
A Additional Discussions on the Experiments
In this section, we first delineate a more in-depth discussion and detailed description of the training
process for the Pendulum and Cartpole NNDMs. We then showcase our experiments on two of
the OpenAI agents by providing simulation results for both the certification and the control of the
NNDMs. At last, a detailed description on the training process for the Husky and Acrobot is provided.
Table 2 shows the partition width in each dimension for all the NNDMs.

A.1 Pendulum and Cartpole
We trained NNDMs with fixed number of epochs (300) and implemented an early stopping method
to avoid over-fitting. The number of data points were increased from 5,000 to 50,000 as the depth of
the NNDM increased for a fixed model, ranging from 1 layer to 5 layers. Figure 2 shows the vector
fields of the pendulum NNDMs with various architectures.

Pendulum In this case-study, we trained a NNDM for a Pendulum agent which has fixed mass m
and length l with actuator limits u ∈ [−1, 1]. We trained the NN under a given controller from [41]
that tries to keep the pendulum upright. We modified the original OpenAI gym environment and
directly learned the evolution of state variables θ and θ̇. We trained fw : R2 → R2 with one to five
hidden layers with 64 neurons each. The NNDM is trained in region θ ∈ [−π, π] and θ̇ ∈ [−1, 1].
The safe set is θ ∈ [− π

15 ,
π
15] and θ̇ ∈ [−1, 1] and the initial set is θ ∈ [− π

36 ,
π
36]. The state space X

is as mentioned in Table 3. We compute linear bounds for various discretization sizes as discussed in
Section 4.1 and Table 2.

The dynamics of the system is

θ̇k+1 = θ̇k +
3g

2l
sin(θk)δt2 +

3

ml2
uδt2, (11)

θk+1 = θk + θ̇k+1δt (12)

For the Pendulum 1-layer NNDM models, we notice that the probability of safety is above δs even
for coarser discretizations. In general, we observe that for a fixed model, the probability of safety

Table 2: Discretization parameters for each model of dimension n for various partitioning |Q|.
Model n |Q| Discretization

Pendulum 2

θ θ̇
120 0.01745329 0.1
240 0.00872664 0.1
480 0.00872664 0.05
960 0.00436332 0.05

1920 0.00436332 0.025

Cartpole 4

x ẋ θ θ̇
960 0.2 0.125 0.01745329 0.125

1920 0.2 0.125 0.01745329 0.0625
3840 0.1 0.125 0.000872665 0.125

Husky 4

x y θ v
900 0.2 0.2 0.01745329 0.2

1800 0.2 0.2 0.00872665 0.2
2250 0.2 0.2 0.01745329 0.1
4800 0.125 0.125 0.01745329 0.125

Huksy 5

x ẋ θ θ̇ ω
432 0.2 0.2 0.01745329 0.2 0.2

1080 0.2 0.1 0.01745329 0.2 0.2
1728 0.2 0.2 0.01745329 0.125 0.125

Acrobot 6
cos(θ1) sin(θ1) cos(θ2) sin(θ2) θ̇1 θ̇2

144 0.05 0.1 0.05 0.1 0.25 0.25
288 0.05 0.05 0.05 0.1 0.25 0.25

16

(a) 1 layer (b) 2 layer (c) 3 layer (d) 5 layer

Figure 2: Vector fields of the NNDMs for the Pendulum agent with various architectures.

increases as the discretization becomes finer. For a fixed discretization, the general trend is a decrease
in probability of safety as the model gets deeper (more hidden layers).

Figure 3 shows the evolution of the state variables with and without the controller π and the control
evolution u under π for the 3-layer NNDM model with noise for one simulation. We observe the
NNDM stays within the safe in θ dimension without the controller while the system violates the
safety constraint under π. We also note that the controller magnitude varies from 0.1 to -0.4 which is
within its bounds of [−1, 1].

(a) Pendulum without π (b) Pendulum with π

(c) Control evolution under π

Figure 3: State evolution of the Pendulum 3 layer NNDM model for 100 steps with and without
safety feedback controller π. Blue line shows state evolution for the system starting at θ = 0 and
θ̇ = 0. Black dotted line demarcates the safe space (Xs) in θ dimension and the state space (X) in θ̇
dimension.

17

(a) Cartpole without safety controller π (b) Cartpole with safety controller π

(c) Control evolution under π

Figure 4: State evolution of the cartpole NNDM with 2 layers for 100 steps with and without safety
feedback controller π in (a) and (b), respectively. Blue line shows state evolution for the system
starting at x = 0, ẋ = 0, θ = 0, and θ̇ = 0. Black dotted line demarcates the state space (X) in ẋ, θ̇,
and safe space (Xs) in x and θ dimension respectively.

Cartpole For this 4-dimensional agent, we trained a NNDM that predicts the next state of the
cartpole given the current state, i.e., fw : R4 → R4. For each model, we trained a NNDM,
fw : R4 → R4, with one to three layers with 128 neurons in each layer. The NNDM is trained
in region x ∈ [−2.4, 2.4], ẋ ∈ [−0.6, 0.6], θ ∈ [− π

15 ,
π
15] and θ̇ ∈ [−0.6, 0.6]. The safe set is

x ∈ [−1, 1] and θ ∈ [− π
15 ,

π
15] with control limits u1, u2 ∈ [−1, 1] in linear and angular acceleration

dimensions. The initial set is defined to be θ ∈ [− π
36 ,

π
36].

While the computation time to obtain the linear approximations increases significantly as the number
of layers and number of neurons per layer increases, we notice the same trends as observed in the
Pendulum agent’s experiment, i.e., an increase in Ps with finer discretization for a fixed model and a
decrease in Ps as the model gets deeper (more hidden layers). For all the cartpole models, to achieve
the desired probability of safety δs, the controller needs to be applied in all the regions. Figure 4
shows the evolution of the 2-layer NNDM cartpole with and without the safety controller. We can see
that our controller is able to keep the system within the safe set as seen in Figure 4b while it also
stays within its allowable range of controller magnitude [−1, 1] as seen in Figure 4c.

A.2 Husky
We trained two Husky NNDMs for a specific task using the approach outlined in [9]. Specifically, a
hybrid Model-Based Model-Free (MB-MF) architecture has been used for training NNs that represent
the dynamic model of the Husky robot [47]. Further, this NN with a model-based controller, i.e.
Model Predictive Controller (MPC), was used to learn tasks that include moving from one point to

18

Table 3: State Space X for each agent of dimension n in our case-studies over which we compute
linear over-and under approximation fq(x) and f

q
(x) and their corresponding extreme values in

region q using the discretization |Q| as mentioned in Table 2.

Model n State Lower Upper

Pendulum 2 θ −π/15 π/15

θ̇ −1 1

Cartpole 4

x −1 1
ẋ −0.5 0.5
θ −π/15 π/15

θ̇ −0.5 0.5

Husky 4

x −0.5 2
y −1 1
θ −π/12 π/12
v −0.5 0.5

Husky 5

x −0.5 2
y −0.5 0.5
θ −π/18 π/18
v −0.5 0.5
ω −0.5 0.5

Acrobot 6

cos(θ1) −0.1 0.1
sin(θ1) −0.6 0.6
cos(θ2) −0.1 0.1
sin(θ2) −0.6 0.6

θ̇1 −0.25 0.25

θ̇2 −0.25 0.25

another, and staying in a lane. We use the data generated from this model to initialize a model-free
RL algorithm to gain better sample efficiency. This enabled us to learn the unknown dynamic model
and a policy for the task with less number of samples compared to a pure model-free approach.

In our case study, we first consider a 4-dimensional Husky model [47], whose states are the x and
y position, the orientation θ and the velocity v. The NNDM is trained in region x ∈ [−0.5, 2],
y ∈ [−1, 1], θ ∈ [− π

12 ,
π
12] and v ∈ [−0.5, 0.5]. The control actions for this model are linear

acceleration and angular velocity with control limits u1, u2 ∈ [−1, 1]. The initial set is any position
with a circle of radius 0.1 around the origin, i.e., x ∈ [−0.1, 0.1] and y ∈ [−0.1, 0.1].

Further, we also train a 5-dimensional Husky model in which we observe the angular velocity ω along
with linear velocity, orientation, and position as in the 4-dimensional case-study. The state space is
x ∈ [−0.5, 2], y ∈ [−0.5, 0.5], θ ∈ [− π

18 ,
π
18], v ∈ [−0.5, 0.5], and ω ∈ [−0.5, 0.5]. The safe set is

defined over y to be [−0.5, 0.5] while the control actions, control limits and the initial set remains the
same.

The dynamic model has an input layer with each neuron (six for 4D Husky and seven for 5D Husky
in total) representing the individual states and controls of the system. Further, the dynamic model
consists of one hidden layer with 500 neurons (ReLU activation function), and the output of the NN is
the state difference (4 output neurons for 4D Husky and 5 for 5D Husky) for a defined discretization
time ∆T .

Table 4: Parameters for dynamic model and policy network train-
ing for the husky systems.

Parameter 4D Husky 5D Husky
Open-loop Dynamic Model Architecture 6× 500(ReLU)× 4 7× 500(ReLU)× 5
Policy Network Architecture 4× 64(tanh)× 64(tanh)× 2 5× 64(tanh)× 64(tanh)× 2
Dynamic Model Training Epoch 200 200
Discretization Time ∆T (secs) 0.1 0.1
MPC Controller Horizon (Timesteps) 1 1
Number of MPC rollouts 100 100
Closed-loop NNDM Architecture 1 4× 256(ReLU)× 4 5× 512(ReLU)× 5
Closed-loop NNDM Architecture 2 4× 256(ReLU)× 256(ReLU)× 4 -

Training The data used for
training the dynamic model was
generated from the described
Husky environment modelled in
the PyBullet physics simulator
[42]. The dynamic model is
trained using trajectory data gen-
erated from PyBullet, by apply-
ing random actions to a set of ini-
tial states sampled from a distribution.

The data is normalized to give equal weights to all the states. We used a MPC controller to generate
policies required to complete the specific task. We then generated a set of expert actions from

19

this MPC controller to train a new policy network πc. The policy network has one input layer (4
input neurons) representing the states, two hidden layers with 64 neurons each (all tanh activation
functions), and one output layer with 2 neurons representing the actions. This policy network πc
was used as an initial policy for the model-free RL. We used the Trust Region Policy Optimization
algorithm (TRPO) as a policy gradient method to perform RL. The parameters that we used for our
training are described in Table 4.

The trained dynamic model and the policy network πc were combined to represent the closed-from
dynamics of the system. We performed imitation learning on the input-output data obtained from this
combined model, to train a NNDM fw : Rn → Rn, where n is the states of the system.

A.3 Acrobot
We train a NNDM to imitate the OpenAI Gym Acrobot model under a given expert controller. The
setting we consider is the same as in [48]. It is an underactuated agent (double pendulum) with control
applied to the second joint. The NNDM is trained in region from [−1, 1] in the first 4 dimensions,
i.e., cos(θ1), sin(θ1), cos(θ2) and sin(θ2). The model was trained over 25000 data points with 300
epochs and validation loss of 10−3. The state space over which the system is verified is mentioned in
Table 3.

Here, θ1 is the angle of the first joint and θ2 is the angle relative to the angle of the first link. The task
for this agent is for the tip of the second link to reach a height of y = sin(θ1) + sin(θ1 + θ2) = 1.
A safety constraint is added such that the tip of the second link should not go beyond y = 1.2,
i.e., sin(θ1) ≤ 0.6 and sin(θ2) ≤ 0.6. Hence, the safe set is defines as sin(θ1) ∈ [−0.6, 0.6] and
sin(θ2) ∈ [−0.6, 0.6]. Note, the maximum height the pendulum can reach is 1.8 m. Finally, the initial
set is defined to be any initial point within a radius of 0.1 around the origin in the first 4 dimensions.

20

	Additional Discussions on the Experiments
	Pendulum and Cartpole
	Husky
	Acrobot

