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Appendix

A Regret Analysis

We now prove the Õ
(√

T log 1
δ

)
upper-bound on regret of Augmented RBMLE-UCB that was

claimed in Section 4.
Lemma A.1. The regret R(T ) of the Augmented RBMLE-UCB learning algorithm can be decom-
posed as R(T ) = R1 +R2 +R3 +R4, where

R1 :=

T∑
t=0

{
x⊺
t P (θt)xt − E

[
x⊺
t+1P (θt+1)xt+1|Ft

]}
,

R2 :=

T∑
t=0

E
[
x⊺
t (P (θt+1)− P (θt))xt|Ft

]
, (19)

R3 :=

T∑
t=0

{
(A⋆xt +B⋆ut)

⊺
P (θt) (A

⋆xt +B⋆ut)− (Atxt +Btut)
⊺
P (θt) (Atxt +Btut)

}
,

R4 :=

T∑
t=0

(J(θt)− J(θ⋆)) .

Proof. Consider an algorithm that implements ut = K(θt)xt at time t. Note that xt+1 = A⋆xt +
B⋆ut + wt+1. Define x̃u

t+1 := Atxt +Btu+ wt+1. Then, the Bellman optimality equation for the
Linear Quadratic control problem can be written as follows,

J⋆(θt) + x⊺
t P (θt)xt = min

u

(
x⊺
tQxt + u⊺Ru+ E

[
(x̃u

t+1)
⊺P (θt)x̃

u
t+1|Ft

])
=

(
x⊺
tQxt + u⊺

tRut + E
[
(x̃ut

t+1)
⊺P (θt)x̃

ut
t+1|Ft

])
.

Upon substituting the value of x̃ut
t+1 in the above, we get

J⋆(θt) + x⊺
t P (θt)xt

= (x⊺
tQxt + u⊺

tRut) + E
[
(Atxt +Btut + wt+1)

⊺P (θt)(Atxt +Btut + wt+1)|Ft

]
. (20)

Note that wt+1 = xt+1 − (A⋆xt +B⋆ut) and wt is a martingale difference sequence (Assumption
2). Thus, the l.h.s. of (20) can be written as follows,

J⋆(θt) + x⊺
t P (θt)xt − (x⊺

tQxt + u⊺
tRut) =J⋆(θt)− J⋆(θ⋆) + x⊺

t P (θt)xt

− (x⊺
tQxt + u⊺

tRut − J⋆(θ⋆))

= E
[
x⊺
t+1P (θt+1)xt+1|Ft

]
− E

[
x⊺
t (P (θt+1)− P (θt))xt|Ft

]
− (A⋆xt +B⋆ut)

⊺
P (θt) (A

⋆xt +B⋆ut)

+ (Atxt +Btut)
⊺
P (θt) (Atxt +Btut) .

Therefore by taking a sum from t = 0 to t = T on both sides, we get R(T ) = R1 + R2 + R3 +
R4.

Lemma A.2. On the event E1 ∩ E2, we have R1 ≤ 2DW 2
√

2T log 8
δ + n

√
Bδ , where Bδ :=

b log
(

4n
√
b

vδ

)
, b := v + T (cDXT )

2(1 + c20), W = nL
√

2n log
(
8nT
δ

)
and D is as in (10).



Proof. The proof is the same as that of Lemma 7 in [3], and hence omitted.

Lemma A.3. On the event E1 ∩ E2, we have R2 ≤ 2DX2
T log2 T , where XT is defined in (17).

Proof. The term in the summation
∑T

t=0E
[
x⊺
t (P (θt+1)− P (θt))xt|Ft

]
(19) corresponding

to time t is non-zero only when a change in the policy occurs at t. There are (n +

m) log2

(
1 + TX2

T
1+c20
λ

)
episodes till time T (Lemma 8, [3]). Therefore, there are (n +

m) log2

(
1 + TX2

T
1+c20
λ

)
non-zero terms and each of them is bounded by 2DX2

T .

Lemma A.4. On the event E1 ∩ E2, we have R3 ≤ 8cX2
TD(1+c20)√

λ

√
TβT

(
δ
8

)
log det(ZT )

det(λI) , where

ZT := max0≤t≤T ∥zt∥, and βT

(
δ
8

)
is defined in (15).

Proof. The proof is the same as that of Lemma 13 in [3], and hence omitted.

Lemma A.5. On the event E1 ∩ E2, R4 ≤ 1
α0

(
βT

(
δ
4

)
+ λc2

)√
T .

Proof. As defined in Lemma A.1, we have,

R4 =

T∑
t=0

(J⋆(θt)− J⋆(θ⋆)) .

During the k-th episode, the algorithm chooses ut = K(θtk)xt, ∀ t = tk, tk + 1, . . . , tk+1, where,
θtk is as in (18), and obtained by solving the corresponding optimization problem at the beginning
of the episode at time tk. Therefore R4 can be written as :

R4 =

K∑
k=0

∆k, where ∆k := (tk+1 − tk) (J
⋆(θtk)− J⋆(θ⋆)) .

∆k is bounded as follows:

∆k =(tk+1 − tk) (J(θtk)− J(θ⋆)) ≤ (tk+1 − tk)

α(tk)
(Vtk(θ

⋆)− Vtk(θtk)) , (21)

where the inequality holds since θtk is a minimizer of Vtk(θ) + α(tk)J
⋆(θ) (18). Moreover,

Vtk(θ
⋆)− Vtk(θtk) = Vtk(θ

⋆) + Vtk(θ̂tk)− Vtk(θ̂tk)− Vtk(θtk)

≤ Vtk(θ
⋆)− Vtk(θ̂tk),

where the inequality follows since θ̂tk is a minimizer of Vtk(·).

Since θ⋆ ∈ Ctk(δ), it follows from the definition of the confidence ball that Vtk(θ
⋆) − Vtk(θ̂tk) ≤

βtk

(
δ
4

)
. Since βt(δ/4) ≤ βT (δ/4), we have Vtk(θ

⋆)− Vtk(θ̂tk) ≤ βT

(
δ
4

)
. Therefore,

Vtk(θ
⋆)− Vtk(θtk) ≤ βT

(
δ

4

)
. (22)

Setting α(t) = a0
√
T , we get

K∑
k=1

∆k ≤ βT

(
δ

4

) K∑
k=1

tk+1 − tk

α0

√
T

=
1

α0
βT

(
δ

4

)√
T .



A.1 Proof of Theorem 4.1

Proof. To analyze regret on the event E1 ∩ E2, we substitute individual bounds on R1, R2, R3 and
R4 in order to obtain

R(T ) ≤2DW 2

√
2T log

8

δ
+ n

√
Bδ + 2DX2

T log2 T +
8X2

TSD(1 + C2)√
λ

√
TβT

(
δ

8

)
log

det(ZT )

det(λI)

+
1

α0
βT

(
δ

4

)√
T .

B Definition of dt

The quantity dt in the definition of E2(t) in (16) is defined as follows,

dt : =
1

1− ρ

(
η

ρ

)n+m [
2L

√
n log

4nt(t+ 1)

δ
+GZ

n+m
n+m+1

T βt

(
δ

4

)(2(n+d+1))−1 ]
,

η : = max

{
1, sup

θ∈S
||A⋆ +B⋆K(θ)||

}
,

ZT : = max
0≤t≤T

∥zt∥,

G : = 2

(
2c(n+m)n+m+0.5

√
U

)(n+m+1)−1

,

U : =
U0

H
,

U0 : =
1

16n+m−2 max{1, c2(n+m−2)}
,

H is constant such that H > max

{
16,

4c2M2

(n+m)U0

}
,

M : = sup
Y≥0

nL

√
(n+m) log

(
1+TY

λ

δ

)
+ λ1/2c

Y
.

C Simulation Experiments

In this section, we provide the details on the simulation experiments, along with some additional
results. The code and instructions for replicating the presented results are provided in the supple-
mentary material.

1. We begin by describing the linear systems used for our experiments in Section 5.

(a) Unmanned Aerial Vehicle (UAV): This system represents a linearized dynamics of an
unmanned aerial vehicle (UAV) in a two-dimensional plane, which has been recently studied
in the context of reinforcement learning in [17, 20]. The first and third states represent the
positions, while the second and fourth states represent the velocities in each dimension. The
inputs are accelerations in each dimension.

A⋆ =

1 0.5 0 0
0 1 0 0
0 0 1 0.5
0 0 0 1

 , B⋆ =

0.125 0
0.5 0
0 0.125
0 0.5

 , Q = diag(1, 0.1, 2, 0.2), R = I2.

(b) Unstable Laplacian Dynamics This represents a Laplacian system where the adjacent
nodes are weakly connected. The lack of stablility (i.e., λmax(A

⋆) ≥ 1) makes it a



challenging example for system identification and hence it has been studied recently in
[18, 19, 55, 58, 17]. The system matrices are as follows:

A⋆ =

[
1.01 0.01 0
0.01 1.01 0.01
0 0.01 1.01

]
, B⋆ = I3, Q = I3, R = I3.

(c) Large transient dynamics: We also consider the following unstable system which addi-
tionally exhibits large transients.

A⋆ =

[
1 0 0
1.1 1 0
0 1.1 1

]
, B⋆ = I3, Q = I3, R = I3.

(d) Longitudinal Flight Control of Boeing 747: This represents the linearized dynamics of
Boeing 747 at 40,000 ft altitute and speed of 774 ft/sec, which was first introduced in [59].
The empirical performance of OFULQ, TS and StabL for this system was recently studied
in [17]. The four states represent velocity of aircraft along the body axis, velocity perpen-
dicular to the body axis, angle of the body axis with horizontal and the angular velocity. The
inputs are elevator angle and thrust of the aircraft. The system matrices are as follows:

A⋆ =

0.99 0.03 −0.02 −0.32
0.01 0.47 4.7 0
0.02 −0.06 0.4 0
0.01 −0.04 0.72 0.99

 , B⋆ =

 0.01 0.99
−3.44 1.66
−0.83 0.44
−0.47 0.25

 , Q = I4, R = I4.

2. In our experiments, we compared the empirical performance of Augmented RBMLE-UCB and
RBMLE with following algorithms: (1) OFULQ [3], (2) Thompson Sampling [15], (3) StabL
[17], (4) Randomized Certainty Equivalence (RCE) [10], and (5) Input Perturbations [16]. The
pseudo-code for all of the implemented algorithms is given in Algorithm 2, where the choice
of θtk and ut made by each algorithm are described in Table 2. The optimization problems for
ARBMLE, RBMLE, OFULQ and StabL described in Table 2 are non-convex problems. We
used projected gradient descent to solve the optimization problems. Expression for gradient of
the RBMLE objective with respect to θ can be obtained explicitly as in [52].

Algorithm 2 Reinforcement Learning for LQ systems.

Initialize: t = 0, Z0 = λIn+m

for k = 0, 1, · · · do
if det(Zt) > 2det(Ztk−1

) then
Calculate θt as defined by the RL algorithm (See Table 2).

else
θt = θt−1

end if
ut = f(K(θt), xt) (See Table 2).
Zt+1 = Zt + zsz

T
s

end for

3. Initially, the controls are chosen as follows in order to obtain a initial estimates of the system:

ut = Kinitxt + ηt for 0 ≤ t ≤ Tinit and ηt is N (0, 1),

i.i.d., Kinit is a stabilizing controller and x0 = 0. The noise is pre-generated, ensuring that
initialization is uniform across algorithms. The definition of confidence interval in ARBMLE,
TS and StabL depends on the choice of confidence parameter δ and a constant c such that
trace(θ⋆T θ⋆) < c2. StabL algorithm uses an excitation N (0, σ2

w) for T < Tw. The values
of various hyper-parameters used in our experiments are described in Table 3.



Algorithm θtk ut, ∀ t ∈ {tk, tk + 1, . . . , tk+1 − 1}
ARBMLE argminθ∈S∩Ctk

(δ) {Vtk(θ) + α(tk)J
⋆(θ)} , K(θtk)xt

RBMLE argminθ∈S {Vtk(θ) + α(t)J⋆(θ)} , K(θtk)xt

OFULQ argminθ∈S∩Ctk
(δ) J

⋆(θ) K(θtk)xt

TS θ̂tk + βtk(δ)Z
−1/2
tk

N (0, 1) K(θtk)xt

IP θ̂tk K(θtk)xt + ηIPt
RCE θ̂tk + ηRCE

t K(θtk)xt

StabL argminθ∈S∩Ctk
(δ) J

⋆(θ)

{
K(θtk)xt +N (0, σ2

w) if T < Tw

K(θtk)xt otherwise
Table 2: Choices of θtk and ut for various algorithms.

Parameter Tinit T δ λ α0 σw Tw

Value 50 500 10−4 10−4 10−2 2 35
Table 3: Values of various parameters

4. We provide simulation results for following additional examples. Figure 3 includes the com-
parison between ARBMLE, OFULQ, TS and StabL. Figure 4 provides a comparison between
ARBMLE, RBMLE, RCE and IP. The average regret values for these systems at T = 500 are
shown in Table 4.

5. (a) Stabilizable but Not Controllable System: We consider a system studied in [17] which is
stabilizable but not controllable. Lack of controllability is challenging for system identi-
fication. ARBMLE/RBMLE outperforms OFULQ, TS, StabL and RCE by a significant
margin.

A⋆ =

[−2 0 1.1
1.5 0.9 1.3
0 0 0.5

]
, B⋆ =

[
1 0
0 1
0 0

]
, Q = R = I3.

(b) Chained Integrator Dynamics: We consider a simple chained integrator system with 2-
dimensional states and 2-dimensional input.

A⋆ =

[
1 0.1
0 1

]
, B⋆ = I2, Q = I2, R = I2.

Ex. RBMLE ARBMLE OFULQ TS IP RCE STABL
(a) 15665 15663 6.9× 107 2.2× 1016 15628 39593 6.9× 106

(b) 2322 2322 33449 2.1× 1011 2337 2402 8927
Table 4: Average Regret Performance at T = 500.

6. Additonal Remarks:
• We use a stabilizing controller Kinit for initialization of our simulation experiments similar to

[18]. Note that our theoretical regret analysis does not assume knowledge of a stabilizing con-
troller, unlike some recent works on adaptive control of LQG systems including [18, 10, 56].

• As demonstrated in the simulation results, OFULQ and Thompson Sampling have a very large
initial regret indicating poor initial estimates of system parameters (also highlighted in [17]).
ARBMLE/RBMLE, IP and RCE show much better initial regret performance compared to
OFULQ and TS.

• Implementation of ARBMLE, OFULQ, StabL and TS involve definition βt(δ) which de-
notes boundary of confidence interval. Our simulations for ARBMLE, OFULQ, StabL and
TS are based on βt(δ) as defined in (15). Instead, recent works [18, 17] use βt(δ) :=

trace
(
(θ⋆ − θ̂t)

⊺Zt(θ
⋆ − θ̂t)

)
. However, one may note that θ⋆ in βt(δ) is not known to the

learning agent, and so such a definition of βt(δ) is not a viable for implementation. The effect of
the choice of βt(δ) on the regret performance is shown in the Figure 5.
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Figure 3: Logarithm of the Averaged Regret over 50 runs of ARBMLE, OFULQ, TS. and StabL.
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Figure 4: Logarithm of the Averaged Regret over 50 runs of ARBMLE, RBMLE, RCE, TS

• The estimates of OFULQ lies on boundary, while the estimates of ARBMLE/RBMLE, IP and
RCE are closer to the least squared estimate. Note that RBMLE can be seen as Lagrangian ver-
sion of OFULQ, indicating that α(t) may be much smaller than the implicit Lagrange multiplier
for OFULQ.

7. The code for our simulation experiments is provided in the supplementary material. The seed
values for random number generation are set appropriately for replication of the results. The
instruction for the code are provided in supplementary material.
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Figure 5: Effect of choice of confidence interval definition on performance. β1: confidence interval
as defined in 15. β2: confidence interval as defined in [18]
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