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Abstract

Large sparsely-activated models have obtained excellent performance in multiple
domains. However, such models are typically trained on a single modality at a
time. We present the Language-Image MoE, LIMoE, a sparse mixture of experts
model capable of multimodal learning. LIMoE accepts both images and text
simultaneously, while being trained using a contrastive loss. MoEs are a natural fit
for a multimodal backbone, since expert layers can learn an appropriate partitioning
of modalities. However, new challenges arise; in particular, training stability and
balanced expert utilization, for which we propose an entropy-based regularization
scheme. Across multiple scales, we demonstrate remarkable performance
improvement over dense models of equivalent computational cost. LIMoE-L/16
trained comparably to CLIP-L/14 achieves 78.6% zero-shot ImageNet accuracy (vs.
76.2%), and when further scaled to H/14 (with additional data) it achieves 84.1%,
comparable to state-of-the-art methods which use larger custom per-modality
backbones and pre-training schemes. We analyse the quantitative and qualitative
behavior of LIMoE, and demonstrate phenomena such as differing treatment of
the modalities and the organic emergence of modality-specific experts.

1 Introduction

Sparsely activated mixture of expert (MoE) models have recently been used with great effect to scale
up both vision [1, 2] and text models [3, 4]. The primary motivation for using MoEs is to scale model
parameters while keeping compute costs under control. These models however have other benefits;
for example, the sparsity protects against catastrophic forgetting in continual learning [5] and can
improve performance for multitask learning [6] by offering a convenient inductive bias.

Given success in each individual domain, and the intuition that sparse models may better handle
distinct tasks, we explore the application of MoEs to multimodal modelling. We take the first step in
this direction, and study models that process both images and text. In particular, we train a single
multimodal architecture that aligns image and text representations via contrastive learning [7].

When using a setup proposed in prior unimodal models [8, 1], we find that feeding multiple modalities
to a single architecture leads to new failure modes unique to MoEs. To overcome these, we present
a set of entropy based regularisers which stabilise training and improve performance. We call the
resulting model LIMoE (Language-Image MoE).

We train a range of LIMoE models which significantly outperform compute-matched dense baselines.
We scale this up to a large 5.6B parameter LIMoE-H/14, which applies 675M parameters per token.
When evaluated zero-shot [7] on ImageNet-2012 [9] it achieves an accuracy of 84.1%, competitive
with two-tower models that make use of modality-specific pre-training and feature extractors, and
apply 3-4x more parameters per token.
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Figure 1: LIMoE, a sparsely activated
multimodal model, processes both im-
ages and texts, utilising conditional
computation to allocate computations
in a modality-agnostic fashion.

In summary, our contributions are as follows.

• We propose LIMoE, the first large-scale multimodal mix-
ture of experts models.

• We demonstrate in detail how prior approaches to regular-
ising mixture of experts models fall short for multimodal
learning, and propose a new entropy-based regularisation
scheme to stabilise training.

• We show that LIMoE generalises across architecture
scales, with relative improvements in zero-shot ImageNet
accuracy ranging from 7% to 13% over equivalent dense
models. Scaled further, LIMoE-H/14 achieves 84.1% zero-
shot ImageNet accuracy, comparable to SOTA contrastive
models with per-modality backbones and pre-training.

• Lastly, we present ablations and analysis to understand
the model’s behavior and our design decisions.

2 Multimodal Mixture of Experts

Multimodal contrastive learning typically works with inde-
pendent per-modality encodings [7, 10]. That is, separate models fm are trained to provide a final
representation for every input from the corresponding modality, m. In the case of some image and
text inputs, i and t, we have zi = fimage(i) and zt = ftext(t). For contrastive learning with images
and text, this approach results in a “two-tower” architecture, one for each modality. We study a
one-tower setup instead, where a single model is shared for all modalities, as shown in Figure 1. The
one-tower design offers increased generality and scalability, and the potential for cross-modal and
cross-task knowledge transfer. We next describe the LIMoE architecture and training routine.

2.1 Multimodal contrastive learning

Given n pairs of images and text captions {(ij , tj)}nj=1, the model learns representations
Zn= {(zij , ztj )}nj=1 such that those corresponding to paired inputs are closer in feature space than
those of unpaired inputs. The contrastive training objective [7, 11], with learned temperature T , is:

Lj(Zn) = −1

2
log

e〈zij
,ztj
〉/T∑n

k=1 e
〈zij

,ztk
〉/T︸ ︷︷ ︸

image-to-text loss

−1

2
log

e〈zij
,ztj
〉/T∑n

k=1 e
〈zik

,ztj
〉/T︸ ︷︷ ︸

text-to-image loss

. (1)

2.2 The LIMoE Architecture

We use a single Transformer-based architecture for both image and text modalities. The model uses
a linear layer per modality to project the intrinsic data dimension to the desired width: for text, a
standard one-hot sentencepiece encoding and learned vocabulary [12], and for images, ViT-style
patch-based embeddings [13]. Then all tokens are processed by a shared transformer encoder, which
is not explicitly conditioned on modality. The token representations from the final layer are average-
pooled to produce a single representation vector zm for each modality. To compute the training loss
in (1), the paired image and text representations are then linearly projected using per-modality weight
matrices Wm’s and Lj is applied to {(Wimage zik ,Wtext ztk)}nk=1.

This one-tower setup can be implemented with a standard dense Transformer (and we train many
such models as baselines). Next, we describe how we introduce MoEs to this setup for LIMoE.

Sparse MoE backbone: Sparse MoE layers are introduced following the architectural design of [1, 3].
The experts—parts of the model activated in an input-dependent fashion—are MLPs. LIMoE contains
multiple MoE layers. In those layers, each token x ∈ RD is processed sparsely by K out of E
available experts. To choose which K, a lightweight router predicts the gating weights per token:

2



 Expert 2 (Plants)  Expert 7 (Eyes)  Expert 19 (Wheels)  Expert 8 (Hands)  Expert 9 (Striped Textures)

 Expert 17 (Solid Textures)  Expert 4 (Words)  Expert 18 (Door Handles)  Expert 12 (Food & Fruits)  Expert 6 (Sea & Sky)

Figure 2: Token routing examples for Coco. Image examples of how patches are routed at the MoE
layer placed in the 18-th encoder block –i.e. middle of the network– for the LIMoE-H/14 model.

g(x) = softmax(Wgx) ∈ RE with learned Wg ∈ RD×E . The outputs of the K activated experts
are linearly combined according to the gating weights: MoE(x) =

∑K
e=1 g(x)e · MLPe(x).

Note that, for computational efficiency and implementation constraints, experts have a fixed buffer
capacity. The number of tokens each expert can process is fixed in advance, and typically assumes
that tokens are roughly balanced across experts. If capacity is exceeded, some tokens are “dropped”;
they are not processed by the expert, and the expert output is all zeros for those tokens. The rate at
which tokens are successfully processed (that is, not dropped) is referred to as the “success rate”. It is
an important indicator of healthy and balanced routing and often indicative of training stability.

We discovered that routing with tokens from multiple modalities introduces new failure modes; in the
next sections we demonstrate this phenomenon, and describe our techniques to address it.

2.2.1 Challenges for multimodal MoEs

As mentioned, experts have a fixed buffer capacity. Without intervention, Top-K MoEs tend to
“collapse”, thus using only one expert. This causes most tokens to be dropped and leads to poor
performance [14]. Prior works therefore use auxiliary losses to encourage balanced routing [1, 3, 8].

In multimodal settings, new challenges arise; one is modality misbalance. In realistic setups, there
will likely be more of one data type than another. Accordingly, we do not assume or enforce balanced
data across modalities, and our experiments have 3− 17× more image tokens than text tokens.

Modality-specific experts tend to emerge naturally. In this imbalanced context, this leads to a scenario
where all of the tokens from the minority modality get assigned to a single expert, which runs out of
capacity. On a global level, routing still appears balanced: tokens from the majority modality are
nicely distributed across experts, thereby satisfying modality-agnostic auxiliary losses. For example,
in our standard B/16 setup, the router can optimize the importance loss [14] to within 0.5% of its
minimum value by perfectly balancing image tokens but dropping all text tokens. This however leads
to unstable training and unperforming models.

2.2.2 Auxiliary losses

We refer to auxiliary losses used in V-MoE [1] as the classic auxiliary losses. We find that they do
not yield stable and performant multimodal MoE models. Therefore, we introduce two new losses:
the local entropy loss and the global entropy loss, which are applied on a per-modality basis. We
combine these losses with the classic losses; see Appendix B for a summary of all auxiliary losses.

Definition. In each MoE layer, for each modality m, the router computes a gating matrix Gm ∈
Rnm×E . Each row of Gm represents the probability distribution over E experts for one of the nm
tokens of that modality in the batch. For a token x that corresponding row is pm(experts|x) ∈ RE ;
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this later dictates which experts process x. The local and global entropy losses are defined by:

Ωlocal(Gm) :=
1

nm

nm∑
i=1

H(pm(experts|xi)) and Ωglobal(Gm) :=−H(p̃m(experts)) , (2)

where p̃m(experts) = 1
nm

∑nm

i=1 pm(experts|xi) is the expert probability distribution averaged

over the tokens and H(p) = −
∑E
e=1 pe log(pe) denotes the entropy. Note that p̃m(experts) ≈

pm(experts) since we approximate the true marginal from the tokens in the batch. We use the
terminology local vs. global to emphasise the fact that Ωlocal applies the entropy locally for each
token while Ωglobal applies the entropy globally after having marginalized out the tokens.

Effects of the losses. Figure 3 shows why these losses are necessary. With the default losses,
modality-specific experts naturally emerge, but the router often changes its preference. This results
in unstable training and poor success rate, particularly for the text modality. The local entropy loss
encourages concentrated router weights (ptext(experts|xi)’s have low entropy), but at the expense of
the diversity of the text experts: the same expert is used for all text tokens (the marginal p̃text(experts)
also has low entropy), leading to dropping. In this setup, many layers have poor text success rates.

To address this, Ωglobal encourages maximization of the marginal entropy, thus pushing p̃text(experts)
towards a more uniform expert distribution. The result is diverse expert usage, stable and confident
routing, and high success rates. These are consequently the most performant models.

Intuitively, it is desirable for text tokens to use multiple experts, but not all of them. In order to allow
flexibility, we threshold the global entropy loss as Ωτglobal(Gm) = max{0, τ + Ωglobal(Gm)}, such
that the model is encouraged to have a certain minimum entropy, but after exceeding that, the loss
is not applied. This avoids distributional collapse but does not apply overly restrictive priors on the
routing distribution, as there are many optimal solutions. This can be thought of as a “soft minimum”
S. With τ = log(S), the model must use at least S experts to minimize the loss (either a uniform
distribution across S experts -with entropy log(S)-, or a non-uniform distribution using more than S).
Figure 3b shows the latter occurs; the empirical effect of these thresholds is analysed in Section 4.1.
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(b) Analysing routing behaviour of the auxiliary losses. First column: Average success rate of image routing in layers 1/7/11. Second
column: Same, for text. Third column: In some experts of layer 5, what fraction of all text tokens go to those experts

Figure 3: What necessitates entropy losses? Classic refers to the standard formulation (importance + load
losses [1]). We add the local entropy loss to text tokens (middle row), followed by the global entropy loss (bottom
row). Left: The “classic” setting is low-performing and unstable. Right: Analyzing the entropies shows us why:
Without the local loss, the model is prone to unstable changes in expert preferences (C1), and routing success rates
are low (A1, B1). The local loss fixes this but causes distributional collapse for one modality (C2), with all text
tokens going to one expert (expert 11); this causes even poorer text success rates (B2). This is addressed by the
global loss, which has stable expert allocations (C3) and consistently high success rates (A3, B3).
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Connection with mutual information. The sum Ωlocal(Gm) + Ωglobal(Gm) corresponds to the
(negative) mutual information [15] between experts and tokens, conditioned on the modalitym, which
we write −MIm(experts;x). For each modality taken separately, we are effectively encouraging
the knowledge of the token representation to reduce the uncertainty about the experts selection. We
also tried other variants of the losses which exploit this connection, such as the mutual information
between the experts and modalities, −MI(experts;m), obtained by first marginalizing the tokens.

2.2.3 Priority routing

With Top-K routing, some token dropping is virtually inevitable. Batch Priority Routing (BPR) [1]
actively decides which tokens to skip based on their routing weights. It assumes that tokens with a
large routing weight are likely to be informative, and should be favored. BPR was mostly used at
inference time in [1], allowing for smaller expert capacity buffers. In this setup, one must take care
not to systematically favor one modality over the other, for instance, by determining which token to
drop based on their rank in the batch, which are usually grouped according to the token modality.
BPR provides an essential stabilisation effect during training (Figure 6); we show that it does not
trivially rank one modality over another, and it cannot be replaced by other methods of re-ordering
the batch. In the appendix we further show how routing priorities compare across text and images.

3 Experiments

We study LIMoE in the context of multimodal contrastive learning. We first perform a controlled
comparison of LIMoE to an equivalent “standard” dense Transformer, across a range of model sizes.
We then show that when scaled up LIMoE can reach a high level of performance. Finally, we ablate
the various design decisions leading to LIMoE in Section 4.

Training data. By default, all models are trained on paired image-text data used in [16], consisting of
3.6B images and alt-texts scraped from the web. For large LIMoE-H/14 experiment, we also co-train
with JFT-4B [17]. We construct artificial text captions from JFT by comma-delimited concatenation
of the class names [18]. Appendix A contains full details of our training setup.

Evaluation. Our main evaluation is “zero-shot”: the model uses its text representations of the
classes to make predictions on a new task without extra training data [19, 7]. We focus on image
classification accuracy on ImageNet [9] and cross-modal retrieval on MS-COCO [20], following the
protocol in [16]. We also evaluate LIMoE’s image representations via a linear adaptation protocol [13],
and report 10-shot accuracy on ImageNet accuracy accordingly. Where ranges are given, they report
95% confidence intervals across three trials.

3.1 Controlled study across scales

We train a range of LIMoE models at batch size 16k for 781k steps. This matches the number of
training examples used for CLIP [7]. Due to use of different training data and additional tricks, a
direct comparison is difficult; we therefore train dense one-tower models as baselines. All models
activate k = 1 experts per token, similar to Switch Transformer [8].

Figure 4 shows the performance of each model (dense and sparse) against forward-pass FLOPs (for
step times and further discussion on compute costs, see Appendix D.2.). The cost-performance Pareto
frontier for LIMoE dominates the dense models by a wide margin, indicating that LIMoE offers strong
improvements across all scales from S/32 , up to L/16. The effect is particularly large on zero-shot
and 10-shot ImageNet classification, with absolute performance improvements of 10.1% and 12.2%
on average. For text-to-image retrieval on COCO, LIMoE offers a strong boost at small scales, while
at larger scales the gains are more modest but still significant.

3.2 Scaling up LIMoE

We increase the architecture size, training duration, and data size to assess the performance of LIMoE
in the large-scale regime. In particular, we train a 32-layer LIMoE-H/14 with 12 expert layers; these
are non-uniformly distributed, with 32 experts per layer, and K = 1 activated per token. It was
trained at a batch size of 21k, introducing 25% JFT-4B images [17] into each batch (with class names
as texts). We average checkpoints towards the end of training [21]; refer to Appendix A.3 for details.
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Figure 4: LIMoE scales well to large models, with consistent performance improvements.

The model contains 5.6B parameters in total, but only applies 675M parameters per token. All routers
combined account for less than 0.5M parameters. Table 1 shows its performance alongside current
state-of-the-art contrastive models. LIMoE achieves 84.1% zero-shot ImageNet classification accuracy
with a comparably modest architecture size and training counts. LIMoE is fully trained from scratch,
without any pre-trained components, and is the first competitive model with a shared backbone.

In light of its modality agnostic approach, this result is surprisingly strong. Large models handling
dozens of distinct tasks are increasingly popular [22], but do not yet approach the state-of-the-art
in these tasks. We believe the ability to build a generalist model with specialist components, which
can decide how different modalities or tasks should interact, will be key to creating truly multimodal
multitask models which excel at everything they do. LIMoE is a promising first step in that direction.

Table 1: Comparing state of the art zero-shot classification models. At a relatively modest scale,
LIMoE-H/14 is comparable with the best two-tower models, and it is the first performant one-tower
model at this scale. T-x refers to a Transformer [23] with the equivalent parameters of ViT-x [13].
Key: ∗ Pretrained PT Examples seen during pretraining † Uses FixRes [24] § Other non-contrastive training objective

Architecture Batch Examples seen Parameters ImageNet top-1 %
Image Text size per token Test V2 R A

COCA§ [25] ViT-g T-g 65k 32.8B 1.1B 86.3 80.7 96.5 90.2
BASIC [18] CoAtNet-7∗ T-H∗ 65k 19.7BPT +32.8B 1.5B 85.7 80.6 95.7 85.6
LIT [16] ViT-g∗ T-g 32k 25.8BPT + 18.2B 1.1B 84.5 78.7 93.9 79.4
ALIGN [10] EffNet-L2 T-L∗ 16k 19.8B ∼ 410M 76.4 70.1 92.2 75.8
CLIP [7] ViT-L/14† T-B 32k 12.8B ∼ 200M 76.2 70.1 88.9 77.2

LIMoE H/14 21k 23.3B 675M 84.1 77.7 94.9 78.7

4 Ablations

We use a smaller setup to study various aspects of LIMoE. We train B/16 models at batch size 8096
for 100,000 steps (see Appendix A.2 for further details). Table 2 shows the average over three trials
of this setting alongside dense one-tower and two-tower baselines. LIMoE greatly outperforms both
dense models on ImageNet 0- and 10-shot, while confidence intervals overlap for retrieval with two
towers. The two-tower model is twice as large and expensive, and still falls behind the sparse one.

4.1 Routing and auxiliary losses

Choice of auxiliary losses. With the introduction of the entropy based losses in addition to classic
ones, there are 7 possible auxiliary losses. We aimed to find the simplest combination of these
which obtains good performance. To study this, we performed a large sweep of auxiliary losses:
for N ∈ [2, . . . , 5], we considered all

(
7
N

)
possible loss combinations. Table 3 shows, for each

loss, the highest performing model with and without that loss. Some conclusions stand out: Both
entropy losses are important for text, but for images, the global loss is not impactful and the local
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Table 2: Baselines for ablations: B/16 with batch size 8096 trained for for 100,000 steps.
0shot and 10shot columns show accuracy (%), t2i and i2t show recall@1 (%).

Model i1k 0shot i1k 10shot coco t2i coco i2t

dense one-tower 49.8 50.4
49.2 43.8 44.3

43.3 23.7 24.0
23.4 36.7 38.9

34.6

dense two-tower 54.7 55.2
54.1 47.1 47.6

46.7 26.6 27.1
26.2 41.3 42.0

40.6

LIMoE 56.9 57.1
56.7 50.5 50.8

50.2 25.6 27.3
23.9 39.7 42.2

37.1

Table 3: Across 121 combinations, each row shows the best accuracy (%) of all combinations that
included the auxiliary loss (3) vs. those that did not (7). Bold auxiliary losses indicate they are in
LIMoE. Validation accuracy is the average contrastive accuracy in a minibatch of size 1024.

Validation 0shot 10shot
Auxiliary loss 7 3 7 3 7 3

Importance 70.5 70.6 55.4 56.2 51.1 51.3
Load 70.3 70.6 56.2 55.7 51.3 51.1
Z-Loss 70.3 70.6 55.8 56.2 50.5 51.3
Global Ent Image 70.6 70.5 56.0 56.2 50.8 51.3
Global Ent Text 69.1 70.6 54.3 56.2 51.1 51.3
Local Ent Image 70.6 68.7 56.2 53.5 51.3 47.5
Local Ent Text 67.2 70.6 53.3 56.2 47.5 51.3

loss is harmful. The final combination of losses was chosen based on validation accuracy alongside
qualitative observations around training stability and routing success rate.

Threshold for global entropy losses. In Section 2.2.2, we introduced a threshold τ to encourage
balanced expert distributions without forcing all modalities to use all experts. To understand the
importance of this threshold, we sweep over it for both the image and text global entropy losses.
Appendix B.2 contains a full analysis; the most important conclusions are:

• τimage did not affect the number of experts used for images, as global entropy was always high.
Aside from these threshold experiments with very high τimage, this loss is usually inactive. It was
used in our main experiments, but can likely be removed in future work.

• The threshold τtext behaved exactly as a soft minimum for text experts: Sweeping τtext, we typically
observed approximately S = eτtext text experts.

• Performance is robust to different values of τtext, provided it is not too low. A low τtext can be
useful to limit the number of text experts, for later pruning, see Appendix E.4.

Mutual-information auxiliary loss. In Section 2.2.2, we discussed an alternative loss, namely
−MI(experts;m), based on the mutual information between experts and modalities. While it has
the advantage of merging the local and global entropy losses for both the text and image modalities
into a single term, without threshold parameters, it leads to slightly worse results: in a comparable
setup, it had 1.5% and 0.1% worse zero-shot and 10-shot performance compared to Table 2.
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Figure 5: Entropy losses are not just ad-
dressing a modality imbalance. With dif-
ferent image:text balancing, including com-
pletely balanced, the entropy losses substan-
tially improves over the classic setting.

The effect of modality balancing. Our models use
a text sequence length of 16, but image sequence
lengths from 49 to 400 (for these ablations, 196).

Our ablations reveal that the entropy losses are most
important when applied to the text tokens. This leads
to a hypothesis that these are only necessary or use-
ful in the imbalanced case. To test this, we vary
the modality balance of LIMoE-B/16 by varying the
patch size; this enables us to control the number of
image tokens, and hence image:text balance, without
changing the information content in the data. Fig-
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ure 5 shows the results. First, we observe that, with entropy routing, a longer image sequence
length is always better. This shows that entropy routing can effectively handle highly imbalanced
setups, and mirrors the observation that for classical Vision Transformers: a longer sequence is better.
Importantly, entropy routing is always far superior to the classical setup with growing gaps, even
when the modalities are balanced 1:1 (Limg = 16). This experiment also confirms the robustness of
entropy routing to different setups.

Batch priority routing as a training stabilizer. Figure 6 shows the effect of BPR during training.
BPR not only ameliorates against token dropping, but also improves training stability. Models with
no dispatch order intervention (first-in-first-out) perform extremely poorly, whether we route images
first or text first. These routers have low success rate. Randomly shuffling tokens (i.e. deciding which
tokens to drop at random when an expert becomes full) partially ameliorates this, but its performance
is still much worse than that of models trained with BPR. We further analyse BPR in Appendix F.5
and show that it does not simply rank one modality above another.

i1k
 0s

ho
t

i1k
 10

sho
t

coc
o t

2i

coc
o i

2t

metric

0%

10%

20%

30%

40%

50%

pe
rfo

rm
an

ce

0 25k 50k 75k 100k
step

0%

20%

40%

60%

80%

100%
%

 su
cc

es
sf

ul
 ro

ut
in

g

Image success

text first image first shuffle bpr

0 25k 50k 75k 100k
step

0%

20%

40%

60%

80%

100%

%
 su

cc
es

sf
ul

 ro
ut

in
g

Text success

Figure 6: BPR stabilizies training and enables performant models; the first figure shows different
performance metrics. The last two show success rates for the MoE router in Layer 9.

4.2 Other ablations

We summarize our other ablations here due to space constraints; details can be found in Appendix E.

Router structure (Appendix E.3). Our router is modality agnostic; we experiment with per-modality
routers, and separate pools of per-modality experts. We find they all perform comparably to our
generic, modality agnostic setup, but that separate pools of experts by design is more stable and does
not require auxiliary losses for regularisation—while harder to scale to many modalities and tasks.

Increasing selected experts per token K ( Appendix E.1). We propose modifications to BPR and
the local auxiliary loss to generalise to K > 1; by doing so we can steadily increase performance by
increasing K, e.g. from 55.5% zero-shot accuracy with K = 1 to 61.0% with K = 5.

Total number experts (Appendix E.2). We show that increasing the pool of available experts at fixed
K improves performance (unlike what was observed for vision-only tasks [1]).

Expert pruning (Appendix E.4). We show using simple heuristics we can prune down to modality-
specific experts for unimodal forward passes, thus avoiding expert collapse under unimodal batches.

Training on public data (Appendix E.6) The majority of LIMoE models were trained on propri-
etary data [16]. We show that LIMoE works similarly well on publically available data, retaining
performance improvements against a comparable dense model.

5 Model Analysis

In this section, we explore some of the internal workings of LIMoE. We use simple B/32 and B/16
models with 8 experts, and the large H/14 with 32. See Appendix F for further details and experiments.

Multimodal experts arise (Appendix F.1). Aside from encouraging diversity, we do not explicitly
enforce experts to specialize. Nonetheless, we observe the emergence of both modality-specific
experts, and multimodal experts which process both images and texts (per-expert distributions in F.1).
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Qualitative analysis (Appendix F.2). We analyse some example data and show a clear emergence of
semantically meaningful experts. With images for instance, some experts specialize on lower level
features (colours, lines) while others on more complex features (faces and text), see Figure 2.

BPR ranking (Appendix F.5). The local loss encourages high max-routing weights for text, and BPR
ranks according to this. We show however that this does not mean text is always prioritised first:
Especially in later layers, the model often prioritises important image patches over text.

6 Related work

Unimodal, task-specific neural networks have long been researched, with increasing convergence
towards Transformer-based architectures [23, 26] for both NLP [27] and Computer Vision [13, 28, 29].
Multimodal models aim to process multiple types of data using a single neural network.

Many approaches “fuse” modalities [30, 31, 32, 33] to tackle inherently multimodal tasks. LIMoE
is more similar to approaches which do not do that, and still operate as unimodal feature extractors.
Some co-train on distinct tasks [34, 35, 36, 22] without aligning or fusing representations—effectively
sharing weights across tasks—whereas others include both unimodal aspects and fused multimodal
aspects for functionality in both contexts [37].

We build on deep Sparse Mixture of Experts models, which have been studied independently in
Computer Vision [1, 2] and NLP [14, 3, 8], typically in the context of transfer learning. These
models use a learned gating mechanism whereby only a subset of K experts out of E � K are
activated for a given input. Many works aim to improve the gating mechanism itself, by making
it differentiable [38], reformulating as a linear assignment task [39] or even swapping it out for a
simple hashing algorithm [40]. MoE models have also been studied for multitask learning [38], with
per-task routers [6] but a shared pool of experts. To our knowledge, sparse models have not been
explored for multimodal learning.

A large body of research exists on contrastive learning, usually in self-supervised [41] but also
in supervised regimes [42]. Multimodal contrastive learning trains on aligned data from multiple
modalities. Originally studied for medical images and reports [11], it was recently scaled to noisy
web data [7, 10], where strong image-text alignments enabled performant image classification and
cross-modal image-text retrieval without finetuning on downstream data. Follow up works improved
upon this significantly by scaling up and using pretrained models [18, 16] and multitask training
with generative modelling [25] or other vision tasks [43]. These works use unimodal models which
separately process image and text data; we are not aware of previous research using a single model to
process both images and texts for contrastive learning, neither with dense nor with sparse models.

7 Conclusions and Future Work

We have presented LIMoE, the first multimodal sparse mixture of experts model. We uncovered new
failure modes specific to this setup and proposed entropy based auxiliary losses which stabilises
training and results in highly performant models. It works across many model scales, with average
improvements over FLOP-matched dense baselines of +10.2% zero-shot accuracy. When scaled to a
large H/14 model, we achieve 84.1% accuracy, competitive with current SOTA approaches.

Societal impact and limitations: The potential harms of large scale models [44], contrastive mod-
els [7] and web-scale multimodal data [45] also carry over here, as LIMoE does not explicitly address
them. On the other hand, it has been shown that pruning models tends to cause low-resource groups
to be forgotten [46], causing performance to disproportionally drop for some subgroups. This would
be worth considering for our expert-pruning experiments, but by analogue, the ability to scale models
with experts that can specialize deeply may result in better performance on underrepresented groups.

Environmentally speaking, training large models is costly, though efforts are made to use efficient
datacenters and offset emitted CO2. Prior works however show that most environmental impact
occurs during model inference, and that MoEs are significantly more efficient in that regard [47];
LIMoE is naturally a good candidate for efficient, large-scale multimodal foundation models.

Future work: There are many interesting directions from here. The routing interference with
multiple modalities still is not fully understood. In general, conclusions from applications of MoEs
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to NLP have not carried over perfectly to Vision, and vice-versa, and here we see again different
behaviour between images and text. Naturally, extensions to more modalities should be explored;
even with only two we see fascinating interactions between different data types and the routing
algorithms, and that will only get more difficult, and interesting, with more modalities.

There are always more modalities to learn, and larger models to build: sparse models provide a very
natural way to scale up while juggling very different tasks and data, and we look forward to seeing
more research in this area.
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