
The appendix is divided into four sections. Appendix A provides the dataset, labels, and benchmarking
access. The dataset images and benchmarking codes are currently public, while the labels are provided
privately as a link in Appendix A.1. Appendix B details some of the statistics of the dataset. This
includes comparison against existing ophthalmology datasets, detailing the challenges within the
OLIVES dataset, expanding on the full list of clinical labels that are available in the PRIME and
TREX-DME clinical trials, and the exact procedure used to annotate the biomarkers. Appendix C
provides additional medical context to all the benchmarking results from Section 4. Furthermore,
experimental details including training setup, error bars, and computational resources are discussed.
Finally, relevant procedural details regarding the PRIME and TREX DME clinical trials are discussed
in Appendix D, along with screenshots of relevant labels.

A Dataset and Benchmarking Access

A.1 Links to Access Dataset

We provide open access to the dataset. The images and labels found in the OLIVES dataset are
present at:
Image Access
Alternate access to the labels directly can be found at:
Labels Access
The benchmarks provided in the paper are accessible at the following link:
Code Access

A.2 Licenses and DOI

The code is associated with an MIT License. The DOI of the dataset is 10.5281/zenodo.6622145.
The associated license with the dataset is a Creative Commons International 4 license.

A.3 Maintenance Plan

The code will be hosted within the github repository specified in Section A.1. Instructions and details
regarding the dataset will be located at this same repository. Images for the dataset are located at the
zenodo directory in Section A.1. Labels for these images will be included within this same zenodo
dataset after acceptance of the paper. Additional data from other clinical studies will be added over
time as part of our partnership with the Retinal Consultants of Texas. Within the Github repository,
we will maintain a comprehensive survey of all literature that use the OLIVES dataset. This will
include a unified result table and access to publicly available github repositories that benchmark on
OLIVES. Furthermore, we anticipate additional applications that make use of the OLIVES dataset
and its multi-modal and time-series data (Appendix C.4) and will update the Github repository with
these applications.

A.4 Dataset Folder Structure

Images The dataset is split into two folders: Prime and TREX-DME. These correspond to the
studies that the respective data originated from. These studies also act as labels for images with
diabetic retinopathy (within PRIME folder) and DME (within TREX-DME folder) as these are the
disease states studied in their respective trials. Within each clinical study directory there are folders
that have the imaging data for each respective patient. Inside of each patient folder is a directory for
every visit by each patient. Within every visit folder are folders containing the OCT scans and fundus
image for the eye(s) associated with the patient of interest. This structure is consistent in both studies
with the only difference being that the TREX DME directory is split into three subdirectories called
GILA, Monthly, and TREX that identify specific cohorts of patients. Within every visit, there is a
numpy file that is the 3D volume stitched together for the OCT scans of that patient. Additionally, for
every patient, there is a numpy file that holds the fundus image and OCT volume generated at every
visit into one data structure in the order in which the visits occurred.

Labels The labels exist within two directories called "full labels" and "ml centric labels." Full
labels contains the complete clinical datasheets for both the Prime and TREX DME studies. This
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directory also has a word document with additional details regarding the study. The ml centric labels
directory has two csv files. The first contains full biomarker and clinical labels for the 9408 OCT
scans that were labeled from the first and last visit of every eye. The other excel file contains the
BCVA, CST, eye id, and patient id of all 78185 OCT scans that exist within the OLIVES dataset.
These are the clinical labels that are common between both trials.

A.5 Reproducibility Statement and Attributions

We compare against three self-supervised approaches in this paper. Links to their implementations
are provided here:

SimCLR
PCL
Moco v2

Results for our paper can be replicated using the code, images, and labels found in Section A.1.

B Dataset Statistics

B.1 Dataset Comparison

Dataset Clinical Biomarker TimeSeries MultiModal Disease No. of No. of
Labels Labels Data Images States Images Biomarkers

Kermany (13) X X 7 7 X 109312 4
Farisu (14) X X 7 7 X 38400 4

Srinivasan (42) X 7 7 7 X 3231 0
Maetschke (43) X 7 7 7 X 1110 0

Kaggle DR (44) X 7 7 7 X 35126 0
AG-CNN (45) X 7 7 7 X 4854 0

ODIR (46) X 7 7 7 X 10000 0
DeepDrid (47) X 7 7 X X 2256 0
Laterality (48) X 7 7 7 X 18394 0
Messidor (49) X 7 7 7 X 1748 0

OLIVES X X X X X 78185 16
Table 5: Comparison of eye-related datasets along relevant medical considerations.

Dataset Clinical Biomarker MultiModal Disease No. of No. of No. of
Labels Labels Images States Eyes Images Biomarkers

Rotterdam (50) X 7 7 X 70 1120 0
Rivail et. al. (51) 7 7 7 X 221 3308 0

OLIVES X X X X 96 78185 16
Table 6: Comparison of eye-related time-series datasets along relevant medical considerations.

In Table 5, we compare OLIVES against existing datasets based on 7 relevant considerations: clinical
labels, biomarker labels, time-series data, multi-modal data, disease states, number of images, and
number of biomarkers. Among these, biomarker labels and disease state labels have the most semantic
overlap and necessitate a clear differentiation with how these are defined. Disease states refer to the
overall condition of the eye. For example, an eye can have the overall disease of diabetic retinopathy
or any of its variants. However, biomarkers refer to explicit features present within an OCT scan
or fundus image that can act as indicators for the disease (1). For example, a biomarker such as
intra-retinal fluid (IRF), is a description of the features present in an individual image, but do not
make a statement of the overall disease that the eye is experiencing. Additionally, biomarkers can vary
between OCT scans found at different positions within a volume and thus act as a more fine-grained
description of the content of an individual image. Furthermore, we define biomarkers with respect to
biological features, rather than measurements taken across the image. We deem measurements, such
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as various retinal thickness values, as a type of clinical label due to its derivation from values taken
from the imaging acquisition device (OCT Machine).

B.2 Challenges in Dataset

A number of challenging datasets exist for natural images and videos. These challenges include noise
additions (7), background and imaging modality shifts (8), fine-grained domain shifted videos (9),
and microscopic textures (52). Challenging datasets for computed images include large scale seismic
datasets (53). The challenge in OLIVES and other medical datasets arises not because of interventions
in data, but due to issues in data collection, inversion, representation, annotation, and analysis of
minute changes within computed data. Consider Fig. 2a). A singular OCT scan sampled randomly
from the 3D volume of two separate visits between treatments is shown. Notice the same disease
diagnosis and minimal differences within the scans. In contrast, Fig. 2b) shows the OCT scans of
three separate patients in their first visit, all of whom are diagnosed with DME. The manifestations
of the DME patholology is noticeably different between patients. Similarly, in Fig. 2c), the CST
clinical label for two separate patients with visually dissimlar OCT scans is shown. On the other
hand, gradually decreasing CST values between visits for the same patient indicates a decrease in
DME’s manifestation in Fig. 2d).

Moreover, the ML techniques used to analyze natural images may not be applicable or sufficient for
OCT scans. (51) introduced a novel pretext task that involved predicting the time interval between
OCT scans taken by the same patient. (54) showed how a combination of different pretext tasks
such as rotation prediction and jigsaw re-ordering can improve performance on an OCT anomaly
detection task. (55) showed how assigning pseudo-labels from the output of a classifier can be used
to effectively identify labels that might be erroneous. These works all identify ways to use variants of
deep learning to detect important biomarkers in OCT scans. The OLIVES dataset introduces new
challenges in these setups by providing biomarkers and clinical labels that correlate with image data.

B.3 Dataset Logistics

Clinical Trial Funding The initial clinical trials, PRIME and TREX-DME are published at (2)
and (3; 4; 5; 6) respectively. These trials were conducted between December 2013 and April 2021 at
the Retina Consultants of Texas (Houston, TX, USA). The PRIME study was supported by Regeneron
Pharmaceuticals. Further financial disclosures are provided in (2). The corresponding author on (2)
is also an author for this article. The TREX-DME study was supported by various grants detailed
after References in (3).

Labeling The processes for the clinical trials and diagnosis is provided in (2) and (3; 4; 5; 6). For
OLIVES, biomarkers are retrospectively added to 9, 408 images. The biomarkers are identified by
Charles C. Wykoff with an ophthalmology experience of sixteen years and the labeling is performed
by Stephanie Trejo Corona with a grading experience of one year.

B.4 Addressing Limitations of OLIVES

An issue identified in Section 5 is that the OLIVES dataset does not provide a global patient
distribution. This is a common problem with medical datasets and has sparked research into strategies
that can overcome this distributional bias (56). Within the corpus of ophthalmology related studies,
there are several datasets that originate from different regions of the world, such as (49) from France,
(13) from a collaboration of the USA and China, (45) from China, and (57) from the United Kingdom.
It is possible to train with our dataset and test the resulting algorithm with these and others found at
(11) to test for out of distribution performance from cohorts across the world.

Other limitations are addressed in the main paper and relate to the nature of the cohort in our studies.
The cohorts chosen are from patients exhibiting some severity level of Diabetic Retinopathy (DR) or
Diabetic Macular Edema (DME). As a result, there are no patients that are completely healthy. If it is
desirable to guarantee healthy instances within a specific study, then it is possible to augment our
dataset with healthy OCT scans or Fundus images from sources such as (18), (49), or (14).
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Figure 7: Cross-sectional images of graded biomarkers. Intra-Retinal Hyper-Reflective Foci (IRHRF),
indicated by the six white arrows, are areas of hyperreflectivity in the intraretinal layers with or
without shadowing of the more posterior retinal layers. Intra-Retinal Fluid (IRF) encompasses
the cystic areas of hyporeflectivity. Diabetic Macular Edema (DME) is the apparent swelling and
elevation of the macula due to the presence of fluid. A Partially Attached Vitreous Face (PAVF), with
an arrow indicating the point of attachment and a Fully Attached Vitreous Face (FAVF). A discussion
of these biomarkers can be found at (58).

B.5 Description of Labels

B.5.1 Biomarkers and their Generation

The authors in (1) describe biomarkers as objective indicators of medical state as observed and
measured from outside the patient. They are quantifiable characteristics of biological processes. In
this paper, the biological processes are diseases and biomarkers indicate the presence or absence
of such diseases. Under limited circumstances, the authors in (1) suggest that biomarkers can be
surrogate endpoints in clinical trials. However, they caution against doing so unless the underlying
clinical trial is specifically meant for the study. As such, biomarkers indicate the presence of diseases,
but are not causal to these diseases. Causality in the medical domain can be singular causality or
general causality (59). Singular causality is constrained by events in a time-series linked events while
general causality analyzes relationships between events. As such this is different from visual causal
features from (23) or causal question-based analysis in (24) or causal factor analysis in (25).

All image interpretations were performed by a trained grader for the presence of the following
parameters: atrophy or thinning of retinal layers, disruption of the ellipsoid zone (EZ), disruption
of the retinal inner layers (DRIL), intraretinal (IR) hemorrhages, intraretinal hyperreflective foci
(IRHRF), partially attached vitreous face (PAVF), fully attached vitreous face (FAVF), preretinal
tissue or hemorrhage, vitreous debris, vitreomacular traction (VMT), diffuse retinal thickening or
macular edema (DRT/ME), intraretinal fluid (IRF), subretinal fluid (SRF), disruption of the retinal
pigment epithelium (RPE), serous pigment epithelial detachment (PED), and subretinal hyperreflective
material (SHRM). The following describes the grading used for each morphological feature evaluated
in each B-scan using the Heidelberg Spectralis HRA+OCT software.

Atrophy or thinning of retinal layers was indicated as present with evidence of RPE atrophy or
thinning of the retina at the trained grader’s discretion (60; 61). Disruption of the EZ was indicated
as present with when the second-most posterior hyperreflective band of the retina was discontinuous.
DRIL was indicated as present when the boundaries of the retinal inner layers such as the inner
nuclear layer, outer plexiform layer, and ganglion cell layer were not clearly defined (27). Intraretinal
hemorrhages were indicated as present when there was a small, localized lesion that caused shadowing
of the more posterior retinal layers, with a corresponding lesion visible on the near-infrared fundus
image. IRHRF were indicated as present with the appearance of intraretinal, highly reflective spots,
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Table of Abbreviations

Abbreviation Full Name

CST Central Subfield Thickness
BCVA Best Central Visual Acuity
Eye ID Eye Identity

EZ Ellipsoid Zone
DRIL Disruptionof the Retinal Inner Layers

IR Intraretinal
IRHRF Intraretinal Hyperreflective Foci
PAVF Partially Attached Vitreous Face
FAVF Fully Attached Vitreous Face
VMT Vitreomascular Traction

DRT/ME Diffuse Retinal Thickening or Macular Edema
IRF Intraretinal Fluid
SRF Subretinal Fluid
RPE Retinal Pigment Epithelium
PED Pigment Epithelial Detachment

SHRM Subretinal Hyperreflective Material
DR Diabetic Retinopathy

DME Diabetic Macular Edema
CI-DME Center-Involved Diabetic Macular Edema

PDR Proliferative Diabetic Retinopathy
NPDR Non-Proliferative Diabetic Retinopathy
OCT Optical Coherence Tomography
AMD Age-related Macular Degeneration
CNV Choroidal Neovascularization

VEGF Vascular Endothelial Growth Factor
ETDRS Early Treatment Diabetic Retinopathy Study
DRSS Diabetic Retinopathy Severity Scale

PRIME Real-Time Objective Imaging to Achieve Diabetic Retinopathy Improvement
TREX-DME Treat and Extend Protocol in Patients with Diabetic Macular Edema

Table 7: Summary clinical and biomarker abbreviations used throughout the paper.

which correspond pathologically to microaneurysms or hard exudates, with or without shadowing
of the more posterior retinal layers (62). A partially attached vitreous face was indicated as present
with evidence of perifoveal detachment of the vitreous from the internal limiting membrane (ILM)
with a macular attachment point within a 3-mm radius of the fovea. A fully attached vitreous was
indicated as present with no evidence of perifoveal or macular detachment from the ILM. Preretinal
tissue or hemorrhage was indicated as present with evidence of an hyporeflective preretinal tissue,
epiretinal membrane, or hemorrhage over the surface of the ILM (63). Vitreous debris was indicated
as present with evidence of hyperreflective foci in the vitreous or shadowing of the retinal layers in
the absence of an intraretinal hemorrhage. VMT was indicated as present with evidence of perifoveal
vitreous separation, vitreomacular attachment, and foveal anatomic distortions (64). Diffuse retinal
thickening or macular edema was indicated as present when there was increased retinal thickness of
50 µm above the otherwise flat retina surface with associated reduced reflectivity in the intraretinal
tissues (65). Intraretinal fluid was indicated as present when intraretinal hyporeflective areas or
cysts had a minimum fluid height of 20 µm (65). Subretinal fluid was indicated as present when
hyporeflective areas or cysts were evident in the subretinal space between the EZ and RPE layers.
Disruption of the RPE was indicated as present when the most posterior hyperreflective band of
the retina was discontinuous. Serous pigment epithelial detachment was indicated as present with
evidence of a hyporeflective area underneath the detached RPE. SHRM was indicated as present
when hyperreflective foci were evident in the subretinal space between the EZ and RPE layers.
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Dataset Statistics Label Type Label Names

PRIME Clinical
29000+ Images
40 Patients
40 Unique Eyes

Clinical BCVA, CST, DRSS, Eye ID,Patient ID, Diabetes Type, BMI, Age, Race, Gender
Years with Diabetes, HbA1c, Leakage Index, Injection Arm

PRIME Biomarker
3900+ Images
40 Patients
40 Unique Eyes

Clinical BCVA, CST, DRSS, Eye ID,Patient ID, Diabetes Type, BMI, Age, Race, Gender
Years with Diabetes, HbA1c, Leakage Index, Injection Arm

Biomarker 16 Biomarkers (DME, IRF, IRHRF, etc.)

TREX-DME Clinical
38000+ Images
47 Patients
56 Unique Eyes

Clinical BCVA, Snellen Score, CST, Eye ID, Patient ID

TREX-DME Biomarker
5300+ Images
47 Patients
56 Unique Eyes

Clinical BCVA, Snellen Score, CST, Eye ID, Patient ID

Biomarker 16 Biomarkers (DME, IRF, IRHRF, etc.)

TREX-DME + PRIME Biomarker
9200+ Images
87 Patients
96 Unique Eyes

Clinical BCVA, CST, Eye ID, Patient ID

Biomarker 16 Biomarkers (DME, IRF, IRHRF, etc.)

TREX-DME + PRIME Clinical
67000+ Images
87 Patients
96 Unique Eyes

Clinical BCVA, CST, Eye ID, Patient ID

Table 8: Summary of clinical and biomarker data present within each individual study.

B.5.2 Clinical Labels and their Generation

Full Clinical Labels The clinical labels obtained from the PRIME trials include BCVA, DRSS,
CST, eye ID, patient ID, diabetes type, BMI, age, race, gender, HbA1c, leakage index, years with
diabetes, and injection arm. The clinical labels from the TREX-DME trials include BCVA, Snellen
score, CST, Eye ID, and Patient ID. Since OLIVES is a combination of the two, we use only the
common labels from both trials as our clinical labels in our experiments. These common labels
include BCVA, CST, Patient ID and Eye ID which are listed in Table 1. However, we provide access
to all available labels as described in Appendix A.4.

The Early Treatment Diabetic Retinopathy Study (ETDRS) diabetic retinopathy severity scale (DRSS)
has 13 levels describing DR severity and change over time based on color fundus photograph grading.
The scale starts at level 10 and ends at level 90 with irregular scale numbering. Nonproliferative
diabetic retinopathy (NPDR) DRSS levels on the scale are below 61 and proliferative diabetic
retinopathy (PDR) levels are 61 and above. Diabetes type refers to the patient’s diagnosis of either
type one or type two diabetes mellitus. HbA1c is the measurement of glycated hemoglobin, commonly
referred to as blood sugar, which serves as an indicator for diabetes diagnosis or diabetic control.
Leakage index refers to the panretinal leakage index used in the PRIME trial in which areas of
leakage, regions of hyperfluorescence in fluorescein angiography images, were divided by areas of
interest, region of total analyzable retinal area, and converted to a percentage. Injection arm refers to
either the DRSS-guided (1) cohort or the PLI-guided (2) cohort in the PRIME trial. Snellen score is
the visual acuity testing procedure commonly used in ophthalmic clinical settings. The first number
indicates the distance in feet that the letter chart was read, in U.S., this number is commonly 20,
followed by a number indicating the distance a person with "normal" vision (20/20) would have to be
to read something the person tested could read at 20 feet. Thus, a larger denominator would indicate
poorer vision.

Other self-explanatory demographic information including body mass index (BMI), age, race, and
gender are provided. We caution the users regarding the societal impact of using these labels since
the underlying PRIME trial did not study the causality of these labels.

ML Centric Clinical Labels We describe BCVA and CST in this section. ETDRS best-corrected
visual acuity (BCVA) is a visual function assessment performed by certified examiners where a
standard vision chart is placed 4-meters away from the patient. The patient is instructed to read the
chart from left to right from top to bottom until the subject completes 6 rows of letters or the subject
is unable to read any more letters. The examiner marks how many letters were correctly identified by
the patient. Central subfield thickness (CST) is the average macular thickness in the central 1-mm
radius of the ETDRS grid. CST was obtained from the automated macular topographic information
in the Heidelberg Eye Explorer OCT software.

The remaining clinical labels of Patient ID and Eye ID are self-explanatory and collected on clinical
visits.
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Figure 8: Number of patients at every visit within one of the training sets used for the treatment
predicition analysis.

Figure 9: 1) A plot of average number of visits by patients that were an improvement or deterioration
from previous week. Red bars indicate the standard deviation across all patients. 2) Plot of average
change in BCVA with respect to the first week. 1) and 2) Polar representation plots with respect to
the effective treatment of individual patients. The angle of rotation is ✓ = 360 / (number of visits for
patient). The angle rotates by ✓ counterclockwise if the collected BCVA on the current visit is better
than that of the previous visit and clockwise by ✓ if it’s worse.

B.5.3 Time Series Labels

The labels generated for the time-series experiments were based on changes in week to week BCVA
values. For an individual visit, the treatment label was set to 1 if the following visit resulted in an
improvement in BCVA and a 0 if the result wasn’t an improvement. The goal is to predict whether
the next visit would result in an improvement based on the associated modality (Fundus or 3D OCT
Volume). Fig. 5 provides statistics regarding visit-wise changes of BCVA within the dataset. Further
analysis of the dataset requires the number of patients treated on each visit which is provided in
Fig. 8. As is apparent, the number of patients keep decreasing across visits. This can be for a variety
of reasons all of which are discussed in the clinical trail publications at (2) and (3; 4; 5; 6). These
numbers provide further context to the changes in Fig. 5. Presumably, as the treatment continues, it is
the challenging patients who return for treatment and who qualify for injections. Their visit-wise
average BCVA change skews the cohort in the negative direction in Fig. 5.

This change in treatment improvements can be understood through the polar plots of Figure 9. The
polar representation plots show the effective treatment with respect to an individual patient. This
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works by a vector beginning at the 0 degree point and rotating by an angle ✓ that is 360/(number of
patient visits). After each turn counterclockwise, the hue of the associated color becomes darker by a
fixed degree with a darker green hue indicating a higher degree of improvement and a darker red hue
indicating a higher degree of worsening in the clockwise direction. This is shown in plots 1 and 2 in
Fig. 9. Plot 1 shows that the patient had 4 rotations as indicated by the hue of green becoming darker
by four degrees. This indicates that out of the total number of visits, this patient experienced 4 more
visits with improvements, rather than deterioration. The converse is true for Plot 2.

C Additional Results

C.1 Multi-Modal Integration Between OCT and Biomarker/Clinical Labels

Table 9: Benchmark results for DR/DME detection showing precision and recall.

Experiments Model
Precision Recall

DR DME DR DME

OCT R-18 0.747 0.670 0.608 0.794
Clinical MLP 0.753 0.756 0.758 0.751

Biomarker MLP 0.703 0.870 0.826 0.771
OCT + Clinical R-18 + MLP 0.888 0.765 0.566 0.952

OCT + Biomarker R-18 + MLP 0.885 0.778 0.742 0.904

Experimental Details The greyscale B-scans are rescaled to 128 ⇥ 128 and normalized with
µ = 0.482 and � = 0.037 as the baseline data for DR/DME detection. For OCT, we utilize Resnet-18
(R-18) (37) along with Adam optimizer and a learning rate of 1.5e� 4. There are 20 eyes in the test
set; 10 having DR and the remaining DME. The validation set has 5 eyes with DR and the other 5
exhibiting DME. The train set is composed of the remaining 66 eyes, 26 of which have DR while 40
have DME. Therefore, we utilize 6, 468 images in the training set, 1, 960 images in our test set and
980 images in the validation set. For supervised learning with clinical labels, we train a shallow Multi
Layer Perceptron (MLP) with two linear layers and Relu activation between. Biomarker features are
normalized to zero mean and unit standard deviation. For supervised learning with biomarkers, we
train a shallow MLP with four linear layers and LeakyRelu activation between. Biomarker features
are normalized to zero mean and unit standard deviation. For multi-modal learning with OCT and
clinical labels/biomarkes, we use the same train, test and validation split as the baseline OCT model
and the clinical labels/biomarkers associated with each B-scan.

Optimization via Guided Loss Each modality is input to its independent model. At the output of
the MLP biomarkers/clinical label model are logits �MLP (xi), while the output logits of the Resnet
OCT model are �Resnet(xi). During optimization, learned features from one modality (biomarkers
or clinical labels) are used to optimize the learning of the other (OCT features). The guided loss,
LGuided, is one component of the overall loss function L. Guided loss is the mean square error
between MLP logits and Resnet logits. At every epoch, we minimize the disparity between these
logits until the stopping criteria for training is met. The other two components, LResnet and LMLP

are binary cross entropy losses computed between the ground truth labels and logits from each model
respectively. Collectively the three terms allow a joint optimization of both models and a transfer of
knowledge from MLP model to Resnet model.

L = LResnet + LMLP + LGuided (1)

LGuided = 1
⇥
ŷMLP = y

⇤ 1
2

�����Resnet(xi)� �MLP (xi)
����2
2

(2)

Medical Perspective of Benchmark Results The results show that biomarkers as features are more
effective at discriminating between the disease classes in both uni- and multi-modal training scenarios.
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This makes sense from a medical perspective because biomarker features have direct correlation to
the presence of DR/DME. Also, biomarker vectors assigned to any OCT slice are specific features
that visually manifest themselves within that OCT slice. This means that biomarker features are
fine-grained signs of diagnostic patterns indicative of disease. Clinical labels on the other hand are
more coarse. Some clinical labels, like CST, represent characteristics of an OCT volume as a whole
rather than any specific slice within a volume. Other clinical labels, like BCVA, are not derived from
OCT and represent an evaluation of the eye as a whole. CST and BCVA are clinical parameters that
are not indicative of a specific retinal disease diagnosis, but are instead representations of retinal
anatomy or visual function, respectively. These two features are used in the context of monitoring
retinal disease progression; thus, it is unsurprising that within a machine learning framework they
yield sub-optimal performance in discriminating between disease classes.

C.2 Biomarker Interpretation with Contrastive Learning

A number of variations of contrastive learning exist in literature. The authors in (66) use the term
contrastive to design visual explanations. They then extend these explanations to perform contrastive
reasoning in inferential framework in (32).

This clinically aware supervised contrastive loss can be represented by:

Lsupconclinical =
X

i2I

�1

|C(i)|
X

c2C(i)

log
exp(zi · zc/⌧)P

a2A(i) exp(zi · za/⌧)
(3)

where i is the index for the image of interest xi. All positives c for image xi are obtained from the
set C(i) and all positive and negative instances a are obtained from the set A(i). Every element c of
C(i) represents all other images in the batch with the same clinical label c as the image of interest
xi. Additionally, zi is the embedding for the image of interest, zc represents the embedding for the
clinical positives, and za represents the embeddings for all positive and negative instances in the
set A(i). Embeddings are obtained after passing the representations from an encoder network f(.)
through a projection head G(.) that we set to be a multi-layer perceptron network. ⌧ is a temperature
scaling parameter that is set to .07 for all experiments. For example, a loss represented as LBCV A

indicates a supervised contrastive loss where BCVA is utilized as the clinical label of interest and all
positives are chosen based on having the same BCVA value as the target image.

Training In this study, we leverage knowledge learnt from training on the large set of clinical labels
to improve performance in classifying the smaller set of biomarkers. To test this setup, we take 76
eyes from the OLIVES Dataset to form a training set and take the remaining set of 20 eyes to form
a test set. From this set of 20 eyes, we form an individual balanced test set for each biomarker by
sampling 500 OCT scans with the biomarker present and 500 OCT scans with the biomarker absent.
We train for 25 epochs and utilize a stochastic gradient descent optimizer with a learning rate of 1e�3
and momentum of 0.9. The applied augmentations are random resize crops of size of 224, random
horizontal flips, random color jitter, and data normalization to the mean and standard deviation of
the respective dataset with a batch size set at 64. We use Intraretinal Hyperreflective Foci (IRHRF),
Partially Attached Vitreous Face (PAVF), Fully Attached Vitreous Face (FAVF), Intraretinal Fluid
(IRF), and Diffuse Retinal Thickening or Diabetic Macular Edema (DRT/ME) as the biomarkers in
the study.

Medical Interpretation of Benchmark Results Another aspect of the results is how well the used
clinical labels correspond with the biomarker classification performance. In all cases, the results act as
validation to the hypothesis that taking advantage of correlations that exist with certain clinical labels
is beneficial for biomarker detection of individual OCT scans. However, from a medical perspective,
certain outcomes would intuitively be more likely. For example, the severity of IRF and DME tend
to be correlated with CST due to higher levels of fluid corresponding to changes in CST. Therefore,
it makes sense that the best performance for IRF and DME is associated with using CST values as
the clinical label for the loss. Additionally, it can be observed in Fig. 4 that because BCVA and CST
have different distributions of values, there is a different number of associated eyes and images for
each respective clinical value. Effectively, this means that there is varying diversity with respect to
any individual clinical label, which explains the varying performance depending on which clinical
label is used. The Eye ID works due to images from the same eye having many features in common
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that serve to identify a good positive set for the loss. However, from a medical perspective, the Eye
ID alone does not confer any additional medical insight.

Method Biomarkers

IRF DME IRHRF FAVF PAVF AUROC

PCL (28) 76.50% ± .513 80.11% ± .335 59.1% ± 1.03 76.30% ± .378 51.40% ± .556 .767 ± .0017
SimCLR (29) 75.13% ± .529 80.61% ± .837 59.03% ± 2.54 75.43% ± .378 52.69% ± 2.68 .754 ± .0017
Moco v2 (30) 76.00% ± .305 82.24% ± 1.38 59.6% ± .702 75.00% ± .608 52.69% ± .472 .770 ± .0035

Eye ID 72.63% ± .264 80.2% ± .384 58% ± 2.56 74.93% ± 1.36 65.56% ± .200 .767 ± .0005
CST 75.53% ± .608 83.06% ± .213 64.3% ± 2.57 76.13% ± .264 62.16% ± 1.47 .790 ± .0006

BCVA 74.03% ± .351 80.27% ± .853 58.8% ± 1.82 77.63% ± .305 58.06% ± 1.27 .776 ± .0017

Table 10: We show the performance of supervised contrastive training on the OLIVES dataset. In this
table we explicitly show the standard deviation for the average across three runs for both accuracy
and AUROC.

C.3 Time-series Treatment Analysis

Experimental Procedure for Predicting Successive Treatment Effect To perform this experiment,
we generate treatment effect labels. For every OCT volume or fundus image, we assign a label 1
if the following visit resulted in an increase in BCVA and a label 0 if the next week resulted in
a decrease in BCVA. We then train models to perform this binary classification task of next visit
improvement or deterioration. Each architecture is trained for 25 epochs with a SGD optimizer,
learning rate of .0001, momentum of .9, and a batch size of 10. We use a Resnet-18 (37), ResNet-50
(37), DenseNet-121 (38), EfficientNet (39), and Vision Transformer (40) (using a patch size of 32, 16
transformer blocks, 16 heads in multi-attention layer). EfficientNet on OCT performs with the best
results from Table 4. It can also be observed that the vision transformer model did not significantly
improve over the traditionally CNN models. It is possible that the attention mechanism of the
transformer needs further training and refinement to learn patches of importance within a Fundus
image. This is especially true within the context of medical data as small fine-grained locations are
oftentimes the most important and difficult to identify. From the overall results, it is clear that the
main bottleneck to good performance is overfitting of the model towards a single class, which, in
this case, was the treatment effect. This makes sense as these volumes tend to have more readily
distinguishable features due to a more severe variation of the disease. Also, the best performance in
Table 4 came when using OCT Volumes as well as the smaller ResNet-18 and EfficientNet models
which may be due to having more data than in the Fundus case as well as less prone to overfitting due
to a smaller size.

Medical Perspective of Predicting Successive Treatment Effect In Table 4, it is observed that the
model is able to predict whether the next visit will experience an improvement or worsening of BCVA
on the following visit with the associated performance seen in this table. From a medical perspective,
indicators that predict whether treatment will be successful or not is not so clear simply from imaging
data. This is reflected by performance measures for accuracy that are barely better than random
chance. Part of the challenge is that responses to the treatment could potentially be due to factors
independent from the imaging data. For example, lifestyle choices on the part of the patient could
have a corresponding impact on how well the treatment is able to perform. Additionally, patients do
not receive treatments equally due to the specific nature of an individual’s condition, which limits
predictability. In order to improve upon this benchmark, future studies should investigate the effect
of utilizing more powerful time-series models as well as multi-modal fusion of fundus, OCT, clinical,
and biomarker data.

Predicting Final Ocular State We perform a similar analysis with the biomarkers available from
patient’s first and final visit. In this analysis we explore the predictive power of the initial biomarkers
at forecasting the biomarkers at the final visit. 3, 234 biomarkers were used as input features in the
training set while 980 and 490 biomarkers were used for test and validation set respectively. A shallow
MLP of two linear layers and a Relu activation was the model used in this analysis. Intersection over
union served as the metric to evaluate the quality of the predicted final visit biomarkers relative to the
ground truth. Figure 10, shown in Appendix C.3, shows the overall performance of the model on the
test set. We see that initial biomarkers serve as good features for prediction of final ocular state.

26



Figure 10: Benchmark Prediction of final visit biomarkers from initial visit biomarkers

Medical Perspective of Predicting Final Ocular State This axes of Fig. 10, show the number
of biomarker vectors in the test set having varying intersection over union values. The red curve
is the intersection over union (IOU) between the biomarkers at the first and final visits. This is the
reference to show how final visit biomarkers changed relative to initial biomarkers. From the red
curve, we see that of the 980 samples in the test set, only a few, approximately 200, have an IOU
of 1. This means these biomarkers remained constant between first and final visits. A final visit
biomarker being the same as the initial may not be an indicator of the patient’s response to treatment.
Rather, it indicates that no additional biomarkers manifested themselves at the final visit. The green
curve represents the IOU between initial visit biomarkers and the predicted final visit biomarkers.
Ideally, a complete overlap of red and green curves is desired. This would indicate that changes in
biomarkers between first and final visits are being properly captured by the model. Complete overlap
occurred for approximately 400 biomarkers whose IOU range from 0.90� 0.95. The time when the
green curve exceeds the red indicates when there are larger intersection between first and predicted
final visit biomarkers compared to the intersection between first and true final visit biomarkers. This
means that the model predicted additional biomarkers within those biomarker vectors than what is
actually present at the final visit. Conversely, there are a few cases when the green curve recedes the
red and these are times when the model predicted fewer biomarkers within the biomarker vectors
than the actual amount present at the final visit.

C.4 Other potential applications

The rich set of labels in the OLIVES dataset allows for utilizing the clinical labels and biomarkers in
multiple ways. We demonstrate multi-modal fusion, medically-grounded contrastive learning, and
time-series predictions in Section 4. In addition, Active Learning (67; 68) can utilize the clinical labels
and biomarkers as indicators of disease states. The two paradigms of active learning - uncertainty and
diversity - can be derived not through the model predictions, but from the auxiliary data in OLIVES.
Similarly, biomarkers provide an annotated set of visual characteristics that show the manifestations
of diseases within OCT scans. These biomarkers, along with the disease states and OCT scans, can
be utilized for clinical reasoning. Other potential applications include domain difference analysis and
adaptation which is described in Sections. C.5 and C.6 respectively.

C.5 Domain Shift

Domain shift based on PRIME and TREX trials Both the PRIME and TREX DME clinical trials
are conducted using the same imaging equipment, in the same clinic. Hence, the domain difference
w.r.t. PRIME and TREX is more due to the different disease manifestations they study and treat
rather than imaging. We perform the biomarker detection experiments as detailed in Section 4.2
using PRIME and TREX trials separately. Specifically, we showcase the performance of intra-trial vs
inter-trial experiments. Intra-trial refers to within PRIME and within TREX experiments - train and
test within respective trials. Inter-trial refers to training and testing on different trials. The results are
shown in Table 11. The best results are obtained when training and testing on TREX. This is because
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Table 11: Benchmark results for characterizing domain shifts for data arising from the PRIME or
TREX DME clinical trials.

Training Set Test Set Multi-Label AUROC

Prime TREX .649 ± .024
TREX Prime .547 ± .013
Prime Prime .599 ± .042
TREX TREX .727 ± .011

Table 12: Benchmark results for characterizing domain shifts before and after treatments in terms of
first and last patient visits.

Training Set Test Set Multi-Label AUROC

First Visit Last Visit .628 ± .023
Last Visit First Visit .678 ± .012
First Visit First Visit .712 ± .026
Last Visit Last Visit .546 ± .018

of a larger diversity in TREX training data due to larger clinical trial window of 3 years. The eyes in
TREX have more severe conditions than those present in PRIME. For this reason, combining the two
dataset allows for a more complete distribution in terms of the severity of the disease and creates a
more complete study and better results as shown in Table 3. Interestingly, the inter-trial results when
training on TREX and testing on PRIME is higher than intra-trial training and testing on PRIME
validating the need for larger diversity.

Domain shift before and after treatment The temporal element of the treatments studied in this
dataset organically creates a domain shift between first and last visit’s data for the same patient. We
test this in Table 12. The experimental setup is biomarker detection from Section 4.2. From the
results in Table 12, it is clear that there is a domain difference between the first and last visits based
on the inter vs intra-visit training and testing setups. However, the results of the last visit maybe
skewed because of the effects of treatment that may cause improvement in some and deterioration/no
change in others that might cause intra-visit variation in the last visit thereby leading to lower results.
Hence, we further conduct domain adaptation experiments for this modality in Appendix C.6 in the
coarser setting of DR/DME detection.

Figure 11: A comparison between domain adaptation experiments using uni-modal and multi-modal
data.
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C.6 Domain Adaptation before and after treatment

In this section, we study the domain adaptation between the first and last week’s worth of data in
terms of DR/DME detection. With that in mind, we train models on four different training sets and
use a fixed test set to evaluate the transfer of knowledge between domains. The first training set
consists of OCT collected solely from the patients initial visit to the clinic. The remaining training
sets consist of OCT from the first visit and 10/20/30 % of the OCT from the last visit respectively.
The test set consists of the remaining 70% of OCT from the final visit. There is no overlap between
train and test sets. Training is repeated three times with different seeds and an average balanced
accuracy and standard deviation is noted. To compare the effect of multiple modalities on domain
adaptation, the same experiments are repeated using OCT and biomarkers.

In Fig 11, the x-axis represents the composition of the training set used and y-axis the balanced
accuracy achieved on the test set. Shaded regions around each curve show standard errors. The red
curve highlights performance of OCT while the green curve shows the performance of OCT with
biomarkers. We see that using data from the first visit only, results in the lowest performance for
both curves. This training set has the largest disparity in its feature space compared to the test set.
Conversely, the training set that combines 30% of data from the final visit with the first visit achieved
the highest balanced accuracy for both curves due to higher similarity existing between the source
and target domains.

C.7 Incorporation of Other Datasets alongside OLIVES

Table 13: Performance of leveraging data from a healthy dataset for a novel contrastive learning task
is indicated by the Kermany + OLIVES row. Multi-Label is the average AUC from the multi-label
classification task.

Severity Label Training Results (Accuracy / F1-Score)

Method IRF DME IRHRF FAVF PAVF Multi-Label

SimCLR (29) 75.13% / .715 80.61% / .772 59.03% /.675 75.43% / .761 52.69% / .249 .754
PCL (28) 76.50% / .717 80.11% / .761 59.1% /.683 76.30% / .773 51.40% / .165 .767

Moco v2 (30) 76.00% / .720 82.24% / .793 59.6% / .692 75.00% / .784 52.5% / .201 .769

Kermany + OLIVES 75.20% / .698 81.46% / .786 66.83% / .695 75.39% / .756 54.7% / .314 .774

One of the useful features of the OLIVES dataset is that other medical datasets can be used in
conjunction to develop other novel tasks. We incorporate the large amount of readily available healthy
images from the Kermany dataset (13) to train an auto-encoder which is later utilized to generate
anomaly scores on the unlabeled data in the OLIVES dataset. Results from using this setup is shown
in Table 13 and the proposed strategy is identified with Kermany + OLIVES. We then use this anomaly
score similar to a clinical label, within the contrastive learning setup in Section 4.2. We observe that
leveraging this information out-performs standard state of the art contrastive learning strategies, but
doesn’t out-perform the clinical contrastive learning with respect to multi-label AUROC we show in
Table 3. This example demonstrates the adaptability of the OLIVES dataset through its potential to
leverage information in other datasets to develop novel perspectives that didn’t exist in the OLIVES
dataset originally.

C.8 Computational Resources

All experiments were run on PCs with two NVIDIA GeForce GTX TITAN X 12 GB GPUs.

D Datasheets

D.1 PRIME and TREX DME Clinical trials

The PRIME (2) and TREX-DME (3; 4; 5; 6) clinical trials included at least 96 eyes with either
center-involving diabetic macular edema (CI-DME, n = 56) or diabetic retinopathy without CI-DME
(DR, n = 40) between December 2013 and April 2021. Each participant signed an informed consent
form to participate in the clinical trial. Both trials were prospective, randomized clinical trials.
Prospective trials refer to longitudinal studies that evaluate the outcome of a particular disease during
treatment. In PRIME, 40 eyes with nonproliferative diabetic retinopathy (NPDR) or proliferative
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diabetic retinopathy (PDR) without CI-DME received intravitreal aflibercept injections (IAI) monthly
until the eyes achieved a diabetic retinopathy severity scale (DRSS) score improvement of � 2
steps; at baseline, eyes were randomized 1:1 into two management strategies for DR: 1) DRSS-
guided or 2) panretinal leakage index (PLI)-guided management. In TREX-DME, 150 eyes with
CI-DME were randomized 1:2:2 into three cohorts for management with ranibizumab (0.3 mg): 1)
monthly treatment or 2) treat and extend, or 3) treat and extend with angiography-guided macular
laser photocoagulation. For each patient, general demographics, ocular disease state data (e.g., best
corrected visual acuity (BCVA)), central subfield thickness measurements (CST), and detailed ocular
imaging (e.g., spectral-domain optical coherence tomography (SD OCT), fundus photography, and
fluorescein angiography) was obtained per the protocol in Section B.5.2. All SD-OCT images were
obtained using the Heidelberg Spectralis HRA+OCT (Heidelberg Engineering, Heidelberg, Germany)
with a volume-per-cube acquisition protocol (20 x 20, 49 lines, 768 A-scans per line) with 9-times
image averaging.

D.2 Clinical Study Process Description

The Intravitreal Aflibercept as Indicated by Real-Time Objective Imaging to Achieve Diabetic
Retinopathy Improvement (PRIME) study was a prospective, randomized, phase II clinical trial
(ClinicalTrials.gov identifier, NCT03531294; IND138997). The purpose of the study was to assess
the safety and efficacy of as-needed intravitreal aflibercept injections for eyes with diabetic retinopathy
without center-involved diabetic macular edema via the guidance of real-time Diabetic Retinopathy
Severity Scale (DRSS) level or panretinal leakage index (PLI) assessment. The DRSS level was
determined by color fundus photography graded by a trained image analyst. PLI assessment was
conducted by an automated ultrawidefield fluorescein angiography image analysis platform. Between
May 2018 and March 2019, forty subjects were enrolled in PRIME given the following inclusion
criteria: 18 years of age and older with type 1 or type 2 diabetes mellitus, a DRSS level of 47A to 71A
as determined by the CRC (Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA), and Early
Treatment Diabetic Retinopathy Study (ETDRS) best-corrected visual acuity (BCVA) of 20/800 or
better. The exclusion criteria consisted of CST greater than 320 µm in the study eye; central DME
causing vision loss; vitreous hemorrhage; previous treatment of anti-vascular endothelial growth
factor (VEGF) pharmacotherapies, corticosterids, dexamethasone, or fluocinolone acetonide in the
study eye; and a history of vitrectomy or panretinal photocoagulation. Further details are available
in (2).

The Treat and Extend Protocol in Patients with Diabetic Macular Edema (TREX-DME) study
was a prospective, randomized, phase I/II, multicenter clinical trial (ClinicalTrials.gov identi-
fier, NCT01934556). The purpose of the study was to compare the administration of intravitreal
ranibizumab injections for eyes with center-involving diabetic macular edema on the basis of monthly
dosing or a treat and extend algorithm with and without angiography-guided macular laser photoco-
agulation. Between November 2013 and April 2015, 150 eyes from 116 subjects were enrolled in
TREX-DME given the following inclusion crtieria: type 1 or type 2 diabetes mellitus, center-involving
DME, ETDRS BCVA between 79 and 24 letters (Snellen equivalent, 20/25-20/320). The exclusion
criteria consisted of previous treatment of anti-VEGF pharmacotherapies, corticosteroids, or focal
macular laser. Fifty-six out of the 150 study eyes were evalulated at Retina Consultants of Texas
study sites and are included in this data set. Further details are available in (3; 4; 5; 6).

A summary of the two studies and the processes involved is provided as Summary-DR-DME-
Studies.docx under the labels folder accessed through Appendix A.

D.3 ML Centric Label description

The ml centric labels directory within the label access provided in Appendix A consists of two
CSV files. The first is the Biomarker-Clinical-Data-Images.csv. The labels for all 9408 images with
biomarker alebls are provided in the csv file. Two screenshots of this CSV file from both the PRIME
and TREX-DME trials are shown in Fig. 12 and 13 respectively. The first column provides a path
within the image folder structure. The path includes the following:

1. Trial: Can refer to either PRIME or TREX-DME.
2. Arm: TREX-DME has an additional cohort-based subfolder within the trial: GILA, Monthly,

and TREX that identify specific cohorts of patients based on treatment.
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Figure 12: ML Centric Labels Datasheet within the OLIVES Dataset for PRIME trial

Figure 13: ML Centric Labels Datasheet within the OLIVES Dataset for TREX-DME trial

3. Folder: Refers to the code that identifies each patient.
4. Visit: Refers to the visit that the current images and labels refer to. Note that in both the

clinical studies, the biomarkers are retrospectively added to the first and last visits. Hence,
in TREX-DME, the biomarkers are labeled at V1 and V22 for the first considered patient
and so on.

5. Eye: The possible values are "OD" or "OS" and this serves to identify the right or left eye,
respectively.

6. Image name: The name that is provided in the dataset directory on Zenodo.

Scan can be one of 49 slices that exists in a 3D volume which is obtained from the OCT machine
for every patient for every visit. The next 16 columns refer to biomarkers the full list of which is
present in Table 1 and whose generation process and abbreviations are described in Appendix B.5.1.
1 indicates their presence for the considered scan while 0 indicates their absence.

The last four columns refer to clinical labels - Eye ID, BCVA, CST, and Patient ID. The ranges of
BCVA and CST are shown in Fig. 4 while their significance is expanded in Appendix B.5.2.

The second csv file under ml centric labels is Clinical-Data-Images.csv. This file holds the path name
and only the four clinical labels for all 78, 189 scans.
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