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Abstract

Real-world problems such as ad allocation and matching have been extensively
studied under the lens of combinatorial optimization. In several applications,
uncertainty in the input appears naturally and this has led to the study of online
stochastic optimization models for such problems. For the offline case, these
constrained combinatorial optimization problems have been extensively studied,
and Contention Resolution Schemes (CRSs), introduced by Chekuri, Vondrák,
and Zenklusen, have emerged in recent years as a general framework to obtaining
a solution. The idea behind a CRS is to first obtain a fractional solution to a
(continuous) relaxation of the objective and then round the fractional solution to
an integral one. When the order of rounding is controlled by an adversary, Online
Contention Resolution Schemes (OCRSs) can be used instead, and have been
successfully applied in settings such as prophet inequalities and stochastic probing.
In this work, we focus on greedy OCRSs, which provide guarantees against the
strongest possible adversary, an almighty adversary. Intuitively, a greedy OCRS
has to make all its decisions before the online process starts. We present simple
1/e - selectable greedy OCRSs for the single-item setting, partition matroids and
transversal matroids, which improve upon the previous state-of-the-art greedy
OCRSs of [FSZ16] for these constraints. We also show that our greedy OCRSs are
optimal, even for the simple single-item case.

1 Introduction

In recent years, problems in Bayesian and stochastic online optimization have attracted significant
interest, especially in the field of machine learning. In this setting, we are usually asked to make
decisions in an online manner, based on the information available to us so far, and our objective is to
minimize our “regret”, which is captured by a loss function and describes how much better we could
have done if we had all the information available a priori.

In several applications, in which our decision relies also on hidden information, such as deciding
whether a user will click an ad they are presented with [AAD+20, XSC+19, BSSX20, BGMS21]
or whether a kidney donor is a good match for another patient [BFT13, DS15], our online decision
problem naturally becomes stochastic. The inherent uncertainty of such applications makes the study
of stochastic optimization all the more significant, and demonstrating algorithms with reasonable
competitive ratios when one has knowledge of the underlying distributions illustrates the importance
of learning distributions in AI.

One can consider a simpler setting in which our decision at each time step is a binary choice. In
one such formulation, elements arrive in an online manner and we have to select a subset of them,
subject to certain combinatorial constraints. The simplest example of such a constraint is when we
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only want to select a single element. Under this formulation, the elements reveal one after the other
in an online manner whether they are “active” or not, and our binary decision is whether to select an
active element, with the constraint of being able to select at most one active element. In this paper, we
study this problem and its generalizations. Famous examples of such settings are prophet inequality
problems [KS77, KW12, EFGT20] and secretary problems [Dyn63], which have found application
in the design of posted-price mechanisms and auctions, among others.

One approach that has seen plenty of success for these problems is to use the known distributional
information to obtain a continuous relaxation of the objective. One can then solve this relaxation
and get an optimal fractional solution x∗, which corresponds to the marginals of the elements under
the optimal distribution. Thus, the optimal value of the relaxation constitutes an upper bound to the
performance of any online (or even offline) algorithm. Afterwards, x∗ is used to devise an online
algorithm in order to maximize the value of the subset of elements selected. It is easy to see that this
algorithm essentially corresponds to an online rounding procedure for x∗.

In this paper, we contribute provably optimal algorithms for the problem of rounding an optimal
solution to a linear program in an online manner, for a range of fundamental constraints. The online
nature of our rounding is well-motivated in the field of AI due to the fact that we are not able to
control the arrival order of the agents. Our algorithms apply for the single-item setting, for partition
matroids, as well as transversal matroids which have been used extensively to model matching
markets [DRS09, CFMP, BIK07].

1.1 Online Contention Resolution Schemes

Such rounding algorithms have recently been used to obtain several optimal and interesting results
[CVZ11, FSZ16, AW18, EFGT20, BZ20, RS17, CL21], and have more applications in online mech-
anism design and posted pricing mechanisms [CHMS10, HKS07]. General rounding algorithms for
offline problems are called Contention Resolution Schemes (CRSs) and were introduced by Chekuri,
Vondrák and Zenklusen [CVZ11] with the purpose of maximizing a submodular function. A CRS
is defined with respect to a constraint family. Examples of such combinatorial constraints include
selecting an independent set in a given matroid, selecting a feasible matching in a given a graph in
which the elements correspond to edges, or selecting a feasible set of elements subject to a knapsack
constraint, where each element is associated with a size. Chekuri, Vondrák and Zenklusen [CVZ11]
gave the first CRSs for all aforementioned constraint families as well as other constraints. For a given
fractional point x∗, the main idea behind CRSs is to first obtain a random set R, drawn from the
product distribution with marginals x∗, hence called the active elements. Since R may be infeasible
with respect to the constraints, the CRS proceeds to “drop” specific elements from R and obtain a
new, feasible, set R′ ⊆ R.

While the general applicability of the CRS approach is remarkable, they are unfortunately not useful
for Bayesian and stochastic online optimization problems. In particular, one can utilize CRSs when
they have the ability to choose the order in which they obtain information about the underlying ground
set of elements, as CRSs round a fractional point x∗ in a particular order to obtain a feasible solution.

To overcome the inherently offline nature of CRSs, Feldman, Svensson and Zenklusen [FSZ16]
introduced the notion of Online Contention Resolution Schemes (OCRSs), applicable in a variety
of online settings in Bayesian and stochastic online optimization, such as prophet inequalities
[LS18, RS17, CL21], stochastic probing [ASW16, GN13, GNS16, GNS17], and posted pricing
mechanisms [HKS07]. Surprisingly, OCRSs yield constant-factor competitive ratios for several
interesting feasibility constraints.

All of the results presented in [FSZ16] are based on a special subclass of OCRSs called greedy
OCRSs. Intuitively, a greedy OCRS fixes a downward-closed subfamily of feasible sets F before
the online process starts. During the online process, the greedy OCRS maintains a subset S of the
elements which is feasible in F , and then greedily accepts any active element i if S ∪ {i} is also
feasible in F , i.e. if i does not violate feasibility, with respect to F , of the set maintained by the
greedy OCRS. One can easily see that the final set at the end of the online process is feasible by
construction.

Even though greedy OCRSs offer suboptimal performance guarantees with respect to (non-greedy)
OCRSs, as we will see, their study remains interesting for two important reasons. First, greedy
OCRSs are inherently simpler than their non-greedy counterparts. Usually, to obtain an optimal
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non-greedy OCRS for a non-trivial constraint, one has to use linear programming duality, as in the
approach of [LS18]. This leads to a non-intuitive algorithm which, in many situations, can be difficult
to implement1. In short, greedy OCRSs are simpler to implement and more intuitive.

Furthermore, greedy OCRSs provide guarantees against an almighty adversary who has knowledge of
the future as well as any random coins used by the algorithm. This property is crucial for applications
that require the algorithm to compare against an almighty adversary. One such example is [BDP22]
in which the authors study the "delegation gap" of the generalized Pandora’s box problem and in
fact reduce the problem to the design of an OCRS which is necessarily greedy. To the best of our
knowledge, this result is the first example of an application in which non-greedy OCRSs cannot be
applied and a greedy OCRS is needed.

1.2 Our contributions

In this paper, we analyze the performance of greedy OCRSs and provide the first provably optimal
greedy OCRS for the single-item setting, partition matroids and transversal matroids.

We have four main contributions:

• We design a 1/e-selectable greedy OCRS for the single-item setting (Theorem 1.1).
• We show that our greedy OCRS extends naturally to partition matroids2 (Corollary 1.2).
• We proceed to show that no greedy OCRS can be (1/e + ε)-selectable, for any ε > 0,

even for the single item setting. This, combined with our first contribution, shows that our
1/e-selectable greedy OCRS is the best possible (Theorem 1.3).

• We extend our greedy OCRS to transversal matroids3 as well, and show that the selectability
can be increased to 1− 1/e for special cases of transversal matroids (Theorem 1.4).

Our results improve upon the 1/4-selectable OCRSs of [FSZ16] for all the constraints discussed here.

As a corollary, our work presents the first instance of a dichotomy between the best possible guarantees
by greedy OCRSs and (non-greedy) OCRSs, since a 1/2 (non-greedy) OCRS is known for the single-
item setting [Ala14].

We proceed with our four main results. The proof of the following theorem is found in Section 3.
Theorem 1.1. There exists a 1/e-selectable (randomized) greedy OCRS for the single-item setting.

Next, we extend the single-item greedy OCRS to a partition matroid constraint, by decomposing
the partition matroid into single-item instances, running the greedy OCRS above and accepting
an active element if and only if it is independent in the corresponding single-item instance of the
decomposition.
Corollary 1.2. There exists a 1/e-selectable (randomized) greedy OCRS for partition matroids.

We complement the results above by also showing that it is tight. The proof of the following theorem
can be found in Section 4.
Theorem 1.3. For every ε > 0, there exists no greedy OCRS for the single-item setting that selects
an active element i with probability at least 1/e + ε for all i ∈ N .

Finally, we extend Theorem 1.1 to a more general class of matroids, transversal matroids, and
strengthen it for the special case in which every element’s neighborhood has size at least 3. The proof
of the following theorem is found in Section 5.
Theorem 1.4. Let M = (U, I) be a transversal matroid represented by a bipartite graph G =
(U ∪ V,E). Then, there exists a 1/e-selectable (randomized) greedy OCRS π for M. Furthermore, if
for every element u ∈ U we have |N(u)| ≥ 3, where N(u) is the set of neighbours of u in G, then π
is a (1− 1/e)-selectable (randomized) greedy OCRS for M.

1For example if the OCRS is used for an application in which one has to account for the strategic behaviour
of the agents.

2A partition matroid consists of a partition of the elements into disjoint sets A1, . . . , Ak such that a subset of
the elements S is independent if and only if |S ∩Aj | ≤ 1 for every 1 ≤ j ≤ k.

3A transversal matroid consists of a bipartite graph G = (A∪B,E), in which the set of elements is A and a
set S ⊆ A is independent if and only if there exists a matching in G that covers S.
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1.3 Related work

Since their introduction [CVZ11], Contention Resolution Schemes (CRSs) have found several
applications. Applications of CRSs in Bayesian mechanism design and posted price mechanisms
[CHMS10] can be found in [CVZ11]. Later, Yan [Yan11] connected mechanism design with the
notion of correlation gap [ADSY12]. OCRSs were developed [FSZ16] with applications to Bayesian
mechanism design as one of the main motivations as they directly translate to competitive ratios
for the prophet inequality problem [FSZ16, Rub16, RS17, CL21]. In fact, Alaei’s work on uniform
matroids [Ala14] precedes [FSZ16] and can be seen as an OCRS, even though it is formulated
differently. Random order CRSs (ROCRSs) were introduced in [AW18] and yield improved bounds
when the arrival order is random.

As stated previously, Feldman, Svensson and Zenklusen [FSZ16] gave the first greedy OCRS for
matroids, which is 1/4-selectable. Lee and Singla [LS18] showed a reverse connection between
OCRSs and prophet inequalities, obtaining a 1/2-selectable (non-greedy) OCRS for matroids and a
(1− 1/e)-selectable ROCRS for the single item setting. Adamczyk and Wlodarczyk [AW18] obtained
several results, including a 1/k+1-selectable ROCRS for the intersection of k matroids. For matchings,
Ezra et al [EFGT20] designed a 0.337-selectable OCRS for bipartite graphs, while Bruggmann and
Zenklusen [BZ20] developed optimal monotone CRSs via a novel polyhedral approach.

This work is connected to stochastic optimization, online algorithms, mechanism design and sub-
modular optimization, all of which have extensive literature. There have been several surveys on
the topic [Gup17, Luc17, CFH+19, Din13, HK92], as well as a survey on random-order models
in general [GS20]. Singla’s thesis [Sin18] has connections to several of the topics discussed here.
On the application side, prophet inequality and secretary problems have received significant atten-
tion in the last years, due to their connections with Bayesian mechanism design and posted price
mechanisms [GM66, HK82, Ker86, Dyn63, KS77, KW12, ACK17, CFH+17, CSZ20, AEE+17,
EHLM15, HKS07, EHKS18, FZ18], while ROCRSs have found several applications to stochastic
probing [ASW16, GN13, GNS16, GNS17, BSZ19, AN16]. Recently, Dughmi [Dug20, Dug21]
showed the equivalence between the existence of constant-factor universal OCRSs and a constant-
factor approximation to the famous matroid secretary problem [BIKK18]. Apart from OCRSs, the
other main technique that has emerged for proving prophet inequalities and guarantees for posted-
price mechanisms is the "balanced prices" framework [KW12, FGL15, DFKL20, DKL20]. We refer
the reader to a survey by Lucier [Luc17] for more information on this separate technique.

Independently, [FLT+21] study the problem of designing an oblivious OCRS 4 for the same setting
and obtain a similar result, showing that there exists a 1/e-selectable oblivious OCRS and no oblivious
OCRS can be (1/e + ε)-selectable for any ε > 0. We note that the two results (and schemes) are very
different. In fact, their OCRS is not greedy, while ours is not oblivious. Whether one can achieve
similar guarantees with greedy and oblivious OCRSs for more general settings is an interesting open
problem.

1.4 Roadmap

We begin in Section 2 with some background. Then, in Section 3, we present our first main result, the
1/e-selectable greedy OCRS for the single-item setting and partition matroids. Then, in Section 4, we
show that our greedy OCRS is optimal. We proceed with our greedy OCRS for transversal matroids
in Section 5, which also achieves the optimal 1/e selectability and show it performs even better under
mild assumptions on the structure of the transversal matroid. Finally, we present our experimental
results in Section 6, demonstrating how our schemes outperform the best previously known schemes
for randomly generated as well as specific worst-case instances. All omitted proofs can be found
in the Appendix which, along the code used for the experiments, is provided in the supplementary
material.

4An CRS (or OCRS) is called oblivious if and only if it does not make use of the fractional point x, i.e. if for
every S ⊆ N , the distribution of πx(S) and the distribution of πy(S) are identical for any two fractional points
x, y ∈ PF .

4



2 Preliminaries

Before we proceed, we present the formal definitions of CRSs, OCRSs and greedy OCRSs and briefly
describe a 1/4-selectable single item OCRS by [FSZ16].

Let N be a finite ground set. A constraint family over N is a subset I ⊆ 2N ; a set S ∈ I is called
feasible, while a set S ̸∈ I is called infeasible. We say PI ⊆ [0, 1]N is a polyhedral relaxation of
(N , I) if PI is a polyhedron and 1S ∈ PI for all S ∈ I (here 1S is the characteristic vector of S).

Given a polyhedral relaxation PI of a constraint (N , I) and a point x ∈ PI , a natural question
is whether we can round x in order to obtain a feasible set S ∈ I. One way to achieve this is via
Contention Resolution Schemes, which we define below.

Definition 2.1 (Contention Resolution Scheme [CVZ11]). Let b, c ∈ [0, 1]. A (b, c)-balanced
Contention Resolution Scheme π for PI is a procedure that for every x ∈ b · PI and A ⊆ N , returns
a random set πx(A) ⊆ A ∩ support(x) and satisfies the following properties:

1. πx(A) ∈ I with probability 1, ∀A ⊆ N , x ∈ b · PI , and

2. for all i ∈ support(x), Pr [i ∈ πx(R(x)) | i ∈ R(x)] ≥ c, ∀x ∈ b · PI ,

where R(x) ⊆ N denotes a random set in which every element i ∈ N appears independently with
probability xi.

The scheme is said to be monotone if Pr [i ∈ πx(A1)] ≥ Pr [i ∈ πx(A2)] whenever i ∈ A1 ⊆ A2.

For the remainder of this paper, we drop the subscript in PI and simply write P whenever the
constraint is clear from context.

CRSs are offline rounding schemes. In the case where the arrival order of the elements is selected by
an adversary, we can use the following notion of Online Contention Resolution Schemes (OCRS) to
round x.

Definition 2.2 (Online Contention Resolution Scheme (OCRS) [FSZ16]). For an online selection
setting where a point x ∈ P is given, we draw a random subset of the elements R(x), in which
each element i appears independently with probability xi. We call R(x) the set of active elements.
Afterwards, we observe whether the element e ∈ N are active (e ∈ R(x)), one by one, and have
to immediately and irrevocably decide whether to select an element or not before the next element
is revealed. An Online Contention Resolution Scheme for P is an online algorithm which selects a
subset I ⊆ R(x) such that 1I ∈ P .

A scheme is called a Random Order Contention Resolution Schemes (ROCRS) if, instead of being
chosen by an adversary, the arrival order of the elements is chosen uniformly at random. Adamczyk
and Wlodarczyk present several interesting results on ROCRSs in [AW18]. In the case of adversarial
arrival order, however, one can distinguish between three different adversaries in terms of the
information they have at their disposal. An offline adversary, which is the weakest of the three, has
to fix an ordering of the elements before any of the elements are revealed. An almighty adversary,
the most powerful one, has access to the realizations of all random events; both the set of active
elements and any potential random bits the algorithm may use. Therefore, an almighty adversary
can predict the algorithm’s behaviour and choose a truly worst-case ordering of the elements for the
particular algorithm. In between the two extremes is the online adversary. An online adversary’s
choices can only depend on the realizations of the elements that have appeared so far. In other words,
the adversary has, at any step, exactly the same information as the algorithm, and their decision as to
which element to reveal at step i can only depend on the realizations of the elements revealed in steps
1 through i− 1.

We also define the notion of a greedy OCRS, which provide guarantees with respect to an almighty
adversary.

Definition 2.3 (Greedy OCRS [FSZ16]). Let P ⊆ [0, 1]
n be a relaxation of the feasible sets F ⊆ 2N .

An OCRS π for P is called a greedy OCRS if, for any x ∈ P , π defines a down-closed subfamily of
feasible sets Fπ,x ⊆ F , and it selects an active element e when it arrives if, together with the set of
elements already selected, the resulting set is in Fπ,x. We say that π is a randomized greedy OCRS if,
given x, the choice of Fπ,x is randomized. Otherwise, we say that π is a deterministic greedy OCRS.

5



For the remainder of this paper, we drop the subscript in Fπ,x and simply write Fx or F , whenever π
and x are clear from context.

Intuitively, we say a greedy OCRS is c-selectable if and only if an active element e ∈ R(x) can be
included in the currently selected elements I ⊆ R(x) and maintain feasibility with probability at
least c.
Definition 2.4 (c-selectability). Let c ∈ [0, 1]. A greedy OCRS for P is c-selectable if and only if for
any x ∈ P we have

Pr [I ∪ {e} ∈ Fx∀I ⊆ R(x), I ∈ Fx] ≥ c ∀e ∈ N .

Notice that a c-selectable greedy OCRS guarantees that each active element e is selected with
probability at least c, even against the almighty adversary. We should note that the randomness in the
above definition is with respect to both the randomness of R(x) and also any potential randomness
the greedy OCRS might use to decide upon Fx.

Next, we briefly describe the 1/4-selectable single item greedy OCRS by [FSZ16]. Given a fractional
point x such that

∑n
i=1 xi ≤ 1, the greedy OCRS will, at step i, observe whether element i is active

or not. If it is active, the greedy OCRS will choose to select with probability 1/2 or discard it and
move on to the next element. Since each element is active with probability xi and is selected with
probability xi/2, the expected number of selected elements is at most half, and thus, by Markov’s
inequality, the probability the greedy OCRS selects no elements is at least 1/2. Therefore, for every
element i, we reach i without having selected an element with probability at least 1/2 and we select i,
given that it is active, with probability 1/2, for an overall selectability of 1/4.

We should note that for the single item setting there exists a 1/2-selectable OCRS [Ala14] but,
crucially, it is not greedy. In fact, we show in the Section 4 that there is no 1/2-selectable greedy
OCRS for the single item setting.

3 An 1/e-selectable greedy OCRS for the single-item setting

This section is dedicated to proving Theorem 1.1. Before we begin, we need the following lemma.
Lemma 3.1. Let a1, . . . , ak ∈ [0, 1]. Then

ln
(
1− ak

2

)
+

k−1∑
j=1

ln

(
1− aj +

a2j
2

)
≥ −ak −

k−1∑
j=1

aj

Next, consider a ground set N = {e1, e2, . . . , en}, and let M = (N , I) be the uniform matroid of
rank 1 with respect to N , i.e. I = {{ei} | ei ∈ N}. Let P be the following polyhedral relaxation of
M:

P =

{
x ∈ [0, 1]

n

∣∣∣∣∣
n∑

i=1

xi ≤ 1

}

For a given x ∈ P , let π = πx denote the OCRS we will create. π will draw a random set R(q) where
each element ei appears in R(q) independently with some probability qi. The family of feasible
subsets is

Fπ,x = {{ei} | ei ∈ R(q)} .
We set qi = 1− xi/2 for all ei ∈ N . Afterwards, π selects the first element ei that is active and that
{ei} ∈ F .
Lemma 3.2. π is a randomized greedy OCRS.

Next, we quantify the probability that each element is selected by π, given that it is active.
Lemma 3.3. π selects every element ei ∈ N , given that it is active, with probability at least 1/e.

Proof. We relabel the elements of N so that each ei arrives in the i-th step. Consider an element
ei ∈ N . Given that ei is active, since π is a greedy OCRS, π will select ei if and only if it has
not selected any elements before ei and also {ei} ∈ Fπ,x. Recall that we have {ei} ∈ Fπ,x with
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probability exactly qi = 1 − xi/2. Furthermore, for every element ej where j < i, it needs to be
the case that we avoid having both {ej} ∈ Fπ,x and also ej coming up active. This happens with
probability 1− xj · (1− xj/2) = 1− xj + x2

j/2 for every ej where j < i. Overall, if we denote by ri
the probability that ei is selected by π, given that it is active, we have

ln ri = ln

(1− xi

2

)
·
i−1∏
j=1

(
1− xj +

x2
j

2

) = ln
(
1− xi

2

)
+

i−1∑
j=1

ln

(
1− xj +

x2
j

2

)

≥ −xi −
i−1∑
j=1

xj ≥ −1,

where the first inequality follows from Lemma 3.1 and the second inequality follows from
∑

i xi ≤ 1.
Therefore ri ≥ 1/e, for all i ∈ N .

From Lemmas 3.2 and 3.3, it follows that π is a 1/e-selectable (randomized) greedy OCRS for P .
Remark 3.4. In a personal communication, Jan Vondrák devised an alternate scheme for the problem,
after we notified him of our scheme. With his consent [Von], we have included this alternate scheme
in the Appendix, which can be found in the supplementary material.

4 1/e is tight

In this section, we present the proof of Theorem 1.3. Consider the instance where xi = 1/n for all
ei ∈ N , where n = |N |, and let A denote the set of active elements. Any greedy OCRS π will select
a subset S of F = {ei | ei ∈ N} with some probability αS , and then accept the first element in S
that comes up active. What is the worst-case probability that an element from S will be selected?
This is minimized for the element in S which is last in the arrival order, which has a probability of
being selected exactly equal to (1− 1/n)

|S|−1, because the OCRS is greedy, and it would select an
element from S which arrived earlier, if it came up active. Therefore, no greedy OCRS can guarantee,
for any S ⊆ F , that an element e ∈ N will be selected, when e ∈ A, with probability greater than
(1− 1/n)

|S|−1. Thus, for any e ∈ N and any greedy OCRS π, we have

Pr [e ∈ π(A) | e ∈ A] ≤
∑
S⊆N
e∈S

αS

(
1− 1

n

)|S|−1

=

n∑
k=1

(
1− 1

n

)k−1 ∑
S⊆N : |S|=k

e∈S

αS . (1)

Next, for a greedy OCRS π to be c-selectable, it needs to guarantee that

mine∈N Pr [e ∈ π(A) | e ∈ A] ≥ c. Therefore, if we show that

min
e∈N


n∑

k=1

(
1− 1

n

)k−1 ∑
S⊆N : |S|=k

e∈S

αS

 ≤ c,

by (1) it follows that π cannot be (c+ ε)-selectable for any ε > 0.
Lemma 4.1.

min
e∈N


n∑

k=1

(
1− 1

n

)k−1 ∑
S⊆N : |S|=k

e∈S

αS

 ≤
(
1− 1

n

)n−1

.

By Lemma 4.1, since limn→∞ (1− 1/n)
n−1

= 1/e, it follows that there exists no greedy OCRS for
P that selects an element e, when active, with probability at least 1/e + ε for all e ∈ N .
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5 Extension to Transversal Matroids

In this section, we prove Theorem 1.4. Let M = (U, I) be a transversal matroid and G = (U ∪V,E)
denote the underlying bipartite graph, where |U | = n. We know that a subset S ⊆ U is independent
if and only if there exists a matching in G that covers S. Let P be the natural polyhedral relaxation
of M. For a given x ∈ P , let π = πx be the greedy OCRS we will create. For each v ∈ V , π will
draw a random set Rv ⊆ N(v), in which each element u ∈ U appears with probability qu. For every
u ∈ U , let N(u) denote the set of neighbors of u in G. Then, we set

qu = 1−
(
1− 1− e−xu

xu

) 1
|N(u)|

.

It is easy to see that qu ∈ [0, 1] for every |N(u)| ≥ 1, and thus qu is well-defined.

Next, we create a down-closed subfamily of feasible sets by taking all possible combinations of sets
created by taking at most one element from each Rv and then taking the union of all such elements.
Specifically,

Fπ,x =
{
S = {u1, . . . , uk} ⊆ U

∣∣ ∃ T = {v1, . . . , vk} ⊆ V s.t. uj ∈ Rvj , ∀j ∈ {1, . . . , k}
}
.

Any set S in F is clearly an independent set of M, as the constraints guarantee that there always
exists a matching in G that covers S. During the online process, π starts with a set of selected
elements S = ∅, and greedily selects an active element u if S + u ∈ F .

The proof of the following lemma is identical to the proof of Lemma 3.2 and follows from the
discussion above.
Lemma 5.1. π is a randomized greedy OCRS.

Next, we again lower bound the selection probability of an active element.
Lemma 5.2. π selects every element u ∈ U , given that it is active, with probability at least 1/e.
Furthermore, if |N(u)| ≥ 3 for all u ∈ U , π selects every element u ∈ U , given that it is active, with
probability at least 1− 1/e.

We conclude that π is a 1/e-selectable greedy OCRS for M and that if |N(u)| ≥ 3 for every u ∈ U ,
π is a (1− 1/e)-selectable greedy OCRS for M.

6 Experimental Results

In this section, we present our experimental results which give a quantitative view into how our
greedy OCRSs outperform the former state-of-the-art greedy OCRSs by [FSZ16]. For the constraint
system, we consider both the single-item setting as well as randomly-generated transversal matroid
constraints. The code used to run these experiments can be found in the supplementary material.

For our experiments, we have the following parameters:

• N: The number of elements. For the single item setting, this varies from 10 to 100. For the
transversal matroid constraint, this is set to 50.

• ITERATIONS: For a fixed x, the number of times we simulate the realization of the elements.
This is used to approximate the selectability of each element within a reasonable estimate
and is set to 200, 000.

• REPETITIONS: The number of times we run the entire experiment from scratch. This has no
effect on the uniform instance of the single-item setting or the transversal matroid constraint,
but affects the random vector x in the randomly-generated instance of the single-item setting,
and is set to 10.

We focus on two metrics: the minimum selectability and the average selectability of each element.
For a fixed x, the minimum (resp. average) selectability records the minimum (resp. average) over all
elements of the fraction of the times an element was selected by our greedy OCRS over the number of
times it was active. While the average gives an idea of what selectability to expect for most elements,
the minimum selectability provides a worst-case estimate.
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For both types of constraints, we can see that our greedy OCRSs outperform the 1/4-selectable
single-item greedy OCRS by [FSZ16] in the minimum selectability metric and performs substantially
better in the average selectability metric.

6.1 Single-Item Setting

We consider two different types of instances for the single-item setting: the uniform instance, where
xi = 1/n for every element i ∈ N , as well as a randomly-generated instance, in which x is a random
vector of length n with the constraint that

∑
i xi = 1.

Figure 1: N = 5 to 100, ITERATIONS = 200, 000, REPETITIONS = 10

6.2 Transversal Matroid

For the transversal matroid constraint, we consider three different types of instances: a transversal
matroid with |V | = 2, |N(u)| = 2 and xu = 2/n for all vertices u ∈ U , a transversal matroid with
|V | = 3, |N(u)| = 3 and xu = 3/n for all vertices u ∈ U , as well as a transversal matroid with
|V | = 4, |N(u)| = 4 and xu = 4/n for all vertices u ∈ U .

While there are many options for the choice of what transversal matroid to pick, we selected these
“uniform” instances of transversal matroids to illustrate how the selectability changes as |N(u)|
increases. Since a transversal matroid with |V | = 1, |N(u)| = 1 and xu = 1/n for all vertices u ∈ U
is equivalent to a uniform instance of the single-item setting, we do not consider it explicitly, but we
plot it together with the previous three instances. The x-axis in the figures below corresponds to the
size of |N(u)|.

Figure 2: N = 50, ITERATIONS = 200, 000
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