
A Proofs

A.1 Proofs for Provable Convergence

A.1.1 Proof of Property 1

Lemma 2. Denote g∗ as the optimal solution to the Stochastic Subregion Frank-Wolfe algorithm
and g(k) denote the k-th iterate generated by Algorithm 1. Then

L(g(k))− L(g∗) ≤ 4

k + 2

for all k ≥ K.

Proof: This Lemma follows directly from the existing results of the original Frank-Wolfe algorithm
and its variants [Jaggi, 2013], which states that for an optimization problem minx∈D f(x) where f is
a convex and continuously differentiable function and that the domain D is a compact convex set of
any vector space, then for each k ≥ 1, the iterates x(k) of the fully-corrective Frank-Wolfe algorithm
satisfy:

f(x(k))− f(x∗) ≤ 2 · Cf

k + 2
(2)

where Cf , defined as

Cf := sup
x,s∈D
γ∈[0,1]

r=x+γ(s−x)

2

γ2
(f(r)− f(x)− ⟨∇f(x), r − x⟩) ,

is the curvature constant, which measures the “non-linearity” of function f over domain D. The type
of the Frank-Wolfe we use in Algorithm 1 is precisely the fully-corrective variant in that we optimize
for α’s in each iteration.
Claim 1. L(g;y) = ||g − y||2 is a twice differentiable convex function. Conv(Q) is a compact
convex set.

The first statement in Claim 1 is true by definition. The second statement can be shown by observing
that Q is a finite set, hence compact, followed by the fact that convex hulls of compact set are
compact.

For squared loss function L used in our model, Jagabathula et al. [2020] proved that CL ≤ 2. The
result of Lemma 2 follows by plugging CL into Equation 2.

□

Note that with enough sample, we also have
∥∥∥y −∑K

k=1 αkqk

∥∥∥ ≤ ϵ by the law of large numbers,

which leads to gSSRFW converges to
∑K

k=1 αkqk with high probability. This shows that Frank-Wolfe
can reach any tolerance level ϵ with enough number of iterations by setting appropriate stopping
criteria.

A.1.2 Proof of Property 3

Lemma 3 (Wendel [1962]). If X1, . . . , Xn are i.i.d. random points in Rd whose distribution is
symmetric with respect to the center O and assigns measure zero to every hyperplane through O, then

P (d)
n (O ∈ Conv{X1, . . . , Xn}) = 1− 1

2n−1

d−1∑
k=0

(
n− 1

k

)

Lemma 3 is an interesting result from stochastic geometry, which states that if we randomly sample n
points in a d-dimensional ball, the probability that the convex hull formed using these points contains
the center point can be computed using the above formula.
Corollary 1.
limn→∞ P

(d)
n (O ∈ Conv{X1, . . . , Xn}) = 1

14

Proof: When n ≥ 2d− 1,
(
n−1
k

)
is a monotonically increasing function of k for k = 0, . . . , d− 1.

We then have
d−1∑
k=0

(
n− 1

k

)
≤ d

(
n− 1

d− 1

)
≤ d

(n− 1)d

(d− 1)!

Therefore, when n ≥ 2d− 1,

P (d)
n (O ∈ Conv{X1, . . . , Xn}) = 1− 1

2n−1

d−1∑
k=0

(
n− 1

k

)
≥ 1− d

(d− 1)!

(n− 1)d

2n−1

Since limn→∞
(n−1)d

2n−1 = 0, we get

lim
n→∞

P (d)
n (O ∈ Conv{X1, . . . , Xn}) = 1

□

Corollary 2. With high probability, Conv({qk}1,...,K) ⊆ Conv(Q)

The proof of Corollary 2 will be included in the proof of Theorem 1 in Appendix A.4. We will
also quantify what “high probability” it is referring to. Corollary 2 establishes the fact that g =∑K

k=1 αkqk ∈ Conv({qk}k=1,...,K) ⊆ Conv(Q) with high probability. We illustrate this idea in
Figure 2 for an intuitive understanding.

∑K
k=1 αkqk

true qk

q̂ℓ ∈ Q

Figure 2: Constructed convex hull using logit vectors generated from subsamples

For each mixture type k, with enough data points, we have with probability 1 − δ, ∀ℓ such that
π(ℓ) = k, q̂ℓ is within an ϵ-ball of qk given sufficient number of samples. In addition, according to
Lemma 3, with high probability, such convex hull (small regions with green firm lines for each k)
contains the ground truth choice probability vector qk, i.e. qk ∈ Conv({qℓ ∈ Q|π(ℓ) = k}). Since
the true aggregated choice probability

∑K
k=1 αkqk is a convex combination of qk’s (so it is in the

blue shaded region) and
⋃

k Conv({qℓ ∈ Q|π(ℓ) = k}) ⊂ Conv(Q), we have Conv(Q) encloses
the blue region and

∑K
k=1 αkqk is an interior point of Conv(Q).

A.2 Proofs for Sample Complexity

We first extend the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality with the following Lemma, where
both CDFs in the inequality are empirical.
Lemma 4. Let Fn and Gm be independent empirical distribution based on m and n i.i.d. samples
drown from a common cumulative distribution F (·). Denote min{m,n} as Tmin. We have

P
(
sup
x
|Fn(x)−Gm(x)| > ϵ

)
≤ 4 exp

(
−1

2
Tminϵ

2

)
Proof: Lemma 4 differs from the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality in that it investi-
gates the tail probability of the maximum difference between two empirical distributions. By DKW,

15

we know that

P
(
sup
x
|Fn(x)− F (x)| > ϵ

)
≤ 2 exp

(
−2nϵ2

)
P
(
sup
x
|Gm(x)− F (x)| > ϵ

)
≤ 2 exp

(
−2mϵ2

)
if Fn and Gm are empirical distributions of samples drawn from their true distribution function F
and G respectively. We can show

P
(
sup
x
|Fn − F |+ sup

x
|Gm − F | > ϵ

)
(3)

≤ 1− P
(
sup
x
|Fn − F | ≤ ϵ

2
∩ sup

x
|Gm − F | ≤ ϵ

2

)
≤ 1−

(
1− 2 exp

(
−1

2
nϵ2
))(

1− 2 exp

(
−1

2
mϵ2

))
≤ 4 exp

(
−1

2
Tminϵ

2

)
where the first inequality makes use of the fact that supx |Fn − F | + supx |Gm − F | > ϵ implies
that either supx |Fn − F | > ϵ

2 or supx |Gm − F | > ϵ
2 . The second inequality comes from the

independent assumption between Fn and Gm. On the other hand, we also have

sup |Fn − F |+ sup |F −Gm| (4)
≥ sup |Fn − F |+ |F −Gm|
≥ sup |Fn − F + F −Gm|
= sup |Fn −Gm|

Combining (3) and (4), we can obtain

P(sup
x
|Fn(x)−Gm(x)| > ϵ)

≤ P(sup
x
|Fn(x)− F (x)|+ sup

x
|Gm(x)− F (x)| > ϵ)

≤ 4 exp

(
−1

2
Tminϵ

2

)
.

□

A.2.1 Proof of Theorem 2

Proof: For simpler notation, denote s(i, j) = s. Since i and j are of the same consumer type k, Fn

and Gm are empirical distributions based on n and m samples drawn from the same distribution qk.
According to Lemma 4,

P(pj|i > 1− ϵ) = P(s < ϵ) ≥ 1− 4 exp(−1

2
Tminϵ

2)

Let δ = 4 exp(− 1
2Tminϵ

2), we have Tmin = O(1
ϵ2 log

1
δ). □

A.2.2 Proof of Theorem 3

Proof: By definition,

ξ ≤ supx |F −G|
≤ supx |F − Fn + Fn −Gm +Gm −G|
≤ supx |F − Fn|+ supx |Fn −Gm|+ supx |Gm −G|

(5)

16

Therefore,

P(sup
x
|Fn −Gm| ≤ ϵ) (6)

≤ P(sup
x
|F − Fn|+ sup

x
|Gm −G| > ξ − ϵ)

≤ P(sup
x
|F − Fn| >

ξ − ϵ

2
∪ sup

x
|G−Gm| >

ξ − ϵ

2
)

= 1− P(sup
x
|F − Fn| ≤

ξ − ϵ

2
)P(sup

x
|G−Gm| ≤

ξ − ϵ

2
)

≤ 4 exp

(
−2Tmin

(
ξ − ϵ

2

)2
)

where the first inequality is based on (5) and the second inequality makes use of the fact that
supx |Fn−F |+supx |Gm−F | > ξ−ϵ implies that either supx |Fn−F | > ξ−ϵ

2 or supx |Gm−F | >
ξ−ϵ
2 . The equality comes from the independent assumption between Fn and Gm. The last inequality

is from the DWK inequality.

We want to restrain the sampling probability such that pj|i = 1− s is within ϵ-radius of the smallest
possible sampling probability, which is 1− ξ, i.e.

P(1− s < 1− ξ + ϵ) = P(s > ξ − ϵ)

= 1− P(s ≤ ξ − ϵ)

≥ 1− 4 exp

(
−2Tmin

(ϵ
2

)2)
as a result of Equation 6.

Let δ = 4 exp(− 1
2Tminϵ

2). Then we have Tmin = O(1
ϵ2 log

1
δ). □

Additional discussion. We further discuss the impact of M on the sample complexity. As discussed
above, we mainly relate the number of time periods we need to collect the data for, i.e. T , and ϵ and
δ is through the DKW inequality. To put things simple, consider the case where we want to bound
the probability that the supremum of the discrepancy between the empirical CDF and the true CDF
larger than ϵ to be no bigger than δ, as follows:

P(sup
x∈[M]

|FT (x)− F (x)| > ϵ) ≤ 2e−2Tϵ2 set to
= δ

This gives T = 1
2ϵ2 log

2
δ . Define a random variable U = supx∈[M] |FT (x) − F (x)|. For a larger

M ′, similarly define V = supx∈[M ′] |FT (x) − F (x)|. Since the set that the supremum is taken is
larger for V , we have V ≥ U . Subsequently, we have P(V > ϵ) ≥ P(U > ϵ).

Assume P(V > ϵ) = δ + ξ for some ξ ≥ 0. The relationship between T and ϵ and δ is thus
T = 1

2ϵ2 log
2

δ+ξ for the M ′ case. Now if we want to bound P(V > ϵ) by δ, instead of δ + ξ, we
need to further increase the value of T , hence increase the sample complexity.

This analysis can be generalized directly to the two-sample DKW inequality for both in-type and
out-type bounds and suggests an impact of M on the sample complexity. This agrees with the
intuition that for a larger choice set, we need to collect more data since otherwise the empirical
choice distribution over the set will be very sparse, making the score function computed based on the
empirical CDF less credible. However, we think such impact, compared to ϵ and δ, is rather implicit
as it is enclosed in the sup function.

A.3 Proof of Theorem 4

Proof: As in Algorithm 1, we use L as the number of subsamples we need to construct. Let Lk be
the number of subsamples needed to hit the k-th mixture type after k − 1 types of seeds have been
selected. We have L = L1 + · · ·+ LK .

We first construct a simple and fake scenario where we have K ′ mixture types with each mixture
weight equal to α1, i.e. K ′ = 1

α1
. Similarly, we can define L′ and L′

k as above and also have

17

L′ = L′
1 + · · · + L′

K′ . Think of L′ and L′
k, k = 1, . . . ,K ′ as random variables and we know the

probability of selecting a seed from a new type k is pk = K′−k+1
K′ since in the fake scenario, each

type has the same probability α1 of being chosen. This tells us that L′
k has a geometric distribution

with expectation 1
pi

= K′

K′−k+1 .

By the linearity of expectations we have

E[L′] = E[L′
1 + L′

2 + · · ·+ L′
K′]

= E[L′
1] + E[L′

2] + · · ·+ E[L′
K′]

=
K ′

K ′ +
K ′

K ′ − 1
+ · · ·+ K ′

1

= K ′ ·
(
1

1
+

1

2
+ · · ·+ 1

K ′

)
= K ′ ·HK′

where H ′
K is the K ′-th harmonic number. Using the asymptotics of the harmonic numbers, we get

E[L′] ≈ K ′ log(K ′) =
1

α1
log(

1

α1
)

Since α1 ≤ · · · ≤ αK , we know K ′ ≥ K. On the other hand, we know the E[Lk] ≤ E[L′
k] since

there is a higher probability of choosing any mixture type k ≥ 2, due to the same reason, i.e. αk ≥ α1.
Therefore, we have E[L] ≤ 1

α1
log(1

α1
)

We can further characterize the probability of event H, which describes the event that all mixture
types are included in the constructed set Q by creating L subsamples.
Claim 2. For any δ > 0, we have P(HL) ≥ 1− δ with L chosen according to the criteria described
below.

Proof: Denote ZL
k as the event that k-th mixture type is not being chosen as seed in the L trials.

Similarly, we can define Z
′L
k for the fake scenario as described above. We then have

P(ZL
k) = (1− αk)

L ≤
(
1− 1

K ′

)L

= P(Z
′L
k) ≤ e−

L
K′

Denote Wk as the event that the convex hull formed by the set {q̂ℓ = 1
nT

∑
i∈Iℓ

∑T
t=1 Y

(t)
i |π(i) = k}

for mixture type k covers the true choice probability vector. Note that each 1
T

∑T
t=1 Y

(t)
i can be

viewed as a sample mean of qk and by central limit theorem, it is symmetric with respect to qk, hence
so are the q̂ℓ’s. According to Lemma 3 and Corollary 1,

P(Wk) = 1− 1

2Lk−1

d−1∑
i=0

(
Lk − 1

i

)
≥ 1− d

(d− 1)!

(L− 1)d

2L−1
when L ≥ 2d− 1

Putting everything together, we have

P(H) =
(
1− P(∪Kk=1Z

L
k)
)
P(∩Kk=1Wk) (7)

≥
(
1− P(∪K

′

k=1Z
L
k)
)(

1− 1

2L−1

d−1∑
i=0

(
L− 1

i

))K

(8)

≥
(
1− 1

α1
e−Lα1

)(
1− d

(d− 1)!

(L− 1)d

2L−1

)K

(9)

For any δ > 0, we can then choose L such that 1− δ ≤ RHS of Equation (11) and L ≥ 2d− 1.

□

18

A.4 Proof of Theorem 1

We first discuss Corollary 2 and what “high probability” refers to.

Denote Wk as the event that the convex hull formed by the subsamples for a mixture type k covers
the true choice probability vector, as in Appendix A.3. If we have subsampled all mixture types
and for each type k, event Wk occurs, we can obtain qk ∈ Conv(Q). Subsequently, we have
Conv({qk}1,...,K) ⊆ Conv(Q).
On the other hand, we have already analyzed the probability for event that subsampled all mixture
types and Yk occurs ∀k to occur, which is preciselyHL as defined above. Specifically, it happens with

probability ≥
(
1− 1

α1
e−Lα1

)(
1− d

(d− 1)!

(L− 1)d

2L−1

)K

. As L increases, this number quickly

increases to 1. This completes the proof of Corollary 2.

Finally, we combine all the results above and prove the provable convergence part in Theorem 1.

Proof: As illustrated in Figure 1, we want to show with probability ≥ 1− δ we have

S.1 |gSSRFW −
∑

k αkqk| ≤ ϵ

S.2 ∀ k′,∃ k = π(k′) s.t. |q̂k′ − qk| ≤ ϵ

S.3
∣∣∣∑k′:π(k′)=k αk′ − αk

∣∣∣ ≤ ϵ

First, S.1 is proved by Lemma 2 (Property 1: |gFW −
∑

k αkqk| ≤ ϵ) and Corollary 2 (Property 3:∑
k αkqk ∈ Conv(Q)), together with the fact that P

(∣∣∣ 1T ∑T
t=1 y

t −
∑

k αkqk

∣∣∣ ≤ ϵ
)
> 1 − δ by

central limit theorem. Since
√
T (1

T

∑T
t=1 y

t−
∑

k αkqk)
d→ N (0, σ2), number of samples required

is also in the order of 1
ϵ2 log(

1
δ).

Second, S.2 is also a combined result by Frank-Wolfe’s solving a linear program as an intermediate
step (Property 2: ∀ k′, q̂k′ ∈ E(Conv(P)), E(·) denoting the extreme point set of the input region)
and by construction using Algorithm 2 (Property 4: ∀ q ∈ E(Conv(Q)),∃ k s.t. ∥q − qk∥ ≤ ϵ).

Subsequently, we can show S.3. Denote K ′ as the number of mixtures output by the SSRFW algorithm.
Using S.1, we first write ∣∣∣∣∣∣

K′∑
k′=1

α̂k′ q̂k′ −
K∑

k=1

αkqk

∣∣∣∣∣∣ ≤ ϵ′ (10)

According to S.2, ∃ π such that π(k′) = k and we can write q̂k′ = qπ(k′) + ϵ′ where |ϵ′| ≤ ϵ′.
Rearranging Eqn. (10) gives∣∣∣∣∣∣

K∑
k=1

qk

 ∑
k′:π(k′)=k

α̂k′ − αk

+

K′∑
k′=1

α̂k′ϵ′

∣∣∣∣∣∣ ≤ ϵ′ (11)

By triangle inequality, we get∣∣∣∣∣∣
K∑

k=1

qk

 ∑
k′:π(k′)=k

α̂k′ − αk

∣∣∣∣∣∣− ϵ′ ≤ ϵ′

Since qk is some arbitrary non-zero vector, we must have
(∑

k′:π(k′)=k α̂k′ − αk

)
≤ 2ϵ′, ∀ k, which

completes S.3 by letting ϵ = 2ϵ′.

Note the above result holds assuming K ′ ≥ K. To see why this is always the case, consider the
linear system Qx = [q1q2 . . . qK][x1, x2, . . . , xK]⊤ = g, where Q ∈ RM×K and g =

∑K
k=1 αkqk.

According to Definition 1, DKS(qk, qk′) ≥ ϵ, we know that all qk’s are linearly independent. Since
M ≥ K, rank(Q) = rank(Q|g) = K. The linear system has a unique solution that x = α, where
all xk’s are non-zero. On the other hand, we have gSSRFW =

∑K′

k′=1 α̂k′ q̂k′ and ∥gSSRFW − g∥ ≤ ϵ.
Assume K ′ < K, then upto a difference of ϵ, the linear system Q̂x = g, where Q̂ = [q̂1q̂2 . . . q̂K′] ∈

19

RM×K′
, is inconsistent. In other words, we will not be able to obtain a gSSRFW that is ϵ-close to

g, making it impossible to reach the stopping condition in the SSRFW algorithm. Therefore, the
algorithm will keep going for more iterations, until we have at least K ′ = K.

Finally, according to Theorem 2, Theorem 3, the sample complexity is O(1
ϵ2 log(

1
δ)).

□

Additional discussion. In the proof, we showed that number of mixtures returned by SSRFW , K ′, is
at least the ground truth number of mixtures, K. A natural question to ask is that how the misaligned
number of mixtures affect the learning result, if K ′ ̸= K. In many situations, this would not be a
problem.

Consider the case that ∃k1, k2, such that π(k1) = π(k2) = k while the rest are all one-to-one
mapping. According to Theorem 1, we have P(|qki

− qk| < ϵ) ≥ 1 − δ, for i = 1, 2 and
P(|αk1

+αk2
−αk| < ϵ) ≥ 1− δ. We can view the ground-truth MMNL model as an (M +1)-MNL

model, where the original k-th mixture is now divided into two MNL components which share the
identical logit parameters, where one of them has mixture weight αk1

and the other one αk − αk1
. It

is not hard to see that for the first component, we learned the correct mixture weight with an ϵ-close
logit vector q̂k1 while for the second, the mixture weight is off by at most ϵ with an ϵ-close logit
vector q̂k2 .

Finally, we give some comment on the mapping function π. Note that we do not need this information
other than using it as a tool in the proofs, though we can design heuristics to learn the mapping.
In real world applications, we do not know the ground truth parameters, so we cannot derive such
mapping anyways. On the other hand, if we run the algorithm multiple times, we will get different
results due to the stochasticity embedded in the algorithm. In general, the lexicographic order of the
mixtures is not important and can be reordered arbitrarily.

20

B Numerical Experiments

In this section, we demonstrate the performance of our algorithm using numerical simulation
and on the Nielsen Consumer Panel Data (https://www.chicagobooth.edu/research/kilts/
datasets/nielsenIQ-nielsen).

B.1 Simulation Study

Consider in a setting where there are N consumers (i.e. decision makers) who make purchase
decisions among a set of M products for T periods. Working with synthetic data allows us to
measure the model performance regarding consumer type recovery since we have the knowledge of
the underlying ground truth.

Data Generation As an example experiment, we use following parameters: N = 2000,K =
5,M = 10, d = 10. We vary the total number of experiment epochs from T = 5 to 300. Mixture
types are indexed by capital letters, i.e., “A", “B", “C", “D", “E", and products are indexed by numbers
from 1 to 10. In the experiment, we also include an offset option, allowing the consumer to choose to
not buy anything.

Features of different options and preference vector βk’s are randomly generated in the interval
[−1, 1]. αk’s are randomly generated such that

∑
k αk = 1 and the minimum mixture proportion

mink αk ≥ 1
K+3 to ensure that not a particular type is under-represented. We set L = 75.

Subsample Purity We first examine the purity of each subsample obtained. The reason we are
interested in this quantity is that if a constructed subsample has high purity, it means that the empirical
q̂ we obtained from the subsample contains only one mixture type and thus can provide an estimate
for the logit vector for that type with high accuracy. Figure 3 shows the average subsample purity with
respect to the total number of experiment epochs. We can see that the constructed subsamples can
achieve 90% purity with as few as 30 experiment epochs, and quickly reaches 99% around T = 150.

Figure 3: Subsample Purity Distribution

Quality of Q Next we evaluate the quality of the constructed set Q after applying Algorithm 2 to
the simulated data. According to SSRFW, the estimated choice probability outcome is essentially a
subset of these candidate vectors in Q—the ones emitted by SSRFW at each iteration. Therefore, the
higher the quality of Q—in the sense it is concentrated near the ground truth—the better mixture
estimation we can obtain using the learning algorithm SSRFW.

We claim each subsample is a representation of a particular mixture type in the ground truth if the
majority of the selected consumers in that subsample are of that type. For instance, if a subsample
contains 47 of type A, 2 of type B, and 1 of type E, we will evaluate the estimates q̂ from this
subsample against q̂A.

21

https://www.chicagobooth.edu/research/kilts/datasets/nielsenIQ-nielsen
https://www.chicagobooth.edu/research/kilts/datasets/nielsenIQ-nielsen

In Figure 4, we plot the distribution of choice probability values with respect to each product in the
option set for all mixture types, with Figure 4a showing the result with 50 experiment epochs and
Figure 4b with 300 experiment epochs.

(a) T = 50 (b) T = 300

Figure 4: Choice Probability Estimation Result for All Consumer Types

22

These figures show that the estimated choice probability values are very concentrated near the ground
truth when T = 300 and are also reasonably good even with a small T = 50, which we will proceed
with for the following evaluation.

Mixture Recovery After feeding the constructed Q to Algorithm 1, SSRFW generates 8 mixture
types in terms of logit vectors (as expected, larger than the ground truth number of mixtures). We
now want to compare these generated logit vectors against the ground truth. We refer to the mapping
π(j) = i as the “closest type” between a generated type j and an ground truth (GT) type i again
using the majority rule mentioned above.

(a) SSRFW

(b) Original FW

Figure 5: Comparison of cumulative distribution of choice probability vectors

Figure 5 compares j and π(j) using the cumulative distribution (CDF) of the choice probability
vectors, with orange lines representing learning outcome and blue lines the ground truth. We can
see that the results from SSRFW are very close to the true mixture CDFs (Figure 5a). In contrast, the
original FW algorithm [Jagabathula et al., 2020] does not recover the true choice probabilities (Figure
5b), which are mostly boundary-types that correspond to the extreme points of the feasible region to
the individual LP subproblem in each FW iteration.

We further compare the mixture weight estimates α’s in Table 1. From the table, we can see that if we
have a one-to-one mapping (such as A and E), the α estimates from the algorithm are close to the true
values. If we have many-to-one mappings, i.e., the algorithm outputs multiple mixtures for the same
latent class, the sum of the estimated mixture weights is also close to the true values of each mixture.

A Further Comparison with Original FW and EM We define another performance measure as
the weighted average distance between the predicted choice probabilities and its closest ground truth,
i.e. ∥

∑
k αkqk −

∑
k α̂k

∑
π(i)=k q̂

Alg
i ∥, where αk and qk are ground truth and Alg is one of FW,

SSRFW, and EM. We vary the number of experiment epochs T to examine how additional data can
help improve the performance of MMNL learning algorithms.

23

Table 1: Estimation of Mixture Proportion α

Type True α α̂SSRFW Type-wise Sum
A 0.2000 α̂5: 0.1904 0.1904

B 0.2364 α̂1: 0.0713 0.2320
α̂7: 0.1607

C 0.1636 α̂3: 0.0741 0.1498
α̂8: 0.0757

D 0.2182 α̂4: 0.0387 0.2530
α̂6: 0.2143

E 0.1818 α̂2: 0.1748 0.1748

In Figure 6a, we can see that the total discrepancy is consistently smaller using the SSRFW compared to
the original FW, which further justifies the good performance of our algorithm in predicting individual
mixtures. In Figure 6b, we can see that both SSRFW and EM benefit from having more repetitive
choice data, especially when T ≤ 30, which agrees with the observations we learned from Sample
Purity and Quality of Q part.

(a) Comparison with the original FW (b) Comparison with EM

Figure 6: Performance comparison with other algorithms

Since EM requests the number of mixtures as an additional hyperparameter, we compare the perfor-
mance of SSRFW to EM with various different hyperparameter K̃ values, as shown in Figure 6b. We
can see from the plot that when K̃ < K, SSRFW usually outperforms the EM algorithm. On the other
hand, when K̃ >= K, EM achieves a marginally better performance. However, in general we do
not have this information, therefore we adopted the conventional strategy (c.f. Train [2008]) to use
AIC/BIC to determine the best K̃, which corresponds to the lowest of these two criteria respectively.
Both AIC/BIC measure the relative quality of statistical models for a given dataset, by balancing the
trade-off between goodness of fit and the simplicity of the model and are commonly used in model
selection. In our experiment, K = 3 gives the lowest value for both AIC and BIC. This indicates we
should choose K = 3, yet it will result in worse estimation quality as shown in Figure 6b.

Last but not least, we can see that the major issue of EM is that it suffers from its instability. In reality,
there is no way to tell whether the EM method is stuck at local optimum vs global optimum. In
contrast, our algorithm is designed to give theoretical guarantees on the estimators. In summary, the
combination of SSRFW’s theoretical guarantees on the learning result, sample complexity analysis, as
well as the capability to recover individual level of mixture parameters makes the unique contribution
of this work.

One limitation in our framework is related to data collection. For each decision maker, we require a
series of historical choice data over a fixed set of options in order to get a reliable empirical cumulative
distribution of their choice probability vector. However, this problem is not unique to our framework
and EM also requires the same type of data. Thanks to the high digitalization level of many industries,

24

we can see that such data are widely available in a variety of settings, ranging from training NLP
models with mixture of topics of text corpus to learning consumer preferences via data that record
their purchases over some product sets, which we will discuss next.

B.2 Experiments on Nielsen Consumer Panel Data

In this section, we demonstrate how we have applied SSRFW to the Nielsen Consumer Panel data. This
comprehensive dataset is provided by the Kilts Center for Marketing at the University of Chicago
Booth School of Business, NielsenIQ, and Nielsen. It contains panelists (i.e., households) purchase
decisions on grocery items included in the NielsenIQ food and nonfood departments (roughly 1.4M
UPC codes) dated back to 2004 with regular annual updates. The panel size varies from 40K to 60K
and the characteristics include product description, brand, multipack, size, etc. This panel data is
widely used for longitudinal studies in marketing science.

B.2.1 Data Curation

We consider applying the algorithm to a substitute set of products under a particular category. This is
a realistic setting as consumers usually choose one item from the substitution set. We curated data for
six different categories, including yogurt, cereal, snack, candy, soft drinks and pet food and provide
some summary statistics in Table 2.

Table 2: Nielsen case study: categories and data information
Category Panel size Number of features Average # purchases

yogurt 1443 9 178
pet-food 2451 8 403

candy 1499 14 127
cereal 1085 13 96
snack 665 16 61

soft-drinks 412 12 209

B.2.2 Experiment Setup

We cannot evaluate the model performance the same as in simulation studies since we no longer
have the ground truth knowledge. Instead, we split the data into a training and test set, with the
former used for learning the model parameters and the latter for evaluation. Specifically, we apply our
algorithm to the training set, and use the learned parameters to compute the theoretical aggregated
market share

∑
k α̂kq̂k. Then we compute its distance to the aggregated market share of the test set,

i.e. ∥
∑

k α̂kq̂k − ytest∥. The assumption is, if we have similar mixture composition in the training
and test set, then the estimated parameter values from the training set should yield aggregated choice
probability values close to that of the test set. To avoid randomness in the data split, we used a 10-fold
cross validation, with the entire process repeated for five times.

B.2.3 Results

Figure 7 plots the distribution of ∥
∑
k

α̂kq̂k − ytest∥ from the repeated runs of both algorithms. We

can see that SSRFW in general outperforms the original FW algorithm in that the discrepancy is
distributed close to 0.

25

(a) Category: yogurt (b) Category: pet food

(c) Category: candy (d) Category: cereal

(e) Category: snack (f) Category: soft drinks

Figure 7: ∥
∑

k α̂kq̂k − ytest∥ for the six product categories

26

Figure 8 plots the deviation of product-level choice probability values from the test set,
|
∑

k α̂kq̂kj − ytest
j |

ytest
j

, for j = 1, 2, 3, 4, 5. The light orange horizontal line indicates a zero devi-

ation and we observe that the predicted aggregated choice probability per product level from SSRFW
is more concentrated around zero than the original FW. In addition, there is a smaller variance with
respect to different runs.

(a) Category: yogurt

(b) Category: pet food

(c) Category: candy

27

(d) Category: cereal

(e) Category: snack

(f) Category: soft drinks

Figure 8: Deviation-from-test distribution of product-level choice probability values

Next, we examine the number of iterations required until convergence. We also report the percentage
of active directions for the given number of iterations. We think these two metrics measures the
effectiveness of each direction being chosen during the learning process.

28

Figure 9: # iterations and % active directions

From Figure 9, we can see the FW algorithm usually requires more iterations, yet the percentage
of active directions is lower than SSRFW. This suggests that more computation is wasted during the
learning process.

The last metric we look at is the percentage of boundary types in the learning result. Figure 10 shows
that the original FW still exhibits the same problem of generating boundary-type logit vectors while
SSRFW is much less likely to suffer from this problem.

Figure 10: Percentage of boundary types

Finally, as requested by Kilts Center for Marketing at the University of Chicago School of Business,
we make the following disclaimers:

• Researcher(s)’ own analyses calculated (or derived) based in part on data from Nielsen
Consumer LLC and marketing databases provided through the NielsenIQ Datasets at the
Kilts Center for Marketing Data Center at The University of Chicago Booth School of
Business.

• The conclusions drawn from the NielsenIQ data are those of the researcher(s) and do not
reflect the views of NielsenIQ. NielsenIQ is not responsible for, had no role in, and was not
involved in analyzing and preparing the results reported herein.

29

C Multi-Product Pricing Formulation

We provide a concrete example formulation for the multi-product pricing problem, where The
objective is to maximize the total revenue by finding the optimal price for a set of M products:

max
p

M∑
j=1

pj

K∑
k=1

αk
expσ(zj ,p;βk)

1 +
∑

i expσ(zj ,p;βk)

s.t. pj ≥ 0 ∀j ∈ [M]

Note that the decision variables p ∈ RM are also part of the utility function σ. This is due to the
fact that in the multi-product pricing setting, prices — not only the price of a product itself, but also
prices of other products in the same set — are often an important factor that will impact people’s
choice behavior. Because of this entanglement, it does not suffice if we only learn the aggregated
choice probabilities of the population. Instead, we have to accurately estimate the parameters for
each individual MNL mixture before we can solve this optimization problem.

In the above formulation, we also include an offset option, which allows the consumer to
choose not to purchase anything from the set. The probability of the offset can be expressed

as
1

1 +
∑

i expσ(zj ,p;βk)
.

30

	Introduction
	Preliminaries
	Background
	Related Work
	Ranking Models
	Motivation

	Main Results

	Stochastic Subregion Frank-Wolfe Algorithm
	Q Construction Algorithm
	Distance Score Matrix
	Subsample Construction
	Algorithm and Properties

	Theory of the SSRFW Algorithm
	Conclusion
	Proofs
	Proofs for Provable Convergence
	Proof of Property 1
	Proof of Property 3

	Proofs for Sample Complexity
	Proof of Theorem 2
	Proof of Theorem 3

	Proof of Theorem 4
	Proof of Theorem 1

	Numerical Experiments
	Simulation Study
	Experiments on Nielsen Consumer Panel Data
	Data Curation
	Experiment Setup
	Results

	Multi-Product Pricing Formulation

