
A Training details

All models were trained with adafactor, using the same modifications used for ViT-G [17]. Unless
otherwise specified, we use learning rate 1× 10−3 and decoupled weight decay of magnitude
1× 10−5. We use a cosine learning rate decay schedule, with a linear warmup (40k steps for longer
scaling study models, 10k steps for ablations). Models were trained on a mixture of Cloud TPU-v2,
v3 and v4 pods.

Models were trained with 32 experts, with experts placed every 2 layers – except where explicitly
stated. Otherwise, architecture parameters (e.g. hidden size, number of layers) follow those of
ViT [13]. All models except for LIMoE-H/14 use dimensionality 512 for the final output representa-
tion; this final representation is cast to bfloat16 precision for reduced all-to-all costs and increased
memory efficiency. The learned contrastive temperature parameter is initialised at 10. Text sequences
are tokenized to a sequence length of 16 using the T5 SentencePiece vocabulary [48]. Images were
linearly renormalized to a value range of [-1, 1].

A.1 Scaling study

We train models at batch size 16,384 for 781,250 steps at resolution 224. This trains for the same
number of examples as CLIP [7]; they however use a larger batch size (32768), increase resolution in
the final epoch, and use a larger dimensionality for the final contrastive feature representation, all of
which improve performance.

A.2 Ablations

These are B/16 models trained for 100,000 steps at batch size 8192. The threshold used for the text
global entropy loss is τT = log(9) – that is, we incentivize the use of at least 9 experts (uniformly) or
more (not necessarily in a uniform way). For images, τT = log(20), but with this threshold, the loss
is not applied at all and it can be ignored.

A.3 LIMoE-H/14

The largest scale model is trained at batch size 21502, with resolution 288 and text sequence length
16. The global entropy loss thresholds are τtext = log(4) and τtext = log(25) for text and image
respectively. There are MoE layers in 12 encoder blocks, namely, in 3, 7, 11, 15, 18, 21, 24, 26, 28,
30, 31, 32. The default training data is mixed with data from JFT-4B with a ratio of 3:1. Text strings
are generated from JFT-4B by simply concatenating the class names. JFT-4B was also deduplicated
using the same method as previous works [16].

Checkpoint souping. We adapt the methodology developed for finetuning [21], but instead combine
checkpoints from the same run. We used a reverse-sqrt schedule [48], which has a linear cooldown at
the end. To generate diversity for the model soup, we launched multiple cooldowns, and greedily
selected checkpoints to maximize zero-shot accuracy on the ImageNet validation set, using the
smaller subset of prompts from CLIP [7]. Checkpoints could be reused multiple times.

The model was trained for 700k steps pre-cooldown. There was one cooldown of length 125k steps
from the final step, and 3 of length 40k steps starting from step 650k. Two of the cooldowns had no
changes to the original setup described above. To generate diversity for the soup, we also trained one
40k cooldown with only JFT data, and one with no JFT data at all.

Figure 7 shows the zero-shot accuracy evaluated at 12.5k step intervals during training, for all the
different cooldowns, and the end of training. The final model soup consisted of 8 checkpoints in total.
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B Auxiliary losses

B.1 Definitions of all the auxiliary losses

In Section 4.1, we study multiple combinations of auxiliary losses. For completeness, we recall below
all their definitions. Given a token x ∈ RD, we denote by g(x) = softmax(Wx) ∈ RE the gating
weights across the E experts, with W ∈ RE×D being the routing parameters. When we deal with a
batch of multiple tokens {xi}ni=1, we use the notation X ∈ Rn×D.

Importance loss. We consider the definition from [1], inspired by the original proposal of [14]. The
importance loss Ωimp enforces a balanced profile of the gating weights across the experts. More
formally, for any expert e ∈ {1, . . . , E}, we consider

impe(X) =
∑
x∈X

g(x)e

and define the loss Ωimp via the squared coefficient of variation for imp(X) = {impe(X)}Ee=1,
namely

Ωimp(X) =

(
std(imp(X))

mean(imp(X))

)2

.

Load loss. Like previously, we follow [1] whose definition is inspired by the original proposal of [14].
We assume throughout that paragraph that the gating weights gnoisy(x) are obtained by a noisy version
of the routing, i.e., gnoisy(x) = softmax(Wx + ε) with ε ∼ N (0, σ2I) and σ = 1/E (see details
in [1]). We introduce ηK the K-th largest entry of Wx + ε.

The load loss Ωload complements the importance loss Ωimp by trying to balance the number of
assignments across the experts. To circumvent the fact that the assignments are discrete, Ωimp
focuses instead on the probability of selecting the expert. For any e ∈ {1, . . . , E}, the probability is
understood as the probability of having the expert e still being among the Top-K while resampling
only the noise of that expert. More formally, this corresponds to

pe(x) = 1− Φ
(ηK − (Wx)e

σ

)
with Φ the cumulative distribution function of a Gaussian distribution.

The load loss Ωload is eventually defined by

Ωload(X) =

(
std(load(X))

mean(load(X))

)2

with load(X) = {loade(X)}Ee=1 and loade(X) =
∑
x∈X

pe(x).

Z-loss. The z-loss Ωzloss introduced in [4] aims at controlling the maximum magnitude of the router
activations A = {Wxi}ni=1 ∈ Rn×E with entries ai,e = (Wxi)e. The loss is defined by

Ωzloss(X) =
1

n

n∑
i=1

(
log

(
E∑
e=1

exp (ai,e)

))2

.

The mutual-information loss −MI(experts;m). In Section 2.2.2, we allude to a variant of the
local and global entropy losses in the form of the mutual information between the experts and the
modalities (as a reminder, the sum of the local and global entropy losses corresponds instead to the
(negative) mutual information between the experts and tokens, conditioned on the modality). Let us
assume we have a total of M modalities. Formally, and reusing the notation from Section 2.2.2, we
define −MI(experts;m) as

−MI(experts;m) =
1

M

M∑
m′=1

H(p̃m′(experts))−H

(
1

M

M∑
m′=1

p̃m′(experts)

)
where, for each modality m′, we have computed the approximate marginal probability over the nm′
tokens of that modality

p̃m′(experts) =
1

nm′

nm′∑
i=1

pm′(experts|xi)
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andH denotes the entropy.

Final aggregated auxiliary loss. When considering the combination of several auxiliary losses, the
final auxiliary loss is computed as the average over all the losses. The average is weighted by a single
regularization parameter that is a hyperparameter of our approach. After some preliminary tuning
phase, we have set its value to 0.04 in all our experiments and found this choice to be robust.

B.2 In-depth analysis of global entropy threshold

Note again that we can view a threshold τ as a soft minimum, as the minimum number of experts
which must be used by a modality to satisfy the loss is S = eτ . We find it more intuitive to think in
terms of this soft minimum threshold ST .

Performance. Figure 8 shows the effect of the threshold on performance.

There are three phenomenon of note:

1. When the text threshold is too low, models are unstable and performance is poor.
2. Past some limit however, performance of models w.r.t. text threshold is fairly consistent.
3. Outside (and probably inside) the unstable region, the image threshold makes no systematic

difference.
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Figure 8: A high enough text threshold encourages stability, but otherwise performance is some-
what invariant to the thresholds used. Note the plotted quantity is the soft minimum ST = eτ .

Actual global entropies. Looking at the actual entropies of model routing helps at least explain why
the image threshold is unimportant. Figure 9 shows the empirical entropy. The image entropy is
always large; note that when it is higher than the threshold τ , the loss is not applied; ergo, for most of
the settings, the global entropy loss is not applied to images. This also applies to almost all models
trained for this paper. On the other hand, analysing text entropies, it is clear that the model closely
tracks the threshold τtext. As a side effect, image entropy tends to reduce as τtext increases.

Expert specialization. As discussed, the threshold can be viewed as setting an implicit soft minimum
ST = eτ . The number of experts actually used for each modality is shown in Figure 10. The text
threshold exactly behaves as a soft minimum; as it is increased, the model has more text experts and
less image experts.

Overall. For text, the entropy loss behaves as expected; as it is increased, there are more text experts.
A few questions remain: why does it not impact performance? Why does text behave differently
than images - is it due to the imbalance between them during training, or is it simply a fundamental
difference in routing behavior for the two modalities?
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Figure 9: Image entropy is always high, but text entropy closely tracks the target threshold.
Top: The routing entropy is the global entropy of the predictions of the router, which is what is
actually regularised. Bottom: The post-dispatch entropy is the entropy of the distribution after top-K
selection and capacity limits (token dropping) have interfered. For text tokens pre- and post-dispatch
entropies pretty much coincide as their routing probabilities are high and BPR favors them –so little
dropping happens. The story is a bit different for image tokens; some are dropped, and the pre- and
post-dispatch entropies are not completely equivalent.

1 4 8 12 20 28 32
Image soft minimum Simage

1

2.5

4

6.5

9

12

24

32

Te
xt

 so
ft 

m
in

im
um

 S
te

xt

27 27 28 27 28 27 27

27 27 27 27 27 27 27

27 27 27 27 27 27 28

28 28 28 28 28 28 28

28 28 28 28 28 28 28

28 28 28 28 28 28 28

29 29 29 29 29 29 29

29 29 29 29 29 29 29

# image experts (for 90% utilisation)

1 4 8 12 20 28 32
Image soft minimum Simage

1

2.5

4

6.5

9

12

24

32

Te
xt

 so
ft 

m
in

im
um

 S
te

xt

1.7 1.8 1.5 1.8 1.2 1.7 1.8

2.9 2.8 2.2 3.2 2.2 2.3 2.7

4.4 4.4 4.3 4.5 4.8 4.5 4.4

6.7 6.7 6.7 6.7 7 6.8 6.5

9.4 9.4 9.2 9.2 9.3 9.3 9.3

12 12 12 12 12 12 12

23 23 23 23 23 23 23

26 26 25 26 26 26 25

# text experts (for 90% utilisation)

27.0

27.5

28.0

28.5

29.0

5

10

15

20

25

Expert specialization per modality
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C Tabular results

C.1 Scaling comparison, and architecture definitions.

All results and parameters from Figure 4 are shown in Table 4, alongside the results of LIMoE-H/14.

Table 4: The results from Figure 4 and LIMoE-H/14.

Model Patch
size

Layers Heads Hidden
size

MLP
size

i1k 0shot i1k 10shot coco t2i coco i2t

Dense S/32 32 8 8 512 2048 44.4 33.8 18.2 30.4
LIMoE S/32 57.9 48.1 25.0 38.9

Dense S/16 16 8 8 512 2048 50.3 40.4 22.7 35.8
LIMoE S/16 64.5 56.3 29.2 43.7

Dense B/32 32 12 12 768 3072 58.8 48.7 27.4 42.5
LIMoE B/32 67.5 60.4 31.0 45.7

Dense B/16 16 12 12 768 3072 64.3 55.3 31.7 46.8
LIMoE B/16 73.7 68.2 36.2 51.3

Dense L/32 32 24 16 1024 4096 68.1 60.7 34.6 51.2
LIMoE L/32 74.6 69.7 37.2 54.5

Dense L/16 16 24 16 1024 4096 73.5 67.6 38.3 54.3
LIMoE L/16 78.6 74.7 39.6 55.7

LIMoE-H/14 14 32 16 1280 5120 84.1 81.4 39.8 51.1
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C.2 All tabular results

Table 5: All models trained.

model
type

arch notes τtext τimage batch
train

batch
eval

data
seen

0shot 10shot coco
i2t

coco
t2i

val acc

Figure 4: Sweep over scale with CLIP-esque training regime

dense S/32 - - 16384 1024 12.8B 44.4 33.8 30.4 18.2 62.1
LIMoE S/32 log(12) log(17) 16384 1024 12.8B 57.9 48.1 38.9 25.0 73.1
dense S/16 - - 16384 1024 12.8B 50.3 40.4 35.8 22.7 67.6
LIMoE S/16 log(9) log(20) 16384 1024 12.8B 64.5 56.3 43.7 29.2 77.1
dense B/32 - - 16384 1024 12.8B 58.8 48.7 42.5 27.4 72.5
LIMoE B/32 log(12) log(17) 16384 1024 12.8B 67.5 60.4 45.7 31.0 79.2
dense B/16 - - 16384 1024 12.8B 64.3 55.3 46.8 31.7 76.4
LIMoE B/16 log(9) log(20) 16384 1024 12.8B 73.7 68.2 51.3 36.2 82.3
dense L/32 - - 16384 1024 12.8B 68.1 60.7 51.2 34.6 78.5
LIMoE L/32 log(20) log(1) 16384 1024 12.8B 74.6 69.7 54.5 37.2 83.3
dense L/16 - - 16384 1024 12.8B 73.5 67.6 54.3 38.3 82.2
LIMoE L/16 log(28) log(8) 16384 1024 12.8B 78.6 74.7 55.7 39.6 85.9

Table 2: The baselines for many of the ablation experiments below (1T = 1 Tower, 2T = 2 Towers)

dense (1T) B/16 Trial 0 - - 8192 1024 819.2M 49.9 43.7 37.7 23.7 66.0
dense (1T) B/16 Trial 1 - - 8192 1024 819.2M 50.0 44.0 36.6 23.8 66.0
dense (1T) B/16 Trial 2 - - 8192 1024 819.2M 49.5 43.6 36.0 23.6 66.0
dense (2T) B/16 Trial 0 - - 8192 1024 819.2M 54.8 47.3 41.3 26.6 69.7
dense (2T) B/16 Trial 1 - - 8192 1024 819.2M 54.4 47.0 41.0 26.5 69.4
dense (2T) B/16 Trial 2 - - 8192 1024 819.2M 54.9 47.1 41.6 26.9 69.5
LIMoE B/16 Trial 0 log(9) log(20) 8192 1024 819.2M 56.8 50.5 40.1 25.7 70.8
LIMoE B/16 Trial 1 log(9) log(20) 8192 1024 819.2M 57.0 50.4 40.4 26.2 70.8
LIMoE B/16 Trial 2 log(9) log(20) 8192 1024 819.2M 56.9 50.6 38.5 24.9 70.7

Table 6: Increasing the number of selected experts, with adjustments to local entropy loss and BPR

LIMoE B/16 k=2, target entropy loss, max BPR log(4) log(25) 8192 1024 819.2M 55.9 48.1 36.6 25.6 69.1
LIMoE B/16 k=3, target entropy loss, max BPR log(4) log(25) 8192 1024 819.2M 48.2 48.9 27.7 21.1 64.3
LIMoE B/16 k=5, target entropy loss, max BPR log(4) log(25) 8192 1024 819.2M 11.7 36.4 7.1 5.6 23.2
LIMoE B/16 k=2, merged loss, max BPR log(4) log(25) 8192 1024 819.2M 46.4 49.4 28.1 10.7 57.3
LIMoE B/16 k=3, merged loss, max BPR log(4) log(25) 8192 1024 819.2M 52.6 47.9 33.0 23.2 65.5
LIMoE B/16 k=5, merged loss, max BPR log(4) log(25) 8192 1024 819.2M 60.3 53.4 43.3 28.0 73.3
LIMoE B/16 k=2, top1 loss, max BPR log(4) log(25) 8192 1024 819.2M 58.3 51.9 42.0 27.2 71.7
LIMoE B/16 k=3, top1 loss, max BPR log(4) log(25) 8192 1024 819.2M 59.0 53.6 42.7 28.1 72.1
LIMoE B/16 k=5, top1 loss, max BPR log(4) log(25) 8192 1024 819.2M 59.8 54.6 43.0 27.8 72.5
LIMoE B/16 k=2, none loss, max BPR log(4) log(25) 8192 1024 819.2M 46.8 44.3 28.9 14.3 61.0
LIMoE B/16 k=3, none loss, max BPR log(4) log(25) 8192 1024 819.2M 44.6 42.2 27.3 17.5 57.5
LIMoE B/16 k=5, none loss, max BPR log(4) log(25) 8192 1024 819.2M 17.5 35.4 6.1 5.9 22.8
LIMoE B/16 k=2, target entropy loss, sum BPR log(4) log(25) 8192 1024 819.2M 58.2 51.8 42.2 27.7 71.6
LIMoE B/16 k=3, target entropy loss, sum BPR log(4) log(25) 8192 1024 819.2M 59.1 53.2 42.3 27.5 72.5
LIMoE B/16 k=5, target entropy loss, sum BPR log(4) log(25) 8192 1024 819.2M 60.4 53.8 42.1 28.0 73.0
LIMoE B/16 k=2, merged loss, sum BPR log(4) log(25) 8192 1024 819.2M 59.0 52.4 41.1 27.1 72.2
LIMoE B/16 k=3, merged loss, sum BPR log(4) log(25) 8192 1024 819.2M 60.0 52.8 42.4 27.6 73.0
LIMoE B/16 k=5, merged loss, sum BPR log(4) log(25) 8192 1024 819.2M 61.0 53.6 42.7 28.4 73.4

Figure 12: Increasing the total number of available experts with fixed k = 1

LIMoE B/16 Total # experts = 4 log(2.4) log(0.8) 8192 1024 819.2M 52.3 46.9 37.8 24.4 67.9
LIMoE B/16 Total # experts = 8 log(4.8) log(1.6) 8192 1024 819.2M 54.4 48.2 39.5 25.5 69.4
LIMoE B/16 Total # experts = 16 log(9.6) log(3.2) 8192 1024 819.2M 55.7 49.5 38.9 25.5 70.2
LIMoE B/16 Total # experts = 32 log(19.2)log(6.4) 8192 1024 819.2M 57.3 50.4 40.1 26.0 70.9
LIMoE B/16 Total # experts = 64 log(38.4)log(12.8) 8192 1024 819.2M 58.0 50.7 41.2 26.5 71.3

Figure 16: Varying the group size, trading off compute efficiency and stability

LIMoE B/16 Num groups = 1 log(9) log(20) 8192 1024 819.2M 56.7 49.4 40.3 25.8 70.7
LIMoE B/16 Num groups = 2 log(9) log(20) 8192 1024 819.2M 56.6 50.4 40.4 25.4 70.8
LIMoE B/16 Num groups = 4 log(9) log(20) 8192 1024 819.2M 56.1 49.5 39.1 24.8 69.8
LIMoE B/16 Num groups = 8 log(9) log(20) 8192 1024 819.2M 47.4 44.0 29.5 19.6 62.4
LIMoE B/16 Num groups = 16 log(9) log(20) 8192 1024 819.2M 50.1 45.3 33.4 21.1 65.2
LIMoE B/16 Num groups = 32 log(9) log(20) 8192 1024 819.2M 23.8 31.7 11.6 8.3 38.9
LIMoE B/16 Num groups = 64 log(9) log(20) 8192 1024 819.2M 1.6 17.8 1.7 0.9 6.2
LIMoE B/16 Num groups = 128 log(9) log(20) 8192 1024 819.2M 0.1 38.3 0.0 0.0 0.1

Figure 6: Study different alternatives for routing dispatch ordering

LIMoE B/16 Dispatch = shuffle log(9) log(20) 8192 1024 819.2M 37.6 38.5 24.2 15.1 56.5
LIMoE B/16 Dispatch = image first log(9) log(20) 8192 1024 819.2M 17.8 21.3 10.1 6.3 42.3
LIMoE B/16 Dispatch = bpr log(9) log(20) 8192 1024 819.2M 56.8 50.5 40.1 25.7 70.8
LIMoE B/16 Dispatch = bpr log(9) log(20) 8192 1024 819.2M 57.0 50.4 40.4 26.2 70.8
LIMoE B/16 Dispatch = bpr log(9) log(20) 8192 1024 819.2M 56.9 50.6 38.5 24.9 70.7
LIMoE B/16 Dispatch = text first log(4) log(25) 8192 1024 819.2M 0.1 1.6 0.0 0.0 3.3

Table 7: Variations on the joint, modality agnostic router used for LIMoE

LIMoE B/16 Router = per modality log(4) log(25) 8192 1024 819.2M 56.8 50.5 40.1 25.6 70.4
LIMoE B/16 Router = partitioned - - 8192 1024 819.2M 56.8 50.1 39.1 25.1 70.8

Figure 5: With fixed text seq len 16, vary image seq len to study effect of modality balancing.

LIMoE B/12 Image seq len 324. Losses: classic - - 8192 1024 819.2M 40.8 42.5 23.4 15.6 53.7
LIMoE B/16 Image seq len 196. Losses: classic - - 8192 1024 819.2M 17.5 32.1 11.9 8.9 41.1
LIMoE B/24 Image seq len 81. Losses: classic - - 8192 1024 819.2M 28.9 33.4 12.3 10.5 37.5
LIMoE B/32 Image seq len 49. Losses: classic - - 8192 1024 819.2M 29.9 29.8 12.0 8.8 39.4
LIMoE B/48 Image seq len 16. Losses: classic - - 8192 1024 819.2M 26.8 24.2 13.0 8.2 36.7
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Table 5: All models trained.

model
type

arch notes τtext τimage batch
train

batch
eval

data
seen

0shot 10shot coco
i2t

coco
t2i

val acc

LIMoE B/64 Image seq len 9. Losses: classic - - 8192 1024 819.2M 24.8 21.2 11.7 7.7 38.3
LIMoE B/12 Image seq len 324. Losses: entropy log(25) log(1) 8192 1024 819.2M 58.1 50.4 40.4 27.0 72.4
LIMoE B/16 Image seq len 196. Losses: entropy log(25) log(1) 8192 1024 819.2M 57.2 50.3 40.4 26.4 71.2
LIMoE B/24 Image seq len 81. Losses: entropy log(25) log(1) 8192 1024 819.2M 54.1 45.4 37.3 24.0 67.5
LIMoE B/32 Image seq len 49. Losses: entropy log(25) log(1) 8192 1024 819.2M 50.5 41.4 35.2 21.4 65.0
LIMoE B/48 Image seq len 16. Losses: entropy log(25) log(1) 8192 1024 819.2M 40.7 31.0 26.4 15.2 55.4
LIMoE B/64 Image seq len 9. Losses: entropy log(25) log(1) 8192 1024 819.2M 31.8 24.6 20.6 10.9 49.9

Appendix B.2: Varying global entropy thresholds τtext and τimage independently

LIMoE B/16 log(1) log(1) 8192 1024 819.2M 54.4 50.8 37.1 24.4 69.1
LIMoE B/16 log(1) log(4) 8192 1024 819.2M 53.9 50.8 36.8 24.1 68.9
LIMoE B/16 log(1) log(8) 8192 1024 819.2M 54.0 50.9 36.7 24.1 68.8
LIMoE B/16 log(1) log(12) 8192 1024 819.2M 54.3 50.7 37.6 23.8 68.6
LIMoE B/16 log(1) log(20) 8192 1024 819.2M 53.8 50.5 37.0 24.1 68.5
LIMoE B/16 log(1) log(28) 8192 1024 819.2M 54.2 50.8 37.1 24.1 69.1
LIMoE B/16 log(1) log(32) 8192 1024 819.2M 54.2 50.5 37.3 24.2 69.1
LIMoE B/16 log(2.5) log(1) 8192 1024 819.2M 52.2 50.5 33.8 19.6 67.0
LIMoE B/16 log(2.5) log(4) 8192 1024 819.2M 44.6 49.2 23.2 17.3 57.7
LIMoE B/16 log(2.5) log(8) 8192 1024 819.2M 53.5 50.9 37.3 23.8 69.6
LIMoE B/16 log(2.5) log(12) 8192 1024 819.2M 16.7 46.9 23.3 14.1 49.4
LIMoE B/16 log(2.5) log(20) 8192 1024 819.2M 52.9 50.6 37.0 23.9 69.6
LIMoE B/16 log(2.5) log(28) 8192 1024 819.2M 53.4 50.6 38.9 24.5 69.7
LIMoE B/16 log(2.5) log(32) 8192 1024 819.2M 28.0 46.3 12.6 8.2 48.5
LIMoE B/16 log(4) log(1) 8192 1024 819.2M 45.3 47.7 28.2 20.8 64.2
LIMoE B/16 log(4) log(4) 8192 1024 819.2M 55.7 50.4 39.1 25.0 70.3
LIMoE B/16 log(4) log(8) 8192 1024 819.2M 47.4 47.0 31.0 18.2 63.9
LIMoE B/16 log(4) log(12) 8192 1024 819.2M 21.9 47.6 18.9 18.8 55.1
LIMoE B/16 log(4) log(20) 8192 1024 819.2M 27.1 45.7 15.5 17.0 51.8
LIMoE B/16 log(4) log(28) 8192 1024 819.2M 39.4 47.7 18.1 14.4 49.4
LIMoE B/16 log(4) log(32) 8192 1024 819.2M 43.2 47.4 19.8 15.5 54.2
LIMoE B/16 log(6.5) log(1) 8192 1024 819.2M 55.0 49.6 39.0 25.4 70.6
LIMoE B/16 log(6.5) log(4) 8192 1024 819.2M 56.6 50.3 40.3 25.1 70.7
LIMoE B/16 log(6.5) log(8) 8192 1024 819.2M 55.2 50.1 39.8 25.6 70.7
LIMoE B/16 log(6.5) log(12) 8192 1024 819.2M 55.7 50.1 39.3 25.2 70.8
LIMoE B/16 log(6.5) log(20) 8192 1024 819.2M 55.4 50.0 40.2 25.2 70.7
LIMoE B/16 log(6.5) log(28) 8192 1024 819.2M 56.1 50.1 39.2 25.4 70.6
LIMoE B/16 log(6.5) log(32) 8192 1024 819.2M 56.3 50.7 39.0 25.3 70.7
LIMoE B/16 log(9) log(1) 8192 1024 819.2M 56.6 50.3 39.8 25.6 71.0
LIMoE B/16 log(9) log(4) 8192 1024 819.2M 56.5 50.4 39.6 25.7 70.7
LIMoE B/16 log(9) log(8) 8192 1024 819.2M 57.0 50.9 40.4 26.4 70.8
LIMoE B/16 log(9) log(12) 8192 1024 819.2M 56.9 50.1 39.4 26.0 70.9
LIMoE B/16 log(9) log(20) 8192 1024 819.2M 56.9 49.9 39.3 25.6 70.7
LIMoE B/16 log(9) log(28) 8192 1024 819.2M 56.4 49.8 39.9 25.9 70.7
LIMoE B/16 log(9) log(32) 8192 1024 819.2M 56.1 50.2 39.3 24.8 70.8
LIMoE B/16 log(12) log(1) 8192 1024 819.2M 56.6 50.3 40.4 26.2 71.0
LIMoE B/16 log(12) log(4) 8192 1024 819.2M 57.2 50.2 40.8 25.8 71.1
LIMoE B/16 log(12) log(8) 8192 1024 819.2M 57.1 50.1 41.1 25.5 71.2
LIMoE B/16 log(12) log(12) 8192 1024 819.2M 56.7 50.1 40.1 25.2 71.2
LIMoE B/16 log(12) log(20) 8192 1024 819.2M 57.7 49.6 39.7 25.3 70.8
LIMoE B/16 log(12) log(28) 8192 1024 819.2M 57.0 50.2 39.9 26.0 71.1
LIMoE B/16 log(12) log(32) 8192 1024 819.2M 57.3 49.6 40.7 25.9 70.8
LIMoE B/16 log(24) log(1) 8192 1024 819.2M 57.1 50.4 40.2 25.8 71.3
LIMoE B/16 log(24) log(4) 8192 1024 819.2M 57.1 49.8 39.9 25.8 70.9
LIMoE B/16 log(24) log(8) 8192 1024 819.2M 58.3 49.5 40.0 26.1 71.1
LIMoE B/16 log(24) log(12) 8192 1024 819.2M 57.1 50.0 41.1 25.9 70.9
LIMoE B/16 log(24) log(20) 8192 1024 819.2M 57.1 50.3 39.8 25.4 71.1
LIMoE B/16 log(24) log(28) 8192 1024 819.2M 58.0 50.1 40.5 26.0 71.2
LIMoE B/16 log(24) log(32) 8192 1024 819.2M 58.0 50.1 41.2 25.7 71.0
LIMoE B/16 log(32) log(1) 8192 1024 819.2M 57.0 49.8 39.3 25.3 71.2
LIMoE B/16 log(32) log(4) 8192 1024 819.2M 57.2 49.9 40.4 25.9 71.1
LIMoE B/16 log(32) log(8) 8192 1024 819.2M 57.4 50.6 39.2 25.8 71.1
LIMoE B/16 log(32) log(12) 8192 1024 819.2M 56.9 50.2 41.3 26.4 71.0
LIMoE B/16 log(32) log(20) 8192 1024 819.2M 57.5 50.5 39.9 26.0 71.1
LIMoE B/16 log(32) log(28) 8192 1024 819.2M 57.3 50.1 40.7 26.0 71.0
LIMoE B/16 log(32) log(32) 8192 1024 819.2M 57.3 49.8 41.1 26.3 71.0

Table 8: Training on publically available LAION400M data.

dense B/16 Trial 0 - - 16384 1024 1.4B 56.1 47.9 43.0 27.9 96.6
dense B/16 Trial 1 - - 16384 1024 1.4B 56.0 47.7 42.8 27.6 96.5
dense B/16 Trial 2 - - 16384 1024 1.4B 55.8 47.5 42.5 27.9 96.6
LIMoE B/16 Trial 0 log(9) log(20) 16384 1024 1.4B 61.1 54.4 44.1 28.9 97.9
LIMoE B/16 Trial 1 log(9) log(20) 16384 1024 1.4B 60.9 54.4 43.5 28.7 97.9
LIMoE B/16 Trial 2 log(9) log(20) 16384 1024 1.4B 61.1 54.1 43.6 29.0 97.9
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D Computational costs of LIMoE

D.1 Unimodal evaluation with multimodal experts

Recall that each expert has a capacity C - it can process at most C tokens, and if it is assigned more,
those above C will not be processed. This capacity is usually set relative to some ‘ideal’. If there are
N tokens and E experts, we usually assume each expert can handle at most CR × N

E tokens, where
CR ≥ 1 is a slack factor. This way we try to reach a balanced setup where most expert process a
similar number of tokens.

Multimodal routing presents a unique issue here. During training, the model learns to balance tokens
when it has both images and text available to it. When there is only one modality, it will not use all
the experts due to natural emergence of modality-specific experts - but the expert capacity size will
be set assuming all experts are used. This results in high rates of token dropping, depending on the
ratio of modality-specific experts.

In this effort, we encounter this during zero-shot classification and retrieval; models first compute
representations for all text tokens, and then separately for all image tokens. In order to get around
this token dropping, we simply evaluate with a high slack factor CR = 16.

There are however other natural solutions; for many circumstances, one could trivially restructure
evaluation such that image and text inputs are processed simultaneously. A more interesting, MoE
specific solution is pruning modality specific experts, which is explored and shown to work in E.4.
LIMoE models could have been evaluated at a ‘normal’ capacity, with pruned experts.

D.2 Understanding the compute costs of LIMoE

Zero-shot evaluation on ImageNet with 6 prompts requires 6000 text forward passes and 50000
image forward passes. With 80 prompts, a la CLIP [7], it is 80000 for text instead. How does one
compare compute cost vs. performance? The costs of LIMoE, its dense baselines, and other two-tower
models, were computed assuming a full batch of images and texts, as this is the approach which
makes the least assumptions about the downstream setup. This does not generalise perfectly: if, for
example, a particular use case processed very large numbers of texts but only few images, models
with smaller/cheaper text towers would be clearly advantaged.

Full profiling data for Section 3. For training and evaluation, we used a variety of TPU versions.
For consistency, we profiled computation times on a TPUv3 (v3-32 to be more precise2). Figure 11
shows performance with respect to different proxies for compute cost. As discussed in Section 3,
LIMoE is clearly pareto optimal with respect to total FLOPs. However, this does not fully account for
certain costs related to MoE models, such as cross-device communication. Figures 11b and 11d show
the performance with respect to step time. With respect to zeroshot and 10-shot classification accuracy,
the performance improvements of LIMoE are significant enough that it is still clearly pareto optimal;
for retrieval metrics on COCO, LIMoE’s gains exactly justify the costs, and it is not significantly more
efficient than dense baselines. The story is similar whether looking at train or evaluation cost.

2https://cloud.google.com/tpu/docs/types-topologies
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Figure 11: Pareto frontiers with respect to different measures of computational cost
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Table 6: Increasing number of selected experts improves performance with appropriate changes to
auxiliary losses and BPR. Table entries are ImageNet zero-shot accuracy in %.

BPR score = max BPR score = sum
Local entropy method None Default Target Ent Merged Target Ent Merged

K = 1 55.557.7
53.3

K = 2 46.8 58.3 55.9 46.4 58.2 59.0
K = 3 44.6 59.0 48.2 52.6 59.1 60.0
K = 5 17.5 59.8 11.7 60.3 60.4 61.0

E Further experiments

In this section, we present further ablations not included in the main text due to space constraints.

E.1 Increasing the number of selected experts

All models in this paper select K = 1 expert per token to match the cost of a dense backbone.

There are two main challenges with increasing K:

Modifications to auxiliary losses. The local entropy loss effectively encourages that router choices
are one-hot. When increasing K, the model is still incentivized to only use 1 expert, assigning other
experts weights near 0, thereby effectively behaving as K = 1.

We try two modifications to the local loss to ameliorate this:

• Target entropy: Encourage the local entropy to be logK – at least a uniform distribution over K
experts – instead of 0: we minimize ΩK

target = (log(K)− Ωlocal(Gm))2.

• Merged entropy: We sum the top K and the bottom N −K routing probabilities to give a binomial
distribution, and optimize this to have entropy 0. This encourages the routing weight to all be in
the top K experts, but does not care exactly how it is distributed among them.
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Figure 12: Increasing the total
number of experts consistently im-
proves model performance; all are
better than the dense baseline.

BPR modifications With these losses, the router uses K > 1
experts per token. However, BPR prioritises tokens accord-
ing to their max routing probability, which decreases when
probabilities are distributed over K choices. The stabilisation
effect BPR provides training is consequently lost. We alter
it to prioritise tokens by the sum of top K probabilities. In
vision tasks, the two approaches perform identically [1], but
here the latter stabilises training and unlocks K > 1.

Table 6 shows the final results. Without changes to the local
entropy loss (BPR score = max, local entropy method =
default), there are some improvements which stem from using
K > 1 for image tokens - the local loss on text means it
is effectively using K = 1 for text anyway. Without the
modifications to the BPR score, the modifications to the local
loss can result in fairly unstable models. Once the BPR score
is modified, we see consistent improvements with increasing
K, particularly with the ’Merged’ variant.

E.2 Increasing the total number of experts

There is thus far no consensus on the optimal number of experts in MoEs; early NLP research scaled
to 1000s of experts [14, 8], before reducing to 32 or 64 [4], which is the standard setup for vision [1].
In Figure 12, we vary this for LIMoE, and show that larger expert pools yield consistent performance
improvements.
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Table 7: A simple routing setup without modality-specific adjustments is competitive with specialized
approaches. 0shot and 10shot columns show accuracy (%), t2i and i2t show recall@1 (%).

routers i1k 0shot i1k 10shot coco t2i coco i2t

joint 56.957.2
56.7 50.552.0

49.0 25.534.3
16.8 39.551.8

27.1

per modality 56.8 50.5 25.6 40.1
disjoint experts (5 for text, 27 for image) 56.8 50.1 25.1 39.1

E.3 Router design choice

Recall the router is simply a dense layer; by default we have a joint router for all tokens, independent
of modality, with no constraints on gating. We consider two other options:

• Per-modality router. We consider modality-dependent routers which can leverage knowledge
of token modality to improve performance (that is, one router for image tokens, and a
different one for text tokens). They both output routing distributions over a shared pool of
experts, similar to prior works have per-task routers for multitask learning [6].

• Disjoint experts and routers. We define separate pools of image and text experts. This way,
image tokens can only go to a set of experts Eimg, and text tokens can only be assigned to
another set of experts Etxt. In principle, these sets may or may not intersect. In Table 7, we
report results when the sets are indeed disjoint.

The results in Table 7 show the three approaches lead to comparable performance. In general,
the disjoint setup was more stable, and did not need entropy regularisation as per-modality bal-
ance/independence is enforced by design. While convenient and well-behaved here, this approach
may not be as general for the case with dozens of tasks and modalities.

E.4 Pruning Multimodal Experts

During training we track what fraction of each modality’s tokens went to each expert. It is there-
fore trivial to identify which experts are processing predominately text and which are processing
predominately images. We show here that this information can be trivially used to prune experts for
single-modality forward passes, demonstrating on two 32-expert LIMoE-S/16 models: one trained
with global text entropy threshold τtext = log(4), and one with τtext = log(9).

Choosing what to prune. Note that we separately choose what experts to prune per-modality; we
use text as an illustrative example. Pruning is simple: For each MoE layer, we rank experts according
to the fraction of text tokens they processed during training (we average over the last 2500 steps with
measurements sampled every 50 steps). We then start pruning according to the one that processed
the least tokens, and so on. Figure 13 shows how the coverage of different modalities changes as
experts are pruned. Following the relationship between the global text entropy threshold and the idea
of the ‘soft minimum’, we see that around eτtext text experts are needed to process the majority of
text tokens; e.g. with τtext = 4 for a single-modality forward pass, 28 experts could be comfortably
pruned. Image experts are more distributed; almost all the experts are needed to process all image
tokens, as expected.

How to run LIMoE inference with fewer experts. While some experts are pruned, the model is
not further trained to adapt to this new situation. One must therefore think carefully on the best
way to apply models with a subset of experts. The router predicts p(expert|x). The top-K experts
are activated, and the output of the expert layer is the weighted average of the expert outputs. The
weighting used for expert i is the unnormalized p(experti|x). This is important, as removing some
of the experts and their logits modifies the concentration of p(expert|x), and could result in expert
weights higher than those used at training time.

When removing some of the experts, there are therefore two natural options:

1. router-drop: Completely remove the experts from the router. The softmax for
p(expert|x) will be computed over a subset of experts, thereby adjusting the weights
as discussed above.
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Figure 13: Per-modality coverage; for each modality, we progressively prune the least important
experts. The coverage shows the percentage of router top-1 predictions which are still serviceable
with the remaining experts. For text (orange), many experts can be pruned, but that is not the case
for images. The global entropy threshold τ controls the prunability, as it encourages use of at least
log(τ) experts.

2. router-pred: The router still predicts probabilities for pruned experts. However, it is
unable to actually use the pruned experts; the top-K operation will ignore those that are
unavailable. This preserves the original scaling the model was trained with.

The two approaches are naturally very similar if very few experts are removed. Illustrating with
ImageNet-10shot (linear few-shot evaluation), Figure 14 compares the two options. When a large
number of experts are pruned, the router-pred is significantly better, but if only a few experts are
pruned, they both perform similarly.
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Figure 14: It is better to predict weights for pruned experts and mask them out after the softmax.

The effect of pruning on performance Figure 15 shows the impact of pruning image and text
experts on zero-shot ImageNet accuracy. Recall that image and text inputs are processed independently
for this evaluation, and so the experts used for each modality can be independently pruned.

As expected, we can prune down to only 4 experts during text evaluation without significantly harming
performance. On the other hand, the less pruning of image experts, the better.

E.5 Grouped routing

Splitting batches into groups before dispatching can reduce routing cost significantly, which depending
on implementation can scale ∼ O(num tokens2). There are two sources of potential issues though:
in our implementation, auxiliary losses are computed in each group then averaged. The necessary
batch-wise statistics become less reliable with more numerous, smaller groups. Secondly, with
smaller groups, it is more likely to get an almost homogenous batch, which makes distributing across
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Figure 15: The impact of pruning on ImageNet zero-shot accuracy, comparing two LIMoE-S/16
models trained with different global text entropy thresholds.

Table 8: LIMoE performance on LAION400M, against a dense baseline, three trials.

10shot 0shot COCO t2i COCO i2t

Dense 47.748.1
47.3 56.056.3

55.6 27.828.3
27.4 42.843.4

42.1

LIMoE 54.354.7
53.9 61.061.4

60.7 28.929.2
28.5 43.744.6

42.9

experts harder. To study this, we sweep the group size in a parallel setup with 128 examples per
device. Group size 1 means processing and dispatching 128× (196 + 16) = 27136 tokens at once,
whereas e.g. group size 8 involves splitting into 8 groups of 3392 tokens. Figure 16 shows the effect
of this; up to 4 groups, performance is good, but any more than that and training becomes unstable,
harming performance. This is more fragile than image-only routing, where group sizes as small as
400 are stable (equivalent to ∼ 68 groups here). Nonetheless, with 4 groups, step time is reduced by
30%, capturing 75% of potential efficiency gains from grouped routing.
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Figure 16: Grouped routing can reduce step time (orange), but too much becomes unstable.

E.6 Experiments on public data

In order to ascertain LIMoE’s efficacy on public data, and reproducibility, we train B/16 models on
LAION-400M [49]. We train for 5 epochs at batch size 16,384. Table 8 shows the outcome of three
trials, compared against a dense baseline. Once again, we see significant improvements performance,
especially in ImageNet zero-shot (+5.0% absolute, +8.9% relative) and 10-shot (+6.6% absolute,
+13.8% relative) performance.
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F Model Analysis

F.1 Routing Distributions

In this section, we explore how routing is distributed across different layers, experts, and modalities.
In particular, we focus on which tokens are dropped. We analyze two models, B/32 and B/16, each
with 8 experts. This way we can appreciate the impact of having a significantly different ratio of
text:image tokens. Moreover, the global entropy targets S = eτ for (text, image) tokens are (3, 25)
and (6, 6) for the B/32 and B/16 models, respectively.

We first show the routing distributions under the training distribution in Figures 17 and 18. In both
cases –as expected– routing works very well. Moreover, most experts handle both image and text
tokens.
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Figure 17: Token Distribution for training data. B/32 model with 8 experts. We display utilization
and dropping for a forward pass with batch size 1024. The discontinuous line represents the maximum
capacity per expert. Note that we enforce capacity locally per device, so some tokens may not be able
to be dispatched even within global capacity constraints. We observe very little token dropping as
this is the training data for which auxiliary losses lead to balance.
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Figure 18: Token Distribution for training data. B/16 model with 8 experts. We display utilization
and dropping for a forward pass with batch size 512. The discontinuous line represents the maximum
capacity per expert. Note that we enforce capacity locally per device, so some tokens may not be able
to be dispatched even within global capacity constraints. We observe very little token dropping as
this is the training data for which auxiliary losses lead to balance. Compared to Figure 17, we can see
how text tokens generally represent a quite small fraction of the in-flow for every expert.
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Figure 19: Token Distribution for COCO data. B/32 model with 8 experts. We display utilization
and dropping for a forward pass with batch size 1024. The discontinuous line represents the maximum
capacity per expert. Note that we enforce capacity locally per device, so some tokens may not be
able to be dispatched even within global capacity constraints. Compared to Figure 17, in this case, as
there is a distribution shift –while no further training or finetuning–, we see distributions of tokens
per expert becoming fairly unbalanced. Moreover, a non-trivial amount of tokens are dropped (above
discontinuous horizontal line). Even text tokens are dropped sometimes, and some experts –like
Expert 1 in the MoE Block 1 or 9– end up only processing text tokens.

30



1 2 3 4 5 6 7 8
expert id

0

5000

10000

15000

20000

25000

nu
m

be
r o

f t
ok

en
s p

er
 e

xp
er

t MoE Block 1

1 2 3 4 5 6 7 8
expert id

0

5000

10000

15000

20000

nu
m

be
r o

f t
ok

en
s p

er
 e

xp
er

t MoE Block 3

dropped image tokens
dropped text tokens

image tokens
text tokens

1 2 3 4 5 6 7 8
expert id

0

5000

10000

15000

20000

25000

30000

nu
m

be
r o

f t
ok

en
s p

er
 e

xp
er

t MoE Block 5

1 2 3 4 5 6 7 8
expert id

0

5000

10000

15000

20000

25000

30000

nu
m

be
r o

f t
ok

en
s p

er
 e

xp
er

t MoE Block 7

1 2 3 4 5 6 7 8
expert id

0

5000

10000

15000

20000

nu
m

be
r o

f t
ok

en
s p

er
 e

xp
er

t MoE Block 9

1 2 3 4 5 6 7 8
expert id

0

5000

10000

15000

20000

25000

nu
m

be
r o

f t
ok

en
s p

er
 e

xp
er

t MoE Block 11

Figure 20: Token Distribution for COCO data. B/16 model with 8 experts. We display utilization
and dropping for a forward pass with batch size 512. The discontinuous line represents the maximum
capacity per expert. Note that we enforce capacity locally per device, so some tokens may not be
able to be dispatched even within global capacity constraints. Compared to Figure 18, in this case, as
there is a distribution shift –while no further training or finetuning–, we see distributions of tokens
per expert becoming fairly unbalanced. Moreover, a non-trivial amount of tokens are dropped (above
discontinuous horizontal line). Text tokens are still mostly processed as BPR shields them via their
high priorities and they still represent a small percentage of the tokens.
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Figure 21: Token Distribution for ImageNet data. B/32 model with 8 experts. We display
utilization and dropping for a forward pass with batch size 1024. The discontinuous line represents
the maximum capacity per expert. Note that we enforce capacity locally per device, so some tokens
may not be able to be dispatched even within global capacity constraints. Compared to Figure 17, in
this case, as there is a distribution shift –while no further training or finetuning–, we see distributions
of tokens per expert becoming fairly unbalanced. Moreover, a non-trivial amount of tokens are
dropped (above discontinuous horizontal line). Very few text tokens are dropped (there is a significant
amount of padding, and prompt tokens that are probably processed with very high confidence scores
by BPR).
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Figure 22: Token Distribution for ImageNet data. B/16 model with 8 experts. We display
utilization and dropping for a forward pass with batch size 512. The discontinuous line represents the
maximum capacity per expert. Note that we enforce capacity locally per device, so some tokens may
not be able to be dispatched even within global capacity constraints. Compared to Figure 18, in this
case, as there is a distribution shift –while no further training or finetuning–, we see distributions of
tokens per expert becoming fairly unbalanced. Moreover, a non-trivial amount of tokens are dropped
(above discontinuous horizontal line). Almost no text tokens are dropped (there is a significant
amount of padding, and prompt tokens that are probably processed with very high confidence scores
by BPR).
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F.2 Routing Examples

In this section, we share practical examples of image and text token routing on the B/32 and B/16
models introduced at the beginning of the section. All evaluations are on ImageNet (that is, not on the
training data). While the number of experts is clearly smaller than the number of different semantic
concepts in images and text, we still highlight some cool patterns in most experts – especially in
the context of images, as text tokens tend to use a reduced number of experts. We show some of
the patches with the highest routing confidence, as analyzing all the thousands of patches that are
assigned to each expert is difficult. However, we expect many other semantic concepts present in the
training data to be almost exclusively served by individual experts.
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Figure 23: Token routing for Imagenet. B/32 model with 8 experts, we show some of the original
tokens (both image and text) as routed at the second MoE layer (corresponds to the fourth encoder).
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Figure 24: Token routing for Imagenet. B/16 model with 8 experts, we show original tokens (both
image and text) as routed at the first MoE layer (corresponds to the second encoder block).
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Figure 25: Token routing for Imagenet. B/16 model with 8 experts, we show original tokens (both
image and text) as routed at the second MoE layer (corresponding to the fourth encoder block).

35



F.3 Routing for Individual Inputs

In this subsection, we show the expert split for a specific given input – image and text. Recall tokens
from different modalities do not interact in the forward pass (other than via sharing expert capacity).

Expert 0. Expert 1.

</s> |  | bad |  | a | dra | photo | a
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</s> | </s> | </s>
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ke
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of

Expert 7.

a bad photo of a drake

Original Image.
MoE Layer 3 (Imagenet).

Figure 26: Token routing for an Imagenet input. B/16 model with 8 experts, we show original
tokens (both image and text) as routed at the second MoE layer (corresponding to the fourth encoder
block, while we use zero-indexing). The original image and text are displayed on the right-hand side.
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Figure 27: Token routing for an Imagenet input. B/16 model with 8 experts, we show original
tokens (both image and text) as routed at the second MoE layer (corresponding to the fourth encoder
block, while we use zero-indexing). The original image and text are displayed on the right-hand side.
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Figure 28: Token routing for an Imagenet input. B/16 model with 8 experts, we show original
tokens (both image and text) as routed at the third MoE layer (corresponding to the sixth encoder
block). The original image and text are displayed on the right-hand side.
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Figure 29: Token routing for an Imagenet input. B/16 model with 8 experts, we show original
tokens (both image and text) as routed at the previous-to-last MoE layer (corresponding to the tenth
encoder block, while we use zero-indexing). The original image and text are displayed on the
right-hand side.
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F.4 Routing Trajectories

In this section, we try to have a look at the overall trajectories followed by both image and text
tokens across the network. While definitely a complex endeavor, we show in Figure 30 for B/32 and
Figure 31 for B/16 the main trajectories followed by such tokens. Interestingly enough, it seems
that for both models and image tokens, the first two/three MoE layers are fairly interconnected – in
other words, given the expert selected for some token in one layer, it may be hard to predict the next
steps. Text tokens (probably given that very few experts are indeed often used for text) have more
predictable trajectories.
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B/32 Path Analysis | Image paths in red, text in blue.

Figure 30: Token trajectories. B/32 model with 8 experts, we show the main expert-routes followed
by text tokens (in blue) and image tokens (in red).
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B/16 Path Analysis | Image paths in red, text in blue.

Figure 31: Token trajectories. B/16 model with 8 experts, we show the main expert-routes followed
by text tokens (in blue) and image tokens (in red).
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F.5 BPR rankings

The local entropy loss encourages concentrated routing predictions with high pmax for text. At
the same time, BPR prioritises tokens with high pmax. One might assume that this combination is
effectively just ranking all text tokens first. The following plots give us some insight into how the
buffers end up sorting tokens from both modalities. Figures 32 and 33 show the priority distribution
on the training data for the B/32 and B/16 models, respectively. Under a data shift, Figures 34 and
35 show the same statistics for COCO data, and Figures 36 and 37 for ImageNet. In these cases, no
extra training was performed (i.e., it is zero-shot). Overall, we see that while text tokens enjoy by
default a much higher priority, this is not always the case, and some (important?) image patches are
sometimes processed before other text tokens.

Figure 32: Token priorities for training data. B/32 model with 8 experts. We see that –especially
in later layers– token priorities are mingled across modalities, whereas text tokens tend to have higher
scores (and, thus, BPR priorities). Tokens to the left of the x-axis are given more priority. The vertical
discontinuous line corresponds to the per-expert global capacity limit. Tokens beyond that point are
not processed by the expert.
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Figure 33: Token priorities for training data. B/16 model with 8 experts. We see that –especially
in later layers– token priorities are mingled across modalities, whereas text tokens tend to have
higher scores (and, thus, BPR priorities). Compared to the B/32 model, here we see a longer tail
of low-priority image tokens. Tokens to the left of the x-axis are given more priority. The vertical
discontinuous line corresponds to the per-expert global capacity limit. Tokens beyond that point are
not processed by the expert.
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Figure 34: Token priorities for COCO data. B/32 model with 8 experts. We see that –especially in
later layers– token priorities are mingled across modalities, whereas text tokens tend to have higher
scores (and, thus, BPR priorities). Tokens to the left of the x-axis are given more priority. The vertical
discontinuous line corresponds to the per-expert global capacity limit. Tokens beyond that point are
not processed by the expert. Due to the distribution shift (this is evaluated on COCO, which was not
the training data), we see lots of dropping is actually happening (mostly images, but also some text
tokens).

42



Figure 35: Token priorities for COCO data. B/16 model with 8 experts. We see that –especially in
later layers– token priorities are mingled across modalities, whereas text tokens tend to have higher
scores (and, thus, BPR priorities). Tokens to the left of the x-axis are given more priority. The vertical
discontinuous line corresponds to the per-expert global capacity limit. Tokens beyond that point are
not processed by the expert. Due to the distribution shift (this is evaluated on COCO, which was
not the training data), we see lots of dropping is actually happening (while pretty much only image
tokens).
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Figure 36: Token priorities for ImageNet data. B/32 model with 8 experts. We see that –especially
in later layers– token priorities are mingled across modalities, whereas text tokens tend to have higher
scores (and, thus, BPR priorities). Tokens to the left of the x-axis are given more priority. The vertical
discontinuous line corresponds to the per-expert global capacity limit. Tokens beyond that point are
not processed by the expert. Due to the distribution shift (this is evaluated on ImageNet, which was
not the training data), we see lots of dropping is actually happening (mostly images, but also some
text tokens).
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Figure 37: Token priorities for ImageNet data. B/16 model with 8 experts. We see that –especially
in later layers– token priorities are mingled across modalities, whereas text tokens tend to have higher
scores (and, thus, BPR priorities). Tokens to the left of the x-axis are given more priority. The vertical
discontinuous line corresponds to the per-expert global capacity limit. Tokens beyond that point are
not processed by the expert. Due to the distribution shift (this is evaluated on ImageNet, which was
not the training data), we see lots of dropping is actually happening (mostly images, but also some
text tokens).
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G LIMoE-H/14 Analysis

In this section, we share some details and analysis regarding our largest model, the LIMoE-H/14.
Figure 38 shows the development of the max routing probability across different MoE layers. Figure 2
shows qualitatively the specialization of image experts. Experts naturally specializing on semantic
concepts such as body parts (hands, eyes), textures, fauna, food and doors. In Figure 39, we show
the distribution of tokens per type and expert for every layer. Note that we set the entropy loss to
approximately require at least 4 text experts, something that seems to agree well with the plot (in this
case the ratio text:image tokens was close to 1:27).
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Figure 38: Per-token pmax distribution for training data. For LIMoE-H/14 model, we show the
average and one standard deviation of the per-token maximum routing probability (corresponding to
the selected expert). We see that for image tokens the model is increasingly confident, whereas for
text tokens –given the local entropy loss– most of the predictions are close to one-hot.

G.1 Preliminary analysis of text routings

We analyse the routing distributions of text tokens for LIMoE-H/14, using NLTK [50] to distinguish
between verbs, nouns, adjectives, prepositions and determiners. Note that the SentencePiece tokenizer
breaks words into smaller units, which are not necessarily always handled by the same expert, so it is
not possible to perfectly parse every token processed by every expert.

The majority of tokens are from images, so only 3-4 experts handle text in this scenario. Figure 40
contains preliminary analysis, showing for each expert the breakdown of tokens it handles. Though
some experts process a bit of everything (e.g. experts 0 and 1 in layer 6 and 31), there are signs of
some semantic specialization. There are often experts which process mostly padding tokens. In Layer
14, expert 1 processes no prepositions, determiners or verbs, focussing on nouns and adjectives (and
some padding); similarly expert 1 processes very few nouns or adjectives, instead handling padding
tokens.
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Figure 39: Token routing per expert for LIMoE-H/14. We show for each MoE layer and expert, the
number of tokens per modality that were routed in a number of forward passes from the training data.
When above the expert capacity (discontinuous horizontal line), some tokens were dropped – but not
necessarily the image ones; for simplicity, we always show image tokens on top of text ones. In this
setup, the ratio text:image tokens was close to 1:27.
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Figure 40: Analysis of text routing for LIMoE-H/14
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