAR-10 ResNet18
LS 9 1 1 9 90%
CL 8 1 2 9 85%
SIG 10 1 0 9 95%

ImageNet ResNet18 ISSBA 4 0 1 5 90%

Resistance to various attack and dataset settings.
To evaluate if our method is resistant to more Tro-
jan attacks, we train 20 Trojaned ResNet18 models
on CIFAR-10 for Label-specific attack (LS), Clean-
label attack (CL) and SIG attack (SIG). For the label-
specific attack, we consider the all-to-all attack set-
ting, i.e., the target label yT = η(y) = y+1, where η
is a mapping and y is the correct label of the sample.
In addition, we generate five benign models and five

8



Trojaned models with ISSBA attacks on ImageNet to evaluate if our method is compatible with
large-scale datasets. We summarize the results in Table 6.

In Table 6, we find that FEATURERE is compatible with evaluated Trojan attacks, showing the
generalization of our reverse-engineering based method. We also observe that our method has high
Acc on the ImageNet dataset with ISSBA [9]. Thus, our method is also applicable to large datasets.

Influence of constrain values. As shown in Eq. 2, there are three constrain values (τ1, τ2, τ3) in our
constrained optimization process. By default, τ1 = 0.15, τ2 = 0.25 and τ3 = 5%. We evaluate their
influences. For τ1, we calculate input space perturbations on the preprocessed inputs, and the details
of the preprocessing can be found in Appendix (§ A.2). We vary τ1 from 0.05 to 0.35, change τ2
from 0.10 to 0.50, and tune τ3 from 3% of the whole feature space to 10% of the whole feature space.
The results under different hyperparameter settings are shown in Table 7.

From the results, we observe that the performance of FEATURERE is insensitive to these three
hyperparameters. In detail, when we vary τ1, τ2 and τ3, the Acc is stable. In all cases, our method
always achieves over 90% detection accuracy. The results further show the robustness of FEATURERE.
We also find that, when the value of all hyperparameters becomes lower, FEATURERE has more FN.
On the contary, when its value is larger, more FP will be produced. This is understandable because
lower constrain values mean a stricter criterion for a successful reverse-engineering.

Table 7: Influence of hyperparameters.

Metric τ1 τ2 τ3

0.05 0.15 0.35 0.10 0.25 0.50 3% 5% 10%

TP 18 19 20 17 19 19 17 19 19
FP 0 1 3 1 1 2 0 1 2
FN 2 1 0 3 1 1 3 1 1
TN 20 19 17 19 19 18 20 19 18
Acc 0.95 0.95 0.93 0.90 0.95 0.93 0.93 0.95 0.93

Fig. 3: Effects of clean set size.

Number of clean reference samples. Our threat model and existing work assume the defender can
access a set of clean samples for defense. To investigate the influences of the number of used clean
samples in Trojan detection, we choose the number from 1 to 100 in each class and report the Acc
results. The results are shown in Fig. 3.

From the results, we notice that the Acc decreases significantly when we use less than 10 samples
for each class. This is because the number of used sample affects the optimization process. When
the number of used samples is too small, the optimization process might be problematic, e.g., it
encounters overfitting problem. When the number of used samples is larger than 10, FEATURERE
achieves high detection accuracy (i.e., above 95%) and the Acc will not change significantly when the
number of used samples keeps increasing. The reason is using more data makes the optimizing process
converge and finally arrives a stable state. Note that requiring hundreds clean samples is common
for reverse-engineering based methods [19, 20, 22] and other types of defenses [15, 65, 66, 45].
FEATURERE only requires 10 clean samples for each class, which is more efficient.

4.5 Discussion for Model Split

As we discussed in § 3, our method split the model M into two sub-models A and B. In this section,
we discuss the influence of using different split positions. Table 8 shows the results of using different
A and B on the ResNet18 model and CIFAR-10 dataset. In detail, we report the results of splitting the
model at the 9th, 11th, 13th, 15th, and the last convolutional layer. The average detection accuracy for
splitting at the 9th layer, 11th layer, 13th layer, 15th layer, and last layer is 86.50%, 87.75%, 89.50%,
94.00%, and 94.75%, respectively. As we can see, the performance of splitting at later layers is higher
than the performance of splitting at earlier layers. In our current implementation, we set A(x) as the
sub-model from the input layer to the last convolution layer and B(x) as the rest. The relationship
between the input and the output of a convolutional layer Ln is xn+1 = Ln(xn) = σ(WT

n xn +bT
n ),

where xn and xn+1 are the inputs and outputs of layer n, Wn and bn are weights and bias values,
and σ is the activation function.

9



Table 8: Accuracy on different split position.

Attack 9th 11th 13th 15th Last

BadNets 88% 93% 98% 98% 98%
Filter 88% 85% 90% 95% 93%

WaNet 85% 88% 85% 93% 93%
IA 85% 85% 85% 90% 95%

Table 9: Results on BadNets and adaptive attack.

Attack BA ASR Acc

BadNets 94.34% 99.98% 98%
Adaptive 87.36% 93.67% 65%

Based on existing literatures [67, 68], the features in the deeper CNN layers are more disentangled
than that of earlier layers. Thus, if the orthogonal phenomenon happens in a layer Ln, it will exist
for all its subsequent layers, e.g., Ln+1. If the orthogonal phenomenon does not happen, the layer
without this phenomenon will mix benign and backdoor features, leading to low benign accuracy or
attack success rate. The results in Table 9 confirm our analysis. Thus, a successful backdoor attack
will lead to the orthogonal phenomenon in the last convolution layer.

4.6 Adaptive Attack
Our threat model assumes that the attacker can control the training process of the Trojan model. In
this section, we discuss the potential adaptive attacker that knows our defense strategy and tries to
bypass FEATURERE via modifying the training process. Our observation is that the neuron activation
values representing the Trojan behavior are orthogonal to others. One possible adaptive attack is
breaking such orthogonal relationships during the Trojan injection process. We design an adaptive
attack that adds one loss term to push the Trojan features to be not orthogonal to benign features.
This attack can be formulated as: L = Lce + Ladv , where Lce is the standard classification loss and
the Ladv is defined as:

Ladv = SIM(B(m⊙ a+ (1−m)⊙ t),B(m⊙ a′ + (1−m)⊙ t)) (4)

Here, SIM is the cosine similarity; a and a′ are the features of different benign samples; m and t are
the feature-space mask and pattern of the compromised neurons obtained via SHAP [52]. The loss
term Ladv tries to enforce the Trojan features being not orthogonal to the benign ones. We conduct
this adaptive attack on the CIFAR-10 dataset and ResNet18 model. The results can be found in
Table 9. The detection accuracy of FEATURERE under adaptive attack drops to 65%. Meanwhile,
the average BA/ASR of the adaptive attack and BadNets (native training) is 87.36%/94.34% and
93.67%/99.98%, respectively. The adaptive attack can reduce the detection accuracy of our method.
Both the BA and ASR of the adaptive attack are lower than those of native training. The results
confirm our analysis in § 4.5: the model without the “orthogonal phenomenon” will mix benign and
Trojan features, leading to low benign accuracy or attack success rate.

5 Discussion
Limitations of our method. Similar to most existing Trojaned model detection and mitigation
methods [19, 20, 49, 21, 50, 22, 23, 63, 65, 48], our method requires a small set of clean samples. In
the real world, these samples can be obtained from the Internet.

Ethics. This paper proposes a technique to detect and remove Trojans in DNN models. We believe it
will help improve the security of DNNs and be beneficial to society.

6 Conclusion
In this paper, we find relationships between feature space hyperplane and Trojans in DNNs. More
over, we propose a new Trojaned DNN detection and mitigation method based on our findings.
Compared to the state-of-the-art methods, our method has better performance in both detection and
mitigation tasks.

Acknowledgement
We thank the anonymous reviewers for their constructive comments. This work is supported by
IARPA TrojAI W911NF-19-S-0012. Any opinions, findings, and conclusions expressed in this paper
are those of the authors only and do not necessarily reflect the views of any funding agencies.

10



References
[1] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in

the machine learning model supply chain. IEEE Access, 2019.

[2] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu
Zhang. Trojaning attack on neural networks. Proceedings of the network and distributed system
security symposium, 2018.

[3] Siyuan Cheng, Yingqi Liu, Shiqing Ma, and Xiangyu Zhang. Deep feature space trojan attack
of neural networks by controlled detoxification. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 1148–1156, 2021.

[4] Khoa Doan, Yingjie Lao, Weijie Zhao, and Ping Li. Lira: Learnable, imperceptible and robust
backdoor attacks. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 11966–11976, 2021.

[5] Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma, and Yang Zhang. Dynamic backdoor
attacks against machine learning models. In 2022 IEEE 7th European Symposium on Security
and Privacy (EuroS&P), pages 703–718. IEEE, 2022.

[6] Zhenting Wang, Juan Zhai, and Shiqing Ma. Bppattack: Stealthy and efficient trojan attacks
against deep neural networks via image quantization and contrastive adversarial learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
15074–15084, 2022.

[7] Tuan Anh Nguyen and Anh Tuan Tran. Wanet-imperceptible warping-based backdoor attack.
In International Conference on Learning Representations, 2021.

[8] Tuan Anh Nguyen and Anh Tran. Input-aware dynamic backdoor attack. Advances in Neural
Information Processing Systems, 33:3454–3464, 2020.

[9] Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran He, and Siwei Lyu. Invisible backdoor
attack with sample-specific triggers. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 16463–16472, 2021.

[10] Giorgio Severi, Jim Meyer, Scott Coull, and Alina Oprea. {Explanation-Guided} backdoor
poisoning attacks against malware classifiers. In 30th USENIX Security Symposium (USENIX
Security 21), pages 1487–1504, 2021.

[11] Esha Sarkar, Hadjer Benkraouda, and Michail Maniatakos. Facehack: Triggering backdoored
facial recognition systems using facial characteristics. arXiv preprint arXiv:2006.11623, 2020.

[12] Min Du, Ruoxi Jia, and Dawn Song. Robust anomaly detection and backdoor attack detection
via differential privacy. In International Conference on Learning Representations, 2020.

[13] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung
Lee, Ian Molloy, and Biplav Srivastava. Detecting backdoor attacks on deep neural networks by
activation clustering. In SafeAI@ AAAI, 2019.

[14] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks.
Advances in neural information processing systems, 31, 2018.

[15] Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe, and Surya Nepal.
Strip: A defence against trojan attacks on deep neural networks. In Proceedings of the 35th
Annual Computer Security Applications Conference, pages 113–125, 2019.

[16] Edward Chou, Florian Tramer, and Giancarlo Pellegrino. Sentinet: Detecting localized universal
attacks against deep learning systems. In 2020 IEEE Security and Privacy Workshops (SPW),
pages 48–54. IEEE, 2020.

[17] Bao Gia Doan, Ehsan Abbasnejad, and Damith C Ranasinghe. Februus: Input purification
defense against trojan attacks on deep neural network systems. In Annual Computer Security
Applications Conference, pages 897–912, 2020.

11



[18] Shiqing Ma, Yingqi Liu, Guanhong Tao, Wen-Chuan Lee, and Xiangyu Zhang. Nic: Detecting
adversarial samples with neural network invariant checking. Proceedings of the network and
distributed system security symposium, 2019.

[19] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and
Ben Y Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks.
In 2019 IEEE Symposium on Security and Privacy (SP), pages 707–723. IEEE, 2019.

[20] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer, and Xiangyu Zhang.
Abs: Scanning neural networks for back-doors by artificial brain stimulation. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pages
1265–1282, 2019.

[21] Guangyu Shen, Yingqi Liu, Guanhong Tao, Shengwei An, Qiuling Xu, Siyuan Cheng, Shiqing
Ma, and Xiangyu Zhang. Backdoor scanning for deep neural networks through k-arm op-
timization. In International Conference on Machine Learning, pages 9525–9536. PMLR,
2021.

[22] Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn Song. Tabor: A highly accurate
approach to inspecting and restoring trojan backdoors in ai systems. IEEE International
Conference on Data Mining (ICDM), 2020.

[23] Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar. Deepinspect: A black-box trojan
detection and mitigation framework for deep neural networks. In IJCAI, pages 4658–4664,
2019.

[24] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on
deep learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

[25] Junyu Lin, Lei Xu, Yingqi Liu, and Xiangyu Zhang. Composite backdoor attack for deep
neural network by mixing existing benign features. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, pages 113–131, 2020.

[26] Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Label-consistent backdoor attacks.
arXiv preprint arXiv:1912.02771, 2019.

[27] Mauro Barni, Kassem Kallas, and Benedetta Tondi. A new backdoor attack in cnns by training
set corruption without label poisoning. In 2019 IEEE International Conference on Image
Processing (ICIP), pages 101–105. IEEE, 2019.

[28] Zhaohan Xi, Ren Pang, Shouling Ji, and Ting Wang. Graph backdoor. In 30th USENIX Security
Symposium (USENIX Security 21), pages 1523–1540, 2021.

[29] Zaixi Zhang, Jinyuan Jia, Binghui Wang, and Neil Zhenqiang Gong. Backdoor attacks to graph
neural networks. In Proceedings of the 26th ACM Symposium on Access Control Models and
Technologies, pages 15–26, 2021.

[30] Panagiota Kiourti, Kacper Wardega, Susmit Jha, and Wenchao Li. Trojdrl: evaluation of
backdoor attacks on deep reinforcement learning. In 2020 57th ACM/IEEE Design Automation
Conference (DAC), pages 1–6. IEEE, 2020.

[31] Lun Wang, Zaynah Javed, Xian Wu, Wenbo Guo, Xinyu Xing, and Dawn Song. Backdoorl:
Backdoor attack against competitive reinforcement learning. In 30th International Joint Confer-
ence on Artificial Intelligence, IJCAI 2021, pages 3699–3705. International Joint Conferences
on Artificial Intelligence, 2021.

[32] Xiaoyi Chen, Ahmed Salem, Dingfan Chen, Michael Backes, Shiqing Ma, Qingni Shen,
Zhonghai Wu, and Yang Zhang. Badnl: Backdoor attacks against nlp models with semantic-
preserving improvements. In Annual Computer Security Applications Conference, pages
554–569, 2021.

[33] Alvin Chan, Yi Tay, Yew-Soon Ong, and Aston Zhang. Poison attacks against text datasets
with conditional adversarially regularized autoencoder. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages 4175–4189, 2020.

12



[34] Wenkai Yang, Lei Li, Zhiyuan Zhang, Xuancheng Ren, Xu Sun, and Bin He. Be careful about
poisoned word embeddings: Exploring the vulnerability of the embedding layers in nlp models.
In Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 2048–2058, 2021.

[35] Fanchao Qi, Yangyi Chen, Xurui Zhang, Mukai Li, Zhiyuan Liu, and Maosong Sun. Mind the
style of text! adversarial and backdoor attacks based on text style transfer. In Proceedings of
the 2021 Conference on Empirical Methods in Natural Language Processing, pages 4569–4580,
2021.

[36] Wenkai Yang, Yankai Lin, Peng Li, Jie Zhou, and Xu Sun. Rethinking stealthiness of backdoor
attack against nlp models. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 5543–5557, 2021.

[37] Fanchao Qi, Mukai Li, Yangyi Chen, Zhengyan Zhang, Zhiyuan Liu, Yasheng Wang, and
Maosong Sun. Hidden killer: Invisible textual backdoor attacks with syntactic trigger. In
ACL/IJCNLP (1), 2021.

[38] Shijie Zhang, Hongzhi Yin, Tong Chen, Zi Huang, Quoc Viet Hung Nguyen, and Lizhen Cui.
Pipattack: Poisoning federated recommender systems formanipulating item promotion. arXiv
preprint arXiv:2110.10926, 2021.

[39] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y Zhao. Latent backdoor attacks on deep
neural networks. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pages 2041–2055, 2019.

[40] Jinyuan Jia, Yupei Liu, and Neil Zhenqiang Gong. Badencoder: Backdoor attacks to pre-trained
encoders in self-supervised learning. In 2022 IEEE Symposium on Security and Privacy (SP),
pages 2043–2059. IEEE, 2022.

[41] Jose Rodrigo Sanchez Vicarte, Gang Wang, and Christopher W Fletcher. {Double-Cross}
attacks: Subverting active learning systems. In 30th USENIX Security Symposium (USENIX
Security 21), pages 1593–1610, 2021.

[42] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. How
to backdoor federated learning. In International Conference on Artificial Intelligence and
Statistics, pages 2938–2948. PMLR, 2020.

[43] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. Dba: Distributed backdoor attacks against
federated learning. In International Conference on Learning Representations, 2019.

[44] Jonathan Hayase, Weihao Kong, Raghav Somani, and Sewoong Oh. Defense against backdoor
attacks via robust covariance estimation. In International Conference on Machine Learning,
pages 4129–4139. PMLR, 2021.

[45] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Anti-backdoor
learning: Training clean models on poisoned data. Advances in Neural Information Processing
Systems, 34, 2021.

[46] Zhenting Wang, Hailun Ding, Juan Zhai, and Shiqing Ma. Towards understanding and defending
input space trojans. arXiv preprint arXiv:2202.06382, 2022.

[47] Kunzhe Huang, Yiming Li, Baoyuan Wu, Zhan Qin, and Kui Ren. Backdoor defense via
decoupling the training process. International Conference on Learning Representations, 2022.

[48] Guanhong Tao, Guangyu Shen, Yingqi Liu, Shengwei An, Qiuling Xu, Shiqing Ma, Pan Li, and
Xiangyu Zhang. Better trigger inversion optimization in backdoor scanning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13368–13378,
2022.

[49] Yingqi Liu, Guangyu Shen, Guanhong Tao, Shengwei An, Shiqing Ma, and Xiangyu Zhang.
Piccolo: Exposing complex backdoors in nlp transformer models. In 2022 IEEE Symposium on
Security and Privacy (SP), pages 1561–1561. IEEE Computer Society, 2022.

13



[50] Guangyu Shen, Yingqi Liu, Guanhong Tao, Qiuling Xu, Zhuo Zhang, Shengwei An, Shiqing
Ma, and Xiangyu Zhang. Constrained optimization with dynamic bound-scaling for effective
nlpbackdoor defense. 2022.

[51] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A Gunter, and Bo Li. Detecting ai
trojans using meta neural analysis. In 2021 IEEE Symposium on Security and Privacy (SP),
pages 103–120. IEEE, 2021.

[52] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions.
Advances in neural information processing systems, 30, 2017.

[53] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

[54] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing and
computer-assisted intervention, pages 234–241. Springer, 2015.

[55] Yue Zhao, Hong Zhu, Kai Chen, and Shengzhi Zhang. Ai-lancet: Locating error-inducing
neurons to optimize neural networks. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, pages 141–158, 2021.

[56] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[57] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition. Neural networks, 32:
323–332, 2012.

[58] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[59] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

[60] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pages 630–645. Springer, 2016.

[61] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[62] Soheil Kolouri, Aniruddha Saha, Hamed Pirsiavash, and Heiko Hoffmann. Universal litmus
patterns: Revealing backdoor attacks in cnns. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 301–310, 2020.

[63] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending against
backdooring attacks on deep neural networks. In International Symposium on Research in
Attacks, Intrusions, and Defenses, pages 273–294. Springer, 2018.

[64] Akshaj Kumar Veldanda, Kang Liu, Benjamin Tan, Prashanth Krishnamurthy, Farshad Khorrami,
Ramesh Karri, Brendan Dolan-Gavitt, and Siddharth Garg. Nnoculation: broad spectrum and
targeted treatment of backdoored dnns. arXiv preprint arXiv:2002.08313, 2020.

[65] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Neural attention
distillation: Erasing backdoor triggers from deep neural networks. In International Conference
on Learning Representations, 2021.

[66] Yi Zeng, Si Chen, Won Park, Zhuoqing Mao, Ming Jin, and Ruoxi Jia. Adversarial unlearning of
backdoors via implicit hypergradient. In International Conference on Learning Representations,
2022.

14



[67] Bolei Zhou, Yiyou Sun, David Bau, and Antonio Torralba. Interpretable basis decomposition
for visual explanation. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 119–134, 2018.

[68] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza, Bolei Zhou, and Antonio Torralba.
Understanding the role of individual units in a deep neural network. Proceedings of the National
Academy of Sciences, 117(48):30071–30078, 2020.

[69] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, 2015.

[70] Yingqi Liu, Guangyu Shen, Guanhong Tao, Zhenting Wang, Shiqing Ma, and Xiangyu
Zhang. Complex backdoor detection by symmetric feature differencing. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

[71] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Univer-
sal adversarial perturbations. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1765–1773, 2017.

[72] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[73] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision
Conference 2016. British Machine Vision Association, 2016.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See § 5.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See § 5.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes] See § 5.
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See Abstract,
§ 4, and Appendix.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See § 4 and Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See § 4.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See § 4.
(b) Did you mention the license of the assets? [Yes] See Appendix.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

See Abstract.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] See Appendix.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] See Appendix.

15



5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

16


	Introduction
	Background & Motivation
	Methodology
	Threat Model
	Observation
	Feature Space Trojan Hyperplane Reverse-engineering
	Trojan Mitigation

	Experiments and Results
	Experiment Setup.
	Effectiveness on Trojan Detection
	Effectiveness on Trojan Mitigation
	Ablation Study
	Discussion for Model Split
	Adaptive Attack

	Discussion
	Conclusion
	Appendix
	More details of Algorithm 1
	Details of Datasets
	Details of Attacks
	Ablation Study on Trojan Mitigation
	Visualization of Reverse-Engineered Trojans
	Generalization
	Efficiency
	Discussions


