
Table 3: Node classification results in terms of micro-f1 (20 labelled nodes per class for training).

dataset Cora Citeseer Pubmed Computer Photo CS Physics

MLP 58.20±2.10 59.10±2.30 70.0±2.10 44.90±5.80 69.60±3.80 88.30±0.70 88.90±1.10
LogReg 57.10±2.30 61.00±2.20 64.10±3.10 64.10±5.70 73.00±6.50 86.40±0.90 86.70±1.50

LP 68.00±0.20 45.30±0.20 63.00±0.50 70.80±0.00 67.80±0.00 74.30±0.00 90.20±0.50
Chebyshev 81.20±0.50 69.80±0.50 74.40±0.30 62.60±0.00 74.30±0.00 91.50±0.00 92.10±0.30

MoNet 81.30±1.30 71.20±2.00 78.60±2.30 83.50±2.20 91.20±1.30 90.80±0.60 92.50±0.90
GCN 81.50±1.30 70.30±0.28 77.80±2.90 76.30±2.40 87.30±1.20 91.10±0.50 92.60±0.70
GAT 81.80±1.30 70.80±0.26 78.50±0.27 78.00±1.90 85.70±1.70 90.50±0.22 91.30±0.60
SGC 81.00±0.00 71.90±0.10 78.90±0.00 74.40±0.01 86.40±0.00 91.00±0.00 90.20±0.40

GCNII 85.50±0.50 73.40±0.60 80.20±0.40 57.11±13.92 63.03±4.43 88.30±1.25 OOM
APPNP 83.30±0.00 71.80±0.00 80.10±0.00 71.69±4.67 83.62±3.73 91.41±0.44 93.38±0.67
JKNet 81.10±0.00 69.80±0.00 78.10±0.00 64.08±2.10 78.10±7.07 87.07±1.34 92.69±0.73
C-GAT 80.60±0.45 70.99±0.37 79.60±0.11 OOM OOM OOM OOM

GPRGNN 80.55±1.05 68.57±1.22 77.02±2.59 81.71±2.84 91.58±0.87 92.42±0.47 93.51±0.59
DMP 80.41±1.48 71.08±1.21 76.29±2.44 71.90±1.84 82.37±1.86 90.44±0.40 90.42±0.55

OPEN 81.68±0.44 78.37±0.21 79.35±0.25 86.01±0.26 91.64±0.51 94.98±0.11 92.17±0.56

A Proof of Theorem 1

In this section, the proof to Theorem 1 is given. To this end, some additional notations are defined
in advance. Firstly, matrix Iv 2 RN⇥N is defined as the diagonal indicator matrix to indicate the
neighbourhood of node v. It ith diagonal element is 1, i.e., (Iv)ii = 1, if and only if node i is the
neighbourhood of node v, i.e., avi = 1. Thus, the relationship between the vth row of adjacency
matrix A, i.e., av , and indicator matrix Iv 2 RN⇥N is

(1 · av)� I = Iv, (12)

where � denotes the element-wise product, 1 denotes vector of ones, and I stands for identity matrix.
Thus, Ĥv = IvH only remains the rows corresponding to v’s neighbourhoods and set other rows
as zeros. In other word, Ĥv 2 RN⇥F is the padding version of Hv 2 R|Nv|⇥F with rows of zeros.
Thus, the EVD in Eq. (6) can be extended to

Ŝûj = �jûj , j = 1, 2, ..., N (13)

where Ŝ = ĤvĤT
v

2 RN⇥N and ûj 2 RN are the padding versions of S 2 R|Nv|⇥|Nv| and
uj 2 R|Nv|, respectively. Thus, the obtained embedding for node v from our proposed OPEN can be
written as

hOPEN

v
= uT

1 Hv = ûT

1 Ĥv = ûT

1 IvH =
�
ûT

1 � av
�
H. (14)

According to PCA, the mapping u1 and û1 can be expressed as the combination of the columns of
Hv and Ĥv , i.e.,

u1 =

FX

f=1

↵f (Hv)·,f û1 =

FX

f=1

↵f

⇣
Ĥv

⌘

·,f
. (15)

It indicates that the propagation weights u1 and û1 are not fully determined by the graph topology,
but are mainly impacted by node attribute. Note that different from GAT, where propagation weights
are determined by attributes of connected nodes and labels, the propagation weights in OPEN are
not impacted by labels any more. Similar to Eq. (14), the embedding obtained from asymmetric
adjacency matrix, such as GraphSAGE [5], can be written as

htopology

v
=

1

dv
1THv =

1

dv
1T Ĥv =

1

dv
1T IvH =

✓
1

dv
1T

� av

◆
H. (16)

Comparing Eqs. (14) and (16), the main difference between OPEN and propagation based on
asymmetric adjacency matrix is that the topology-based propagation weight 1

dv
1 in propagation based

on asymmetric adjacency matrix is replaced by attribute-based propagation weight u1 (Eq. 15) in the
proposed OPEN. Therefore, the representation of node v, i.e., hOPEN

v
, is relevant to the principal

components of node v’s ego-network’s attribute, i.e., ûT
1 .

14

Cora Citeseer Pubmed

O
PE
N

G
A
T

G
C
N

Figure 5: The visualizations of the embeddings obtained from GCN, GAT and OPEN.

B Additional Experimental Results

This section provides additional experimental results to verify some statements and the superiority of
the proposed OPEN.

B.1 Node Classification on Another Split

Firstly, to demonstrate the superior performance of the proposed OPEN. Node classification results
based on another split, where 20 labelled nodes per class are employed as the training as in GPRGNN
[27]. The results are given in Tab. 3. We obtain the similar conclusion as in the main body.
Especially, OPEN achieves remarkable improvements on large networks, such as Amazon-Computer
and Coauthor-CS. Since the overfitting issue may be more serious on large networks with little nodes
labelled, this demonstratesx the capability of OPEN on preventing over-smoothing issue.

B.2 Embedding Visualization

To provide intuitive interpretation, the t-SNE visualizations of node embeddings obtained from GCN,
GAT and OPEN are given in Fig. 5. The regions of embeddings of nodes from different classes are
with different colors. The shapes of these regions reflect the characteristics of the corresponding
methods. The GCN’s regions of the embeddings for different classes are overlapped. Thus, the GCN
model tends to be under-fitting. The GAT’s and OPEN’s regions of the embeddings for different
classes are distinct. The regions of the embeddings from GAT are very sharp. It indicates that labelled
data plays a very essential rule on the embedding, which tends to be overfitting. In contrary, the
regions of the embeddings from OPEN are regular. It indicates that the graph topology, which induces
smoothing effect, play more important role than the labels., and thus can prevent overfitting. Besides,
the results from OPEN are much better than those from GAT on pubmed dataset. GAT’s embeddings
of nodes with pink color are overlapped from nodes of other colors, while OPEN’s embeddings of
nodes with pink color are distinct from nodes of other colors. This illustrates the effectiveness of the
proposed OPEN compared to GCN and GAT.

15

Cora Citeseer Pubmed

Figure 6: Node classification performances with different numbers of both channels and layers

Table 4: Running Time Comparison (in seconds).

dataset Cora Citeseer Pubmed Computer Photo CS Physics

GCN 9.89 6.23 5.32 16.8 6.59 19.2 21.58
GAT 10.45 49.31 12.85 95.23 42.11 106.06 201.79

OPEN-Weight 2.61 8.93 3.05 18.46 9.22 18.39 52.94
OPEN-Propagation 10.11 36.09 12.8 65.36 35.62 88.81 149.37

OPEN-layer 271.11 929.09 317.8 1911.36 957.62 1927.81 5443.37
OPEN 12.72 45.02 15.85 83.82 44.84 107.2 202.31

B.3 Ablation Study on Prevent Over-smoothing Issue

Section 4.6 demonstrates the capability of OPEN on preventing over-smoothing issue. DMP [20]
proves that the diverse multi-channel propagations provide potentials to prevent over-smoothing issue
To investigate which component is more important, Ego-Network modeling or Orthogonal Propaga-
tion, ablation study is performed in this section. To this end, the node classification performances
with different numbers of channels K and different numbers of layers are given in Fig. 6. It can be
observed that OPEN with different K can prevent oversmoothing issue. Thus, ego-network modeling
component, which is equivalent to OPEN with K = 1, can prevent over-smoothing issue. Note that
it is hard to only employ orthogonal propagation without ego-network modeling. Thus, we do not
experimentally evaluate the effectiveness of this component. DMP [20] shows that the diversity of
the channels promote the ability on preventing over-smoothing issue. Essentially, the orthogonality
in multi-channels in OPEN realize the requirement on diversity. Therefore, both two components can
prevent over-smoothing issue.

B.4 Running Time Comparisons

To demonstrate the efficiency of the proposed OPEN, the running time comparisons are given in
Table. 4. OPEN-Weight and OPEN-Propagation are the weight calculation and propagation parts
of the OPEN. Compared to OPEN, where weights are fixed, OPEN-layer denote the variant which
learns weights in each layer. The results show that OPEN has the similar running time as GAT. The
running time of GAT and OPEN is similar. Note that the running time of GAT and OPEN is longer
than that of GCN, due to their multiple-channel propagations and combinations. Besides, while the
weight calculation is efficient compared to propagation, the afford of layer-wise weight calculation,
i.e., OPEN-layer, is too high. These meet our complexity analysis in Section 3.1.

C Algorithm Description of OPEN

To make the OPEN easy to follow, algorithms description are given. Table. 5 provides the ego-
network modeling algorithm, whose output is the propagation weights. Table. 6 is the algorithm of
OPEN-layer, which performs the ego-network modeling in each layer. Table. 7 is the final OPEN
algorithm, where the ego-network modeling is only performed once.

16

Table 5: Algorithm-1: Ego-network modeling via PCA

Algorithm-1: Ego-network modeling via PCA

Input: Ego-network of node v: Hv = {h.,1,h.,2, . . . ,h.,F } 2 R|Nv|⇥F

Output: J eigenvectors of the ego-network of node v: {u1,v,u2,v, . . . ,uJ,v}

Step1: Calculate covariance matrix of Hv:Sv = 1/F
P

F

j=1(h.,j � h)(h.,j � h)T ;
Step2: Calculate eigenvectors of covariance matrix Sv via Eq. 6;
Step3: Generate top J eigenvectors:{u1,v,u2,v, . . . ,uJ,v} via sorting �j in descending order;
return {u1,v,u2,v, . . . ,uJ,v}.

Table 6: OPEN-layer

Algorithm-2: OPEN-layer
Input: Feature matrix X 2 RN⇥F , Adjacency matrix A 2 RN⇥N

Output: Node representations: H

for l=1 to L do
for v=1 to N do

% Ego-network modeling %
Generate ego-network of v from {H(l�1),A}: H(l�1)

v ;
% Generate propagation weights for l-th layer %
Generate propagation weights of v:{u(l�1)

1,v ,u(l�1)
2,v , . . . ,u(l�1)

J,v
} via Algorithm-1 on H(l�1)

v ;
% Orthogonal propagations in multi-channels %

Update representation of v of channel j: h(l)
j,v

T

= u(l�1)
j,v

T

H(l�1)
v , j = 1, 2, . . . , J ;

Update representation of v from different channels via Eq. 10;
end for

end for
return H(L)

= {h(L)
1 ,h(L)

2 , . . . ,h(L)
N

}.

Table 7: OPEN

Algorithm-3: OPEN
Input: Feature matrix X 2 RN⇥F , Adjacency matrix A 2 RN⇥N

Output: Node representations: H

for v=1 to N do
% Ego-network modeling %
Generate ego-network of v from {X,A}: Hv;
% Generate propagation weights for all layers %
Generate propagation weights of v: {u1,v,u2,v, . . . ,uJ,v} via Algorithm-1 on Hv;

end for
for l=1 to L do

for v=1 to N do
% Ego-network modeling %
Generate ego-network of v from {H(l�1),A}: H(l�1)

v ;
% Orthogonal propagations in multi-channels %

Update representation of v of channel j: h(l)
j,v

T

= uT

j,v
H(l�1)

v , j = 1, 2, . . . , J ;
Update representation of v from different channels via Eq. 10;

end for
end for
return H(L)

= {h(L)
1 ,h(L)

2 , . . . ,h(L)
N

}.

17

