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Filip Pavetić, Mario Lučić, Leonidas J. Guibas, Klaus Greff, Thomas Kipf⇤

Google Research

Abstract

A compositional understanding of the world in terms of objects and their geome-
try in 3D space is considered a cornerstone of human cognition. Facilitating the
learning of such a representation in neural networks holds promise for substantially
improving labeled data efficiency. As a key step in this direction, we make progress
on the problem of learning 3D-consistent decompositions of complex scenes into
individual objects in an unsupervised fashion. We introduce Object Scene Rep-

resentation Transformer (OSRT), a 3D-centric model in which individual object
representations naturally emerge through novel view synthesis. OSRT scales to
significantly more complex scenes with larger diversity of objects and backgrounds
than existing methods. At the same time, it is multiple orders of magnitude faster at
compositional rendering thanks to its light field parametrization and the novel Slot

Mixer decoder. We believe this work will not only accelerate future architecture
exploration and scaling efforts, but it will also serve as a useful tool for both
object-centric as well as neural scene representation learning communities.

1 Introduction

As humans, we interact with a physical world that is composed of macroscopic objects1 situated in
3D environments. The development of an object-centric, geometric understanding of the world is
considered a cornerstone of human cognition [32]: we perceive scenes in terms of discrete objects
and their parts, and our understanding of 3D scene geometry is essential for reasoning about relations
between objects and for skillfully interacting with them.

Replicating these capabilities in machine learning models has been a major focus in computer
vision and related fields [12, 22, 34], yet the classical paradigm of supervised learning poses several
challenges: explicit supervision requires carefully annotated data at a large scale, and is subject to
obstacles such as rare or novel object categories. Further, obtaining accurate ground-truth 3D scene
and object geometry is challenging and expensive. Learning about compositional geometry merely by
observing scenes and occasionally interacting with them—in the simplest case by moving a camera
through a scene—without relying on direct supervision is an attractive alternative.

As objects in the physical world are situated in 3D space, there has been a growing interest in
combining recent advances in 3D neural rendering [25] and representation learning [7, 20] with
object-centric inductive biases to jointly learn to represent objects and their 3D geometry without
direct supervision [26, 33, 40]. A particularly promising setting for learning both about objects and
3D scene geometry from RGB supervision alone is that of novel view synthesis (NVS), where the
task is to predict a scene’s appearance from unobserved view points. This task not only encourages a
model to learn a geometrically-consistent representation of a scene, but has the potential to serve as
an additional inductive bias for discovering objects without supervision.

Website: osrt-paper.github.io. Correspondence: osrt@msajjadi.com. ⇤Equal technical contribution.
1We use the term ‘object’ in a very broad sense, capturing other physical entities such as embodied agents.
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Figure 1: OSRT overview – A set of input views of a novel scene are processed by the SRT Encoder,
yielding the Set-Latent Scene Representation (SLSR). The Slot Attention module converts the SLSR
into the object-centric Slot Scene Representation. Finally, arbitrary views with 3D-consistent object
instance decompositions are efficiently rendered by the novel Slot Mixer. The entire model is trained
end-to-end with an L2 loss and no additional regularizers. Details in Sec. 2.

Prior methods combining object-centric inductive biases with 3D rendering techniques for
NVS [26, 33, 40] however fail to generalize to scenes of high visual complexity and face a significant
shortcoming in terms of computational cost and memory requirements: common object-centric
models decode each object independently, adding a significant multiplicative factor to the already
expensive volumetric rendering procedure which requires hundreds of decoding steps. This require-
ment of executing thousands of decoding passes for each rendered pixel is a major limitation that
prohibits scaling this class of methods to more powerful models and thus to more complex scenes.

In this work, we propose Object Scene Representation Transformer (OSRT), an end-to-end model for
object-centric 3D scene representation learning. The integrated Slot Attention [23] module allows it
to learn a scene representation that is decomposed into slots, each representing an object or part of the
background. OSRT is based on SRT, utilizing a light field parameterization of space to predict pixel
values directly from a latent scene representation in a single forward pass. Instead of rendering each
slot independently, we introduce the novel Slot Mixer, a highly-efficient object-aware decoder that
requires just a single forward pass per rendered pixel, irrespective of the number of slots in the model.
In summary, OSRT allows for highly scalable learning of object-centric 3D scene representations
without supervision.

Our core contributions are as follows:

• We present OSRT, a model for 3D-centric representation learning, enabling efficient and
scalable object discovery in 3D scenes from RGB supervision. The model is trained purely
with the simple L2 loss and does not necessitate further regularizers or additional knowledge
such as depth maps [33] or explicit background handling [40].

• As part of OSRT, we propose the novel Slot Mixer, a highly efficient object-aware decoder
that scales to large numbers of objects in a scene with little computational overhead.

• We study several properties of the proposed method, including robustness studies and
advantages of using NVS to facilitate scene decomposition in complex datasets.

• In a range of experiments from easier previously proposed, to complex many-object scenes,
we demonstrate that OSRT achieves state-of-the-art object decomposition, outperforming
prior methods both quantitatively and in terms of efficiency.

2 Method

We begin this section with a description of the proposed Object Scene Representation Transformer

(OSRT) shown in Fig. 1 and its novel Slot Mixer decoder, and conclude with a discussion of possible
alternative design choices.

2.1 Novel view synthesis

The starting point for our investigations is the Scene Representation Transformer (SRT) [29] as a
geometry-free novel view synthesis (NVS) backbone that provides instant novel-scene generalization
and scalability to complex datasets. SRT is based on an encoder-decoder architecture.
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A data point consists of a set of RGB input images {Ii 2 RH⇥W⇥3} from the same scene.2 A
convolutional network CNN independently encodes each image into a feature map, all of which are
finally flattened and combined into a single set of tokens. An Encoder Transformer E then performs
self-attention on this feature set, ultimately yielding the Set-Latent Scene Representation (SLSR)

{zj 2 Rd} = E✓({CNN✓(Ii)}). (1)
Novel views are rendered using a 6D light-field parametrization r = (o,d) of the scene. Each pixel
to be rendered is described by the camera position o and the normalized ray direction d pointing
from the camera through the center of the pixel in the image plane. As shown in Fig. 2 (left), the
Decoder Transformer D uses these rays r as queries to attend into the SLSR, thereby aggregating
localized information from the scene, and ultimately produces the RGB color prediction

C(r) = D✓(r | {zj}). (2)
Given a dataset of images {Igt

s,i} from different scenes indexed by s, the model is trained end-to-end
using an L2 reconstruction loss for novel views:

argmin
✓

X

s

Er⇠Igt
s,i
kC(r)� Igt

s,i(r)k
2
2. (3)

2.2 Scene decomposition

SRT’s latent representation, the SLSR, has been shown to contain enough information to perform
downstream tasks such as semi-supervised semantic segmentation [29]. However, the size of the
SLSR is directly determined by the number and resolution of the input images, and there is no clear
one-to-one correspondence between the SLSR tokens and objects in the scene.

To obtain an object-centric scene representation, we incorporate the Slot Attention [23] module into
our architecture. Slot Attention converts the SLSR {zj} into the Slot Scene Representation (SlotSR),
a set of object slots {sn 2 Rh}. Different from the size of the SLSR, the size N of the SlotSR is
chosen by the user.

We initialize the set of object slots using learned embeddings {ŝn 2 Rh}. The Slot Attention module
then takes the following form for learned linear projections Wv, Wz , and Ws and a learned update
function U✓:

sn = U✓

 
ŝn,

PJ
j=1 An,jWvzj
PJ

j=1 An,j

!
, with An,j =

exp
�
(Wsŝn)TWzzj

�
PN

l=1 exp
�
(Wsŝl)TWzzj

� . (4)

The attention matrix A is used to aggregate input tokens using a weighted mean. Different from
commonly used cross-attention [36], it is normalized over the output axis, i.e., the set of slots, instead
of the input tokens. This enforces an exclusive grouping of input tokens into object slots, which
serves as an inductive bias for decomposing the SLSR into individual per-object representations.
Following Locatello et al. [23], we use a gated update for U✓ in the form of a GRU [6] followed by a
residual MLP and we apply LayerNorm [2] to both inputs and slots.

2.3 Efficient object-centric decoding

To be able to extract arbitrary-view object decompositions from the model, we propose the novel
Slot Mixer (SM): a powerful, yet efficient object-centric decoder. The SM module is shown in Fig. 2
(center) and consists of three components: Allocation Transformer, Mixing Block, and Render MLP.

Allocation Transformer. The goal of the Allocation Transformer is to derive which slots are
relevant for the given ray r = (o,d). In essence, this module derives object location and boundaries
and resolves occlusions. Its architecture is similar to SRT’s Decoder Transformer. It is a transformer
that uses the target ray r as the query to repeatedly attend into and aggregate features from the SlotSR:

x = D✓(r | {sn}) (5)

Most compute in the Allocation Transformer is spent on the query, allowing it to scale gracefully to
large numbers of objects in the SlotSR. However, unlike in SRT, its output is not used directly for the
RGB color estimate.
2The images may optionally contain pose information, which we omit here for notational clarity.
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Figure 2: Decoder architectures – Comparison between SRT, the novel Slot Mixer (SM), and Spatial

Broadcast (SB) decoders. The SRT decoder uses an efficient Transformer that scales gracefully to large
numbers of objects, but it fails to produce novel-view object decompositions. The commonly used
SB model decodes each slot independently, leading to high memory and computational requirements.
The proposed SM decoder combines SRT’s efficiency with SB’s object decomposition capabilities.
Details in Secs. 2.3 and 2.4.

Mixing Block. Instead, the resulting feature x is passed to the Mixing Block, which computes a
normalized dot-product similarity w with the SlotSR matrix S 2 RN⇥h, i.e., the slots in arbitrary,
but fixed order. This similarity is then used to compute a weighted mean of the original slots:

Q = WQx, K = WKST , w = softmax(KTQ), s̄ = wTS, (6)

where WQ and WK are learned linear projections. Notably, the weight wi of each slot is scalar,
and unlike standard attention layers, no linear maps are computed for the slots, i.e. the Allocation
Transformer is solely responsible for mixing the slots, not for decoding them. The slot weights
can be seen as novel-view object assignments that are useful for visual inspection of the learned
representation and for quantitative evaluation, see Sec. 4.

Render MLP. Finally, the Render MLP decodes the original query ray r conditioned on the
weighted mean s̄ of the SlotSR into the RGB color prediction:

C(r) = M✓(r | s̄) (7)

We call the resulting model as shown in Fig. 1 with the SRT encoder, incorporated Slot Attention
module and the Slot Mixer decoder Object Scene Representation Transformer (OSRT). All parameters
are trained end-to-end using the L2 reconstruction loss as in Eq. (3).

2.4 Alternative decoder architecture

Our novel Slot Mixer differs significantly from the standard choice in the literature where Spatial

Broadcast (SB) decoders [37] (Fig. 2, right) are most commonly used in conjunction with Slot
Attention [23, 33, 40]. We present an adaptation thereof to OSRT as an alternative to the SM decoder.

In SB decoders, the query ray is decoded for each slot sn independently using a shared MLP M:

Cn,r,↵n,r = M✓(r | sn) (8)

For each ray r, this produces color estimates Cr 2 RN and logits ↵r 2 RN with each value
corresponding to a different slot. The final RGB color estimate is then calculated by a normalized,
weighted mean:

w = softmax(↵r), C(r) = wT Cr (9)
In the SB decoder, the slots therefore compete for each pixel through a softmax operation.

We note a major disadvantage of this popular decoder design: it does not scale gracefully to larger
numbers of objects or slots, as the full decoder has to be run on each slot. This implies a linear
increase in memory and computational requirements of the entire decoder, which is often inhibitive,
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especially in training. In practice, most pixels are fully explained by a single slot, i.e. almost all of
the compute of the decoder is spent on resolving the most prominent slot, and the rest go unused.

The proposed Slot Mixer solves this by employing the scalable Allocation Transformer for blending
between slots more efficiently, while only a single weighted mean of all slots must be fully decoded
by the Render MLP. We further investigate the choice of decoders empirically in Sec. 4.2.

3 Related works

Neural rendering. Neural rendering is a large, promising field that investigates the use of machine
learning for graphics applications [34]. Recently, NeRF [25] has sparked a renewed wave of interest
in this field by optimizing an MLP to parameterize a single volumetric scene representation and
demonstrating photo-realistic results on real-world scenes, later also for uncurated in-the-wild
data [24]. Further methods based on NeRF are able to generalize across scenes by means of
reprojecting 3D points into 2D feature maps [35, 39], though they lack a global 3D-based scene
representation that could be readily used for downstream applications.

Meanwhile, there have been early successes with global latent models [15, 31], though these rarely
scale beyond simple datasets of single oriented objects on uniform backgrounds [20]. Alternative
approaches produce higher-quality results by employing a computationally expensive auto-regressive
generative mechanisms that does not produce spatially or temporally consistent results [28]. Recently,
the Scene Representation Transformer (SRT) [29] has been proposed as a global-latent model that
efficiently scales to highly complex scenes by means of replacing the volumetric parametrization
with a light field formulation.

Object-centric learning. Prior works on object-centric learning, such as MONet [3], IODINE [9],
SPACE [21] and Slot Attention [23] have demonstrated that it is possible to learn models that
decompose images into objects using simple unsupervised image reconstruction objectives. These
methods typically use a structured latent space and employ dedicated inductive biases in their
architectures and image decoders. To handle depth and occlusion in 3D scenes, these methods
typically employ a generative model which handles occlusion via alpha-blending [9, 23] or by, e.g.,
generating objects ordered by their distance to the camera [1, 21]. We refer to the survey by Greff
et al. [10] for an overview. Recent progress in this line of research applies these core inductive biases
to work on images of more complex scenes [30] or video data [17, 19]. In our OSRT model, we make
use of the ubiquitous Slot Attention [23] module because of its efficiency and effectiveness.

3D object-centric methods. Several recent works have extended self-supervised object-centric
methods to 3D scenes [5, 33, 40]. One of the first such approaches is ROOTS [5], a probabilistic
generative model that represents the scene in terms of a 3D feature map, where each 3D "patch"
describes the presence (or absence) of an object. Each discovered object is independently rendered
using a GQN [7] decoder and the final image is recomposed using Spatial Transformer Networks [14].

Further prior works that are the most relevant to our method are ObSuRF [33] and uORF [40], both
combining learned volumetric representations [25] with Slot Attention [23] and Spatial Broadcast
decoders [37]. Both methods have been shown to be capable of modeling 3D scenes of slightly higher
complexity than CLEVR [16].

ObSuRF’s architecture is based on NeRF-VAE [20]. It bypasses the extraordinary memory require-
ments of the Spatial Broadcast decoder combined with volumetric rendering during training by using
ground-truth depth information, thereby needing only 2 samples per ray instead of hundreds. During
inference, at the absence of ground-truth depth information, ObSuRF however suffers from the
expected high computational cost of object-centric volumetric rendering.

uORF is based on an encoder-decoder architecture that explicitly handles foreground (FG) and
background (BG) separately through a set of built-in inductive biases and assumptions on the dataset.
For instance, the dedicated BG slot is parameterized differently, and FG slots are encouraged to
only produce density inside a manually specified area of the scene. The model is trained using a
combination of perceptual losses, and optionally also with an adversarial loss [8].

In order to obtain the results for ObSuRF and uORF, we used the available official implementations,
and consulted the respective authors of both methods to ensure correct adaptation to new datasets.
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Finally, a separate line of work considers purely generative object-centric 3D rendering without the
ability to render novel views of a specifically provided input scene. GIRAFFE [26] addresses this
problem by combining volumetric rendering with a GAN-based [8] loss. It separately parameterizes
object appearance and 3D pose for controllable image synthesis. Inspired thereof, INFERNO [4]
combines a generative model with a Slot Attention-based inference model to learn object-centric 3D
scene representations. We do not explicitly compare to INFERNO as it is similar to ObSuRF and
uORF, while only shown capable of modeling CLEVR-like scenes of lower visual complexity.

4 Experiments

To investigate OSRT’s capabilities, we evaluate it on a range of datasets. After confirming that the
proposed method outperforms existing methods on their comparably simple datasets, we move on to
a more realistic, highly challenging dataset for all further investigations. We evaluate models by their
novel view reconstruction quality and unsupervised scene decomposition capabilities qualitatively
and quantitatively. We further investigate OSRT’s computational requirements compared to the
baselines and close this section with some further analysis into which ingredients are crucial to enable
OSRT’s unsupervised scene decomposition qualities in challenging settings.

Setting and evaluation metrics. The models are trained in a novel view synthesis (NVS) setup:
on a dataset of scenes, we train the models to produce novel views of the same scene parameterized
by target camera poses. For evaluation, we run the models on a held-out set of test scenes and render
multiple novel views per scene.

As quantitative metrics, we report PSNR for pixel-accurate reconstruction quality and adopt the
standard foreground Adjusted Rand Index (FG-ARI) [13, 27] to measure object decomposition.
Crucially, we compute FG-ARI on all rendered views together, such that object instances must be
consistent between different views. This makes our metric sensitive to 3D-inconsistencies that may
especially plague light field models which do not explicitly enforce this in contrast to volumetric
methods. We analyze and discuss this choice further in Sec. 4.2.

For qualitative inspection of the inferred scene decompositions, we visualize for each rendered pixel
the slot with the highest weight wi and color-code the slots accordingly.

Datasets. We run experiments on several datasets in increasing order of complexity.

Figure 3: Example views of scenes from
CLEVR-3D (left) and MSN-Easy (right).

CLEVR-3D [33]. This is a recently proposed multi-
camera variant of the CLEVR dataset, which is popular
for evaluating object decomposition due to its simple
structure and unambiguous objects. Each scene consists
of 3–6 basic geometric shapes of 2 sizes and 8 colors
randomly positioned on a gray background. The dataset
has ⇠35k training and 100 test scenes, each with 3 fixed
views: the two target views are the default CLEVR
input view rotated by 120� and 240�, respectively.

MultiShapeNet-Easy (MSN-Easy) [33]. This dataset is similar in structure to CLEVR-3D, however,
2–4 upright ShapeNet objects sampled from the chair, table and cabinet classes (for a total of ⇠12k
objects) now replace the geometric solids. The dataset has 70k training and 100 test scenes.

MultiShapeNet-Hard (MSN-Hard) [29]. MSN-Hard has been proposed as a highly challenging
dataset for novel view synthesis. In each scene, 16-32 ShapeNet objects are scattered in random
orientations. Realistic backgrounds and HDR environment maps are sampled from a total set of 382
assets. The cameras are randomly scattered on a half-sphere around the scene with varying distance to
the objects. It is a highly demanding dataset due to its use of photo-realistic ray tracing [11], complex
arrangements of tightly-packed objects of varying size, challenging backgrounds, and nontrivial
camera poses including almost horizontal views of the scene. The dataset has 1M training scenes,
each with 10 views, and we use a test set of 1000 scenes. The ⇠51k unique ShapeNet objects
are taken from all classes, and they are separated into a train and test split, such that the test set
not only contains novel arrangements, but also novel objects. We re-generated the dataset as the
original provided by Sajjadi et al. [29] does not include ground-truth instance labels necessary for
our quantitative evaluation. We will make the dataset publicly available.
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Table 1: Quantitative results – OSRT outperforms ObSuRF across all metrics and datasets with the
exception of CLEVR-3D, where FG-ARI is nearly identical. On MSN-Hard, OSRT is able to encode
multiple input views to further improve object decomposition and reconstruction performance.

CLEVR-3D [33] MSN-Easy [33] MSN-Hard [29]
ObSuRF OSRT (1) ObSuRF OSRT (1) ObSuRF OSRT (1) OSRT (5)

PSNR 33.69 39.98 27.41 29.74 16.50 20.52 23.54
FG-ARI 0.978 0.976 0.940 0.954 0.280 0.619 0.812

4.1 Comparison with prior work

Tab. 1 shows a comparison between OSRT and the strong ObSuRF [33] baseline. On the simpler
datasets CLEVR-3D and MSN-Easy, ObSuRF produces reasonable reconstructions with accurate
decomposition, though OSRT achieves significantly higher PSNR and similar FG-ARI.

On the more realistic MSN-Hard, ObSuRF achieves only low PSNR and FG-ARI. OSRT on the other
hand still performs solidly on both metrics. Furthermore, while ObSuRF can only be conditioned on a
single image, OSRT is optionally able to ingest several. We report numbers for OSRT (5), our model
with 5 input views, on the same dataset and see that it substantially improves both reconstruction and
decomposition quality.

At the same time, OSRT renders novel views at 32.5 fps (frames per second), more than 3000⇥
faster than ObSuRF which only achieves 0.01 fps, both measured on an Nvidia V100 GPU. This
speedup is the result of two multiplicative factors: OSRT’s light field formulation is ⇠100⇥ faster
than volumetric rendering and the novel Slot Mixer is ⇠30⇥ faster than the SB decoder here. Finally,
OSRT does not need ground-truth depth information during training.

Fig. 4 shows qualitative results for the realistic MSN-Hard dataset. It is evident that ObSuRF
has reached its limits, producing blurry images with suboptimal scene decompositions. OSRT
on the other hand still performs solidly, producing much higher-quality images and decomposing
scenes reasonably well from a single input image. With more images, renders become sharper and
decompositions more accurate.

As the second relevant prior method, we have performed experiments with uORF [40]. Despite
guidance from the authors, uORF failed to scale meaningfully to the most interesting MSN-Hard
dataset. This mainly resulted from a lack of model capacity. Additionally, the large number of objects
in this setting led to prohibitive memory requirements of the method, forcing us to lower model
capacity even further, or to run the model with fewer slots to be able to fit it even on an Nvidia A100
GPU with 40 GB of VRAM. We describe this further with results in the appendix.

4.2 Ablations and model analysis

We conduct several studies into the behavior of the proposed model including changes to architecture,
training setup, or data distribution. Unless stated otherwise, all investigations in this section are con-
ducted on the MSN-Hard dataset with 5 input views. Further qualitative results for these experiments
are provided in the appendix.

Table 2: OSRT decoder variants – Slot Mixer combines
SRT’s efficiency with SB’s object decomposition abilities.
Results on simpler datasets are shown in Tab. 4.

MSN-Hard PSNR FG-ARI FPS

SRT Decoder 24.40 0.330 40.98
Spatial Broadcast (SB) 23.35 0.801 1.39
Slot Mixer (SM) 23.54 0.812 32.47

Decoder architecture. As described
in Sec. 2.4 and shown in Fig. 2, the novel
Slot Mixer decoder differs significantly
from the default SRT decoder [29], as
well as from the Spatial Broadcast (SB)
decoder that is commonly used in con-
junction with Slot Attention. To show
the strengths of the SM decoder, we com-
pare it with these alternative decoders
switched in to the model, see Tab. 2.
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Figure 4: Qualitative results on MSN-Hard – Comparison of our method with one and five input
views with ObSuRF, which can only operate on a single image. OSRT produces sharper renders with
better scene decompositions.

While the SRT decoder achieves slightly higher reconstruction quality due to the powerful transformer,
it does not yield useful object decompositions as a result of the global information aggregation across
all slots, disincentivizing object separation in the slots. It is the key design choice in Slot Mixer to only
use a transformer for slot mixing, but not for decoding the slots, that leads to good decomposition.

The SB decoder performs similarly to Slot Mixer both in terms of reconstruction and decomposition.
However, due to the slot-wise decoding, it requires considerably more memory, which can often be
prohibitive during training, and hamper scalability to more complex datasets or large numbers of
objects. For the same reason, it also requires significantly more compute at training and for inference.

Role of novel view synthesis. Our experiments have demonstrated OSRT’s strengths in the default
novel view synthesis (NVS) setup. We now investigate the role of NVS on scene decomposition, on
the complex MSN-Hard dataset.

To this end, we surgically remove the NVS component from the method, while keeping all other factors
unchanged, by training OSRT with the input views equaling the target views to be reconstructed. This
effectively turns OSRT into a multi-2D image auto-encoder, albeit with 3D-centric poses rather than
pure 2D positional encoding for ray parametrization.

The resulting method achieves a much better PSNR of 28.14, 4.60 db higher than OSRT in the NVS
setup (23.54). This is expected, as the model only needs to reconstruct the target images rather than
needing to generate arbitrary novel views of the scene. However, the model fails to decompose
the scene into objects, only achieving an FG-ARI of 0.198 compared to OSRT’s FG-ARI of 0.812,
demonstrating the advantage of using NVS as an auxiliary task for unsupervised scene decomposition.
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Figure 5: OSRT trained on MSN-Hard (in color) is evaluated with grayscale input images at test
time. We observe that the model generalizes remarkably well to this out-of-distribution setting. This
indicates that OSRT does not just rely on color for decomposition.

Robustness. We begin with a closer glance at the results obtained by OSRT (5) on MSN-Hard
based on the number of objects in the scene. We find that the FG-ARI scores for scenes with the
smallest (16) and largest (31) number of objects are within an acceptable range: 0.854 vs. 0.753.

To explore whether OSRT mainly relies on RGB color for scene decomposition, we evaluate it on
a grayscale version of the difficult test set of MSN-Hard. Note that the model was trained on RGB
and has not encountered grayscale images at all during training. We find that OSRT generalizes
remarkably well to this out-of-distribution setting, still producing satisfactory reconstructions and
scene decompositions that are almost up to par with the colored test set at FG-ARI of 0.780 vs. 0.812
on the default RGB images. Fig. 5 shows an example result for this experiment.

We also consider to what extent OSRT is capable of leveraging additional context at test time in the
form of additional input views. We train OSRT (3) with three input views and then evaluate it using
three (PSNR: 22.75, FG-ARI: 0.794) and five input views (PSNR: 23.47, FG-ARI: 0.813). These
results clearly indicate that additional input views can be used to boost performance at test-time.

Finally, we train OSRT in two setups inspired by SRT variants [29]: UpOSRT, trained without
input view poses, and VOSRT, using volumetric rendering. We find that both of these achieve good
reconstruction quality at PSNR’s of 22.42 and 21.38 and meaningful scene decompositions at 0.798
and 0.767 FG-ARI, respectively.

Figure 6: Novel view (left) with a slot removed
(center) or a slot added from another scene (right).

Scene editing. We investigate OSRT’s ability
for simple scene editing. Fig. 6 (left) shows the
a novel view rendered by OSRT. When the slot
corresponding to the large object is removed
from the SlotSR (center), the rendered image
reveals previously occluded objects. We can go
one step further by adding a slot from a different
scene (right) to the SlotSR, leading to the object
being rendered in place with correct occlusions.

3D consistency. An important question with regards to novel view synthesis is whether the resulting
scene and object decomposition are 3D-consistent. Prior work has demonstrated SRT’s spatial
consistency despite its light field formulation [29]. Here, we investigate OSRT 3D-consistency with
regards to the learned decomposition.

To measure this quantitatively, we compute the ratio between the FG-ARI as reported previously—
computed on all views together—and the 2D-FG-ARI which is the average of the FG-ARI scores
for each individual target view. While FG-ARI takes into account 3D consistency, 2D-FG-ARI is
unaffected by 3D inconsistencies such as permuting slot-assignments between views. By definition,
2D-FG-ARI is an upper bound on FG-ARI. Hence, an FG-ARI ratio of 1.0 indicates that the novel
views are perfectly 3D-consistent, while lower values indicate that some inconsistency took place.

We observe that our approach consistently achieves very high 3D consistency in scene decompositions,
with an FG-ARI ratio of 0.940 on the challenging MSN-Hard dataset. With 5 input views, OSRT
achieves an even higher ratio of 0.987. Despite its volumetric parametrization, we find that ObSuRF
often fails to produce consistent assignments with an FG-ARI ratio of only 0.707.

9



Table 3: OSRT generalization on CLEVR-3D – OSRT trained on scenes with 3-6 objects is tested
on scenes with 3–6, and 7-10 objects, respectively. Both with learned and random slot initializations,
OSRT generalizes reasonably to the presented out-of distribution (OOD) setting with more objects
than during training. The slight drop in performance is mostly a result of more pixels being covered
by objects rather than the simpler background.

3-6 objects (IID) PSNR FG-ARI

Learned init. 40.84 0.996
Random init. 38.14 0.988

7-10 objects (OOD) PSNR FG-ARI

Learned init. 33.03 0.955
Random init. 33.36 0.968

Out-of-distribution generalization. We investigate the ability of the model to generalize to more
objects at test time than were observed at training time. To this end, we trained OSRT either with
7 randomly initialized slots, or with 11 slots using a learned initialization, on CLEVR-3D scenes
containing up to 6 objects. At test time, we evaluate on scenes containing 7-10 objects by using 11
slots for both model variants.

The results are shown in Tab. 3. We find that generalization performance in terms of PSNR and
FG-ARI is similarly good for both models, with a slight advantage for the model variant with random
slot initialization. In terms of in-distribution performance, learned initialization appears to have an
advantage in both metrics.

4.3 Limitations

In our experimental evaluation of OSRT, we came across the following two limitations that are worth
highlighting: 1) while the object segmentation masks produced by OSRT often tightly enclose the
underlying object, this is not always the case and we find that emergent masks can "bleed" into the
background, and 2) OSRT can, for some architectural choices, fall into a failure mode in which it
produces a 3D-spatial Voronoi tessellation of the scene instead of clear object segmentation, resulting
in a substantial drop in FG-ARI.

While the alternative, yet much more inefficient, SB decoder does not seem to be affected by this, mask
bleeding [9] effects and tesselation failure modes [18] are not uncommon in object-centric models.
We show more examples and comparisons between the different architectures in the appendix.

5 Conclusion

We present Object Scene Representation Transformer (OSRT), an efficient and scalable architecture
for unsupervised neural scene decomposition and rendering. By leveraging recent advances in
object-centric and neural scene representation learning, OSRT enables decomposition of complex
visual scenes, far beyond what existing methods are able to address. Moreover, its novel Slot Mixer

decoder enables highly efficient novel view synthesis, making OSRT more than 3000⇥ faster than
prior works. Future work has the potential to elevate such methods beyond modeling static scenes,
instead allowing for moving objects. We believe that our contributions will significantly support
model design and scaling efforts for object-centric geometric scene understanding.
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