A Proofs

A. 1 Proof of Thm. 1

We will assume without loss of generality that the condition $\inf _{\delta \in(0,1)}\left|\frac{\sigma(\delta)+\sigma(-\delta)}{\delta}\right| \geq \alpha$ stated in the theorem holds without an absolute value, namely

$$
\begin{equation*}
\inf _{\delta \in(0,1)} \frac{\sigma(\delta)+\sigma(-\delta)}{\delta} \geq \alpha \tag{2}
\end{equation*}
$$

To see why, note that if $\inf _{\delta \in(0,1)}\left|\frac{\sigma(\delta)+\sigma(-\delta)}{\delta}\right| \geq \alpha \geq 0$, then $\frac{\sigma(\delta)+\sigma(-\delta)}{\delta}$ can never change sign as a function of δ (otherwise it will be 0 for some δ). Hence, the condition implies that either $\frac{\sigma(\delta)+\sigma(-\delta)}{\delta} \geq \alpha$ for all $\delta \in(0,1)$, or that $-\frac{\sigma(\delta)+\sigma(-\delta)}{\delta} \geq \alpha$ for all $\delta \in(0,1)$. We simply choose to treat the first case, as the second case can be treated with a completely identical analysis, only flipping some of the signs.

Fix some sufficiently large dimension d and integer $m \leq d$ to be chosen later. Choose $\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}$ to be some m orthogonal vectors of norm b_{x} in \mathbb{R}^{d}. Let X be the $d \times m$ matrix whose i-th column is \mathbf{x}_{i}. Given this input set, it is enough to show that there is some number s, such that for any $\mathbf{y} \in\{0,1\}^{m}$, we can find a predictor (namely, \mathbf{u}, W depending on \mathbf{y}) in our class, such that $\|\mathbf{u}\| \leq b,\|W\| \leq B$, and

$$
\forall i, \mathbf{u}^{\top} \sigma\left(W \mathbf{x}_{i}\right) \text { is }\left\{\begin{array}{ll}
\leq s-\epsilon & y_{i}=0 \tag{3}\\
\geq s+\epsilon & y_{i}=1
\end{array} .\right.
$$

We will do so as follows: We let

$$
\mathbf{u}=\frac{b}{\sqrt{n}} \mathbf{1} \quad \text { and } \quad W=\frac{\delta}{b_{x}^{2}} V \operatorname{diag}(\mathbf{y}) X^{\top}
$$

Where $\delta \in(0,1)$ is a certain scaling factor and V is a ± 1-valued matrix of size $n \times m$, both to be chosen later. In particular, we will assume that V is approximately balanced, in the sense that for any column $i \in[n]$ of V, if p_{i} is the portion of +1 entries in the column, then

$$
\begin{equation*}
\max _{i}\left|\frac{1}{2}-p_{i}\right| \leq \frac{\alpha}{8} . \tag{4}
\end{equation*}
$$

For any $i \in[m]$, since $\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}$ are orthogonal and of norm b_{x}, we have

$$
\mathbf{u}^{\top} \sigma\left(W \mathbf{x}_{i}\right)=\mathbf{u}^{\top} \sigma\left(\frac{\delta}{b_{x}^{2}} V \operatorname{diag}(\mathbf{y}) X^{\top} \mathbf{x}_{i}\right)=\mathbf{u}^{\top} \sigma\left(\delta y_{i} \mathbf{v}_{i}\right)=\frac{b}{\sqrt{n}} \sum_{j=1}^{n} \sigma\left(\delta y_{i} V_{j, i}\right)
$$

where \mathbf{v}_{i} is the i-th column of V, and $V_{j, i}$ is the entry of V in the j-th row and i-th column. Then we have the following:

- If $y_{i}=0$, this equals $b \sqrt{n} \sigma(0)=0$.
- If $y_{i}=1$, this equals $b \sqrt{n}\left(p_{i} \sigma(\delta)+\left(1-p_{i}\right) \sigma(-\delta)\right)$, where $p_{i} \in\left[\frac{1}{2}-\frac{\alpha}{8}, \frac{1}{2}+\frac{\alpha}{8}\right]$ is the portion of entries in the i-th column of V with value +1 . Rewriting it and using Eq. (2), Eq. (4) and the fact that $\sigma(\cdot)$ is 1-Lipschitz on $[-1,+1]$, we get the expression

$$
b \sqrt{n}\left(\frac{\sigma(\delta)+\sigma(-\delta)}{2}-\left(\frac{1}{2}-p_{i}\right)(\sigma(\delta)-\sigma(-\delta))\right) \geq b \sqrt{n}\left(\frac{\delta \alpha}{2}-\frac{\alpha}{8} \cdot 2 \delta\right)=\frac{b \sqrt{n} \delta \alpha}{4} .
$$

Recalling Eq. (3), we get that by fixing $s=\frac{\sqrt{n} \delta \alpha}{8}$, we can shatter the dataset as long as

$$
\begin{equation*}
\frac{b \sqrt{n} \delta \alpha}{8} \geq \epsilon \quad \Rightarrow \quad \delta \geq \frac{8 \epsilon}{\alpha b \sqrt{n}} \tag{5}
\end{equation*}
$$

Leaving this condition for a moment, we now turn to specify how δ, V is chosen, so as to satisfy the condition $\|W\|=\left\|\frac{\delta}{b_{x}^{2}} V \operatorname{diag}(\mathbf{y}) X^{\top}\right\| \leq B$. To that end, we let V be any ± 1-valued $n \times m$ matrix which satisfies Eq. (4) as well as $\|V\| \leq c(\sqrt{n}+\sqrt{m})$, where $c \geq 1$ is some universal constant.

Such a matrix necessarily exists assuming m is sufficiently larger than $\frac{1}{\alpha^{2}}$. It then follows that $\|W\| \leq \frac{\delta}{b_{x}^{2}}\|V\| \cdot\|\operatorname{diag}(\mathbf{y})\| \cdot\|X\| \leq \frac{\delta}{b_{x}^{2}} \cdot c(\sqrt{n}+\sqrt{m}) \cdot b_{x}=\frac{\delta}{b_{x}} \cdot c(\sqrt{n}+\sqrt{m})$. Therefore, by assuming

$$
\delta \leq \frac{B b_{x}}{c(\sqrt{n}+\sqrt{m})}
$$

we ensure that $\|W\| \leq B$.
Collecting the conditions on δ (namely, that it is in $(0,1)$, satisfies Eq. (5), as well as the displayed equation above), we get that there is an appropriate choice of δ and we can shatter our m points, as long as m is sufficiently larger than $1 / \alpha^{2}$ and that

$$
1>\frac{B b_{x}}{c(\sqrt{n}+\sqrt{m})} \geq \frac{8 \epsilon}{\alpha b \sqrt{n}}
$$

The first inequality is satisfied if (say) we can choose $m \geq\left(B b_{x} / c\right)^{2}$ (which we will indeed do in the sequel). As to the second inequality, it is certainly satisfied if $m \geq n$, as well as

$$
\frac{B b_{x}}{2 c \sqrt{m}} \geq \frac{8 \epsilon}{\alpha b \sqrt{n}} \Longrightarrow m \leq\left(\frac{\alpha}{16 c}\right)^{2} \cdot \frac{\left(b B b_{x}\right)^{2} n}{\epsilon^{2}}
$$

Thus, we can shatter any number m of points up to this upper bound. Picking m on this order (assuming it is sufficiently larger than $1 / \alpha^{2}, B^{2}$ or n), assuming that the dimension d is larger than m, and renaming the universal constants, the result follows.

A. 2 Proof of Thm. 2

To simplify notation, we rewrite $\sup _{\mathbf{u}, W:\|\mathbf{u}\| \leq b,\|W\|_{F} \leq B}$ as simply $\sup _{\mathbf{u}, W}$. Also, we let \mathbf{w}_{j} denote the j-th row of the matrix W.
Fix some set of inputs $\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}$ with norm at most b_{x}. The Rademacher complexity equals

$$
\begin{aligned}
\mathbb{E}_{\boldsymbol{\epsilon}} \sup _{\mathbf{u}, W} & \frac{1}{m} \sum_{i=1}^{m} \epsilon_{i} \mathbf{u}^{\top} \sigma\left(W \mathbf{x}_{i}\right)=\mathbb{E}_{\boldsymbol{\epsilon}} \sup _{\mathbf{u}, W} \frac{1}{m} \mathbf{u}^{\top}\left(\sum_{i=1}^{m} \epsilon_{i} \sigma\left(W \mathbf{x}_{i}\right)\right) \\
& =\frac{b}{m} \cdot \mathbb{E}_{\boldsymbol{\epsilon}} \sup _{W}\left\|\sum_{i=1}^{m} \epsilon_{i} \sigma\left(W \mathbf{x}_{i}\right)\right\|=\frac{b}{m} \cdot \mathbb{E}_{\boldsymbol{\epsilon}} \sup _{W} \sqrt{\sum_{j=1}^{n}\left(\sum_{i=1}^{m} \epsilon_{i} \sigma\left(\mathbf{w}_{j}^{\top} \mathbf{x}_{i}\right)\right)^{2}} .
\end{aligned}
$$

Each matrix in the set $\left\{W \in \mathbb{R}^{d \times n}:\|W\|_{F} \leq B\right\}$ is composed of rows, whose sum of squared norms is at most B^{2}. Thus, the set can be equivalently defined as the set of $d \times n$ matrices, where each row j equals $v_{j} \mathbf{w}_{j}$ for some $v_{j}>0,\|\mathbf{w}\|_{j} \leq 1$, and $\left\|\left(v_{1}, \ldots, v_{n}\right)\right\|^{2}=\|\mathbf{v}\|^{2} \leq B^{2}$. Noting that each v_{j} is positive, we can upper bound the expression in the displayed equation above as follows:

$$
\begin{align*}
& \frac{b}{m} \cdot \mathbb{E}_{\boldsymbol{\epsilon}} \sup _{\mathbf{v},\left\{\mathbf{w}_{j}\right\}} \sqrt{\sum_{j=1}^{n}\left(\sum_{i=1}^{m} \epsilon_{i} \sigma\left(v_{j} \mathbf{w}_{j}^{\top} \mathbf{x}_{i}\right)\right)^{2}} \\
& =\frac{b}{m} \cdot \mathbb{E}_{\boldsymbol{\epsilon}} \sup _{\mathbf{v},\left\{\mathbf{w}_{j}\right\}} \sqrt{\sum_{j=1}^{n} v_{j}^{2}\left(\sum_{i=1}^{m} \frac{\epsilon_{i}}{v_{j}} \sigma\left(v_{j} \mathbf{w}_{j}^{\top} \mathbf{x}_{i}\right)\right)^{2}} \\
& \leq \frac{b}{m} \cdot \mathbb{E}_{\boldsymbol{\epsilon}} \sup _{\mathbf{v}, \mathbf{v}^{\prime},\left\{\mathbf{w}_{j}\right\}} \sqrt{\sum_{j=1}^{n}{v^{\prime}}_{j}^{2}\left(\sum_{i=1}^{m} \frac{\epsilon_{i}}{v_{j}} \sigma\left(v_{j} \mathbf{w}_{j}^{\top} \mathbf{x}_{i}\right)\right)^{2}} \tag{6}
\end{align*}
$$

where $\mathbf{v}^{\prime}=\left(v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right)$ satisfies $\left\|\mathbf{v}^{\prime}\right\|^{2}=\sum_{j=1}^{n}{v^{\prime}}_{j}^{2} \leq B^{2}$ (note that \mathbf{v} must also satisfy this constraint). Considering this constraint in Eq. (6), we see that for any choice of ϵ, \mathbf{v} and $\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}$, the supremum over \mathbf{v}^{\prime} is clearly attained by letting $v^{\prime}{ }_{j^{*}}=B$ for some j^{*} for which

[^0]$\left(\sum_{i=1}^{m} \frac{\epsilon_{i}}{v_{j}} \sigma\left(v_{j} \mathbf{w}_{j}^{\top} \mathbf{x}_{i}\right)\right)^{2}$ is maximized, and $v^{\prime}{ }_{j}=0$ for all $j \neq j *$. Plugging this observation back into Eq. (6) and writing the supremum constraints explicitly, we can upper bound the displayed equation by
\[

$$
\begin{align*}
& \frac{b B}{m} \cdot \mathbb{E}_{\boldsymbol{\epsilon}} \sup _{\mathbf{v}: \min _{j} v_{j}>0,\|\mathbf{v}\| \leq B} \sup _{\mathbf{w}_{1}, \ldots \mathbf{w}_{n}: \max _{j}\left\|\mathbf{w}_{j}\right\| \leq 1} \max _{j}\left|\sum_{i=1}^{m} \frac{\epsilon_{i}}{v_{j}} \sigma\left(v_{j} \mathbf{w}_{j}^{\top} \mathbf{x}_{i}\right)\right| \\
& \quad=\frac{b B}{m} \cdot \mathbb{E}_{\boldsymbol{\epsilon}} \sup _{v \in(0, B], \mathbf{w}:\|\mathbf{w}\| \leq 1}\left|\sum_{i=1}^{m} \frac{\epsilon_{i}}{v} \sigma\left(v \mathbf{w}^{\top} \mathbf{x}_{i}\right)\right| \\
& \quad=\frac{b B}{m} \cdot \mathbb{E}_{\boldsymbol{\epsilon}} \sup _{v \in(0, B], \mathbf{w}:\|\mathbf{w}\| \leq 1}\left|\sum_{i=1}^{m} \epsilon_{i} \psi_{v}\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right)\right| \tag{7}
\end{align*}
$$
\]

where $\psi_{v}(z):=\frac{\sigma(v z)}{v}$ for any $z \in \mathbb{R}$. Since $\sigma(\cdot)$ is L-Lipschitz, it follows that $\psi_{\mathbf{v}}(\cdot)$ is also L-Lipschitz regardless of v, since for any $z, z^{\prime} \in \mathbb{R}$,

$$
\left|\psi_{v}(z)-\psi_{v}\left(z^{\prime}\right)\right|=\frac{\left|\sigma(v z)-\sigma\left(v z^{\prime}\right)\right|}{v} \leq \frac{L\left|v z-v z^{\prime}\right|}{v}=L\left|z-z^{\prime}\right|
$$

Thus, the supremum over v in Eq. (7) corresponds to a supremum over a class of L-Lipschitz functions which all equal 0 at the origin (since $\psi_{v}(0)=\frac{\sigma(0)}{v}=0$ by assumption). As a result, we can upper bound Eq. (7) by

$$
\frac{b B}{m} \cdot \mathbb{E}_{\boldsymbol{\epsilon}} \sup _{\psi \in \Psi_{L}, \mathbf{w}:\|\mathbf{w}\| \leq 1}\left|\sum_{i=1}^{m} \epsilon_{i} \psi\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right)\right|
$$

where Ψ_{L} is the class of all L-Lipschitz functions which equal 0 at the origin.
To continue, it will be convenient to get rid of the absolute value in the displayed expression above. This can be done by noting that the expression equals

$$
\begin{align*}
& \frac{b B}{m} \cdot \mathbb{E}_{\boldsymbol{\epsilon}} \sup _{\psi \in \Psi_{L}, \mathbf{w}:\|\mathbf{w}\| \leq 1} \max \left\{\sum_{i=1}^{m} \epsilon_{i} \psi\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right),-\sum_{i=1}^{m} \epsilon_{i} \psi\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right)\right\} \\
& \stackrel{(*)}{\leq} \frac{b B}{m} \cdot \mathbb{E}_{\boldsymbol{\epsilon}}\left[\sup _{\psi \in \Psi_{L}, \mathbf{w}:\|\mathbf{w}\| \leq 1} \sum_{i=1}^{m} \epsilon_{i} \psi\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right)+\sup _{\psi \in \Psi_{L}, \mathbf{w}:\|\mathbf{w}\| \leq 1}-\sum_{i=1}^{m} \epsilon_{i} \psi\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right)\right] \\
& \stackrel{(* *)}{=} \frac{2 b B}{m} \cdot \mathbb{E}_{\boldsymbol{\epsilon}} \sup _{\psi \in \Psi_{L}, \mathbf{w}:\|\mathbf{w}\| \leq 1} \sum_{i=1}^{m} \epsilon_{i} \psi\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right), \tag{8}
\end{align*}
$$

where $(*)$ follows from the fact that $\max \{a, b\} \leq a+b$ for non-negative a, b and the observation that the supremum is always non-negative (it is only larger, say, than the specific choice of ψ being the zero function), and $(* *)$ is by symmetry of the function class Ψ_{L} (if $\psi \in \Psi_{L}$, then $-\psi \in \Psi_{L}$ as well).

Considering Eq. (8), this is $2 b B$ times the Rademacher complexity of the function class $\{\mathbf{x} \mapsto$ $\left.\psi\left(\mathbf{w}^{\top} \mathbf{x}\right): \psi \in \Psi_{L},\|\mathbf{w}\| \leq 1\right\}$. In other words, this class is a composition of all linear functions of norm at most 1 , and all univariate L-Lipschitz functions crossing the origin. Fortunately, the Rademacher complexity of such composed classes was analyzed in Golowich et al. [2017] for a different purpose. In particular, noting that $\mathbf{w}^{\top} \mathbf{x}_{i}$ is bounded in $\left[-b_{x}, b_{x}\right]$, and applying Theorem 4 from that paper, we get that Eq. (8) is upper bounded by

$$
\begin{equation*}
2 b B \cdot c L\left(\frac{b_{x}}{\sqrt{m}}+\log ^{3 / 2}(m) \cdot \mathcal{R}_{m}(\mathcal{H})\right) \tag{9}
\end{equation*}
$$

for some universal constant $c>0$, where $\mathcal{H}=\left\{\mathbf{x} \mapsto \mathbf{w}^{\top} \mathbf{x}:\|\mathbf{w}\| \leq 1\right\}$, and $\mathcal{R}_{m}(\mathcal{H})$ is the Rademacher complexity of \mathcal{H}.

To complete the proof, we need to employ a standard upper bound on $\hat{\mathcal{R}}_{m}(\mathcal{H})$ (see Bartlett and Mendelson [2002], Shalev-Shwartz and Ben-David [2014]), which we derive below for completeness:

$$
\begin{aligned}
\hat{\mathcal{R}}_{m}(\mathcal{H}) & =\mathbb{E}_{\boldsymbol{\epsilon}} \sup _{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \epsilon_{i} h\left(\mathbf{x}_{i}\right)=\frac{1}{m} \mathbb{E}_{\boldsymbol{\epsilon}} \sup _{\mathbf{w}:\|\mathbf{w}\| \leq 1} \sum_{i=1}^{m} \epsilon_{i} \mathbf{w}^{\top} \mathbf{x}_{i} \\
& =\frac{1}{m} \mathbb{E}_{\boldsymbol{\epsilon}} \sup _{\mathbf{w}:\|\mathbf{w}\| \leq 1} \mathbf{w}^{\top}\left(\sum_{i=1}^{m} \epsilon_{i} \mathbf{x}_{i}\right) \stackrel{(*)}{=} \frac{1}{m} \mathbb{E}_{\boldsymbol{\epsilon}}\left\|\sum_{i=1}^{m} \epsilon_{i} \mathbf{x}_{i}\right\| \\
& \stackrel{(* *)}{\leq} \frac{1}{m} \sqrt{\mathbb{E}_{\boldsymbol{\epsilon}}\left\|\sum_{i=1}^{m} \epsilon_{i} \mathbf{x}_{i}\right\|^{2}}=\frac{1}{m} \sqrt{\mathbb{E}_{\boldsymbol{\epsilon}} \sum_{i, i^{\prime}=1}^{m} \epsilon_{i} \epsilon_{i^{\prime}} \mathbf{x}_{i}^{\top} \mathbf{x}_{i^{\prime}}} \\
& =\frac{1}{m} \sqrt{\sum_{i=1}^{m}\left\|\mathbf{x}_{i}\right\|^{2}} \leq \frac{1}{m} \sqrt{m b_{x}^{2}}=\frac{b_{x}}{\sqrt{m}}
\end{aligned}
$$

where $(*)$ is by the Cauchy-Schwarz inequality, and $(* *)$ is by Jensen's inequality. Plugging this back into Eq. (9), we get the following upper bound:

$$
2 b B \cdot c L\left(\frac{b_{x}}{\sqrt{m}}+\log ^{3 / 2}(m) \cdot \frac{b_{x}}{\sqrt{m}}\right)=2 c b B b_{x} L \cdot \frac{1+\log ^{3 / 2}(m)}{\sqrt{m}}
$$

Upper bounding this by ϵ, solving for m and simplifying a bit, the result follows.

A. 3 Proof of Thm. 3

We fix a number of inputs m to be chosen later. We let X be the $d \times m$ matrix whose i-th column is \mathbf{x}_{i}. We choose X to be any matrix such that the following conditions hold for some universal constant $c>0$:

- Every entry of X is in $\left\{ \pm \frac{b_{x}}{\sqrt{d}}\right\}$ (hence $\forall i,\left\|\mathbf{x}_{i}\right\|=1$)
- $\max _{i^{\prime} \neq i}\left|\mathbf{x}_{i}^{\top} \mathbf{x}_{i^{\prime}}\right| \leq c b_{x}^{2} \sqrt{\frac{\log (d)}{d}}$
- $\|X\| \leq c b_{x}\left(1+\sqrt{\frac{m}{d}}\right)$.

The existence of such a matrix follows from the probabilistic method: If we simply choose each entry of X independently and uniformly from $\left\{ \pm \frac{1}{\sqrt{d}}\right\}$, then the first condition automatically holds; The second condition holds with high probability by a standard concentration of measure argument and a union bound; And the third condition holds with arbitrarily high constant probability (by Markov's inequality and the fact that $\mathbb{E}\left[\left\|\frac{\sqrt{d}}{b_{x}} \cdot X\right\|\right] \leq c(\sqrt{d}+\sqrt{m})$, see for example Seginer [2000]). Thus, by a union bound, a random matrix satisfies all of the above with some positive probability, hence such a matrix X exists.
Given this input set, it is enough to show that for any $\mathbf{y} \in\{0,1\}^{m}$, we can find a predictor (namely, \mathbf{u}, W depending on \mathbf{y}) in our class, such that $\|\mathbf{u}\| \leq b,\|W\| \leq B$, and

$$
\forall i, \mathbf{u}^{\top} \sigma\left(W \mathbf{x}_{i}\right) \text { is } \begin{cases}\leq 0 & y_{i}=0 \tag{10}\\ \geq 2 \epsilon & y_{i}=1\end{cases}
$$

We will do so as follows: Letting $a \geq 0, p \in[0,1]$ be some parameters to be chosen later, we let

$$
\mathbf{u}=\frac{b}{\sqrt{n}} \mathbf{1} \quad \text { and } \quad W=\frac{1}{b_{x}^{2}} \cdot V \operatorname{diag}(\mathbf{y}) X^{\top}
$$

Where $V \in \mathbb{R}^{n \times m}$ is a random matrix with i.i.d. entries chosen as follows:

$$
V_{k, i}= \begin{cases}0 & \text { w.p. } 1-p \\ a & \text { w.p. } \frac{p}{2} \\ -a & \text { w.p. } \frac{p}{2}\end{cases}
$$

Note that the condition $\|\mathbf{u}\| \leq b$ follows directly from the definition of \mathbf{u}. We will show that there is a way to choose the parameters a, p such that the following holds: For any $\mathbf{y} \in\{0,1\}^{m}$, with high probability over the choice of V, Eq. (10) holds as well as $\|W\| \leq B$. This implies that for any \mathbf{y}, there exists some fixed choice of V (and hence W) such that $\|W\| \leq B$ as well as Eq. (10) holds, implying the theorem statement.
We break this argument into two lemmas:
Lemma 1. There exists a universal constant $c^{\prime}>0$ such that the following holds: For any $\epsilon \geq 0$, $\delta \in(0, \exp (-1))$ and $\mathbf{y} \in\{0,1\}^{m}$, if we assume

$$
\beta=c^{\prime} a \sqrt{\frac{\log (d)}{d}} \log \left(\frac{m}{\delta}\right)(\sqrt{p m}+1)
$$

as well as $a \geq 4 \beta$ and bap $\sqrt{n} \geq 8 \epsilon$, then Eq. (10) holds with probability at least $1-\delta-$ $m \exp (-p n / 16)$ over the choice of V.

Proof. Let \mathbf{w}_{k} be the k-th row of W. Fixing some $i \in[m]$, we have

$$
\begin{align*}
\mathbf{u}^{\top} \sigma\left(W \mathbf{x}_{i}\right) & =\mathbf{u}^{\top}\left[W \mathbf{x}_{i}-\beta\right]_{+}=\frac{b}{\sqrt{n}} \sum_{k=1}^{n}\left[\mathbf{w}_{k}^{\top} \mathbf{x}_{i}-\beta\right]_{+}=\frac{b}{\sqrt{n}} \sum_{k=1}^{n}\left[\sum_{i^{\prime}=1}^{m} \frac{1}{b_{x}^{2}} V_{k, i^{\prime}} y_{i^{\prime}} \mathbf{x}_{i^{\prime}}^{\top} \mathbf{x}_{i}-\beta\right]_{+} \\
& =\frac{b}{\sqrt{n}} \sum_{k=1}^{n}\left[V_{k, i} y_{i}+\sum_{i^{\prime} \neq i} \frac{1}{b_{x}^{2}} V_{k, i^{\prime}} y_{i^{\prime}} \mathbf{x}_{i^{\prime}}^{\top} \mathbf{x}_{i}-\beta\right]_{+} \tag{11}
\end{align*}
$$

Recalling the assumptions on X and the random choice of V, note that $\sum_{i^{\prime} \neq i} \frac{1}{b_{x}^{2}} V_{k, i^{\prime}} y_{i^{\prime}} \mathbf{x}_{i^{\prime}}^{\top} \mathbf{x}_{i}$ is the sum of $m-1$ independent random variables, each with mean 0 , absolute value at most $\left|\frac{a}{b_{x}^{2}} y_{i^{\prime}} \mathbf{x}_{i^{\prime} \top} \mathbf{x}_{i}\right| \leq a c \sqrt{\frac{\log (d)}{d}}$, and standard deviation at most $\sqrt{p} \cdot a c \sqrt{\frac{\log (d)}{d}}$. Thus, by Bernstein's inequality, for any $\delta \in(0, \exp (-1))$, it holds with probability at least $1-\delta$ that

$$
\begin{aligned}
\left|\sum_{i^{\prime} \neq i} \frac{1}{b_{x}^{2}} V_{k, i^{\prime}} y_{i^{\prime}} \mathbf{x}_{i^{\prime}}^{\top} \mathbf{x}_{i}\right| & \leq c^{\prime}\left(\sqrt{p} \cdot a \sqrt{\frac{\log (d)}{d}} \cdot \sqrt{(m-1) \log \left(\frac{1}{\delta}\right)}+a \sqrt{\frac{\log (d)}{d}} \cdot \log \left(\frac{1}{\delta}\right)\right) \\
& \leq c^{\prime} a \sqrt{\frac{\log (d)}{d}} \log \left(\frac{1}{\delta}\right)(\sqrt{p m}+1)
\end{aligned}
$$

where $c^{\prime}>0$ is some universal constant. Applying a union bound over all $i \in[m]$, we get that with probability at least $1-\delta$,

$$
\max _{i \in[m]}\left|\sum_{i^{\prime} \neq i} \frac{1}{b_{x}^{2}} V_{k, i^{\prime}} y_{i^{\prime}} \mathbf{x}_{i^{\prime}}^{\top} \mathbf{x}_{i}\right| \leq c^{\prime} a \sqrt{\frac{\log (d)}{d}} \log \left(\frac{m}{\delta}\right)(\sqrt{p m}+1)
$$

Recalling that we choose β to equal this upper bound, and plugging back into Eq. (11), we get that with probability at least $1-\delta$,

$$
\forall i \in[m], \mathbf{u}^{\top} \sigma\left(W \mathbf{x}_{i}\right) \text { is } \begin{cases}\leq \frac{b}{\sqrt{n}} \sum_{k=1}^{n}\left[V_{k, i} y_{i}\right]_{+}=0 & \text { if } y_{i}=0 \\ \geq \frac{b}{\sqrt{n}} \sum_{k=1}^{n}\left[V_{k, i} y_{i}-2 \beta\right]_{+}=\frac{b}{\sqrt{n}} \sum_{k=1}^{n}\left[V_{k, i}-2 \beta\right]_{+} & \text {if } y_{i}=1\end{cases}
$$

Moreover, by the assumption $a \geq 4 \beta$, we have

$$
\frac{b}{\sqrt{n}} \sum_{k=1}^{n}\left[V_{k, i}-2 \beta\right]_{+} \geq \frac{b}{\sqrt{n}} \sum_{k: V_{k, i}=a}\left[a-\frac{a}{2}\right]_{+} \geq \frac{b a}{2 \sqrt{n}} \sum_{k: V_{k, i}=a} 1
$$

Note that $\mathbb{E}_{V}\left[\sum_{k: V_{k, i}=a} 1\right]=\frac{p n}{2}$. Thus, by a standard multiplicative Chernoff bound and a union bound, $\sum_{k: V_{k, i}=a} 1 \geq \frac{p n}{4}$ simultaneously for all $i \in[m]$, with probability at least $1-m \exp (-p n / 16)$. Combining with the above using a union bound, we get that with probability at least $1-\delta-m \exp (-p n / 16)$ over the choice of V,

$$
\forall i \in[m], \quad \mathbf{u}^{\top} \sigma\left(W \mathbf{x}_{i}\right) \text { is }\left\{\begin{array}{ll}
\leq 0 & \text { if } y_{i}=0 \\
\geq \frac{b a p \sqrt{n}}{4} & \text { if } y_{i}=1
\end{array} .\right.
$$

Since we assume $\frac{\operatorname{bap} \sqrt{n}}{4} \geq 2 \epsilon$, the result follows.

Lemma 2. For any $\mathbf{y} \in\{0,1\}^{m}$, with probability at least $\frac{1}{2}$ over the random choice of V, the matrix W satisfies

$$
\|W\|_{F} \leq \frac{a \sqrt{2 n m p}}{b_{x}}
$$

Proof. By definition of W, V and X, we have

$$
\begin{aligned}
\mathbb{E}\left[\|W\|_{F}^{2}\right] & =\sum_{k=1}^{n} \sum_{i=1}^{d} \mathbb{E}\left[W_{k, i}^{2}\right]=\sum_{k=1}^{n} \sum_{i=1}^{d} \mathbb{E}\left[\left(\sum_{j=1}^{m} \frac{1}{b_{x}^{2}} V_{k, j} y_{j} X_{i, j}\right)^{2}\right] \\
& =\frac{1}{b_{x}^{4}} \cdot \sum_{k=1}^{n} \sum_{i=1}^{d} \mathbb{E}\left[\sum_{j, j^{\prime}=1}^{m} V_{k, j} V_{k, j^{\prime}} y_{j} y_{j^{\prime}} X_{i, j} X_{i, j^{\prime}}\right] \\
& =\frac{1}{b_{x}^{4}} \cdot \sum_{k=1}^{n} \sum_{i=1}^{d} \sum_{j=1}^{m} \mathbb{E}\left[V_{k, j}^{2} y_{j}^{2} X_{i, j}^{2}\right] \leq \frac{1}{b_{x}^{4}} \cdot \frac{b_{x}^{2}}{d} \cdot \sum_{k=1}^{n} \sum_{i=1}^{d} \sum_{j=1}^{m} \mathbb{E}\left[V_{k, j}^{2}\right] \\
& =\frac{1}{b_{x}^{2} d} \cdot n d m \cdot p a^{2}=\frac{n m p a^{2}}{b_{x}^{2}}
\end{aligned}
$$

By Markov's inequality, it follows that with probability at least $\frac{1}{2},\|W\|_{F}^{2} \leq 2 \cdot \frac{n m p a^{2}}{b_{x}^{2}}$, from which the result follows.

Combining Lemma 1 and Lemma 2, and choosing $\delta=1 / 4$, we get that with some positive probability over the choice of V, both the shattering condition in Eq. (10) holds, as well as $\|W\|_{F} \leq B$, if the following combination of conditions are met (for suitable universal constant $c_{1}>0$):

$$
m \exp \left(-\frac{p n}{16}\right)<\frac{1}{4}, a \geq c_{1} a \sqrt{\frac{\log (d)}{d}} \log (4 m)(\sqrt{p m}+1), b a p \sqrt{n} \geq 8 \epsilon, a \sqrt{2 n m p} \leq B b_{x}
$$

We now wish to choose the free parameters p, a, to ensure that all these conditions are met (hence we indeed manage to shatter the dataset), while allowing the size m of the shattered set to be as large as possible. We begin by noting that the first condition is satisfied if $p>c_{2} \frac{\log (m)}{n}$, and the second condition is satisfied if $d \geq c_{3}$ and $p \leq c_{4} \frac{d}{\log (d) \log ^{2}(4 m) m}$ (for suitable universal constants $c_{2}, c_{3}, c_{4}>0$). Thus, it is enough to require

$$
\begin{equation*}
d \geq c_{3}, \quad c_{2} \frac{\log (m)}{n}<p \leq c_{4} \frac{d}{\log (d) \log ^{2}(4 m) m}, \quad \text { bap } \sqrt{n} \geq 8 \epsilon, a \sqrt{2 n m p} \leq B b_{x} \tag{12}
\end{equation*}
$$

Let us pick in particular

$$
p=c_{4} \frac{d}{\log (d) \log ^{2}(4 m) m}
$$

(which is valid if it is in $[0,1]$ and if $c_{2} \frac{\log (m)}{n} \leq c_{4} \frac{d}{\log (d) \log ^{2}(4 m) m}$, or equivalently $\left.m \log (m) \log ^{2}(4 m) \leq \frac{c_{4} n d}{c_{2} \log (d)}\right)$ and

$$
a=\frac{8 \epsilon}{b p \sqrt{n}}=\frac{8 \epsilon \log (d) \log ^{2}(4 m) m}{c_{4} b d \sqrt{n}}
$$

(which automatically satisfied the third condition in Eq. (12)). Plugging into Eq. (12), the required conditions hold if we assume

$$
d \geq c_{3}, \frac{c_{4} d}{\log (d) \log ^{2}(4 m) m} \leq 1, m \log ^{3}(4 m) \leq \frac{c_{5} n d}{\log (d)}, c_{6} \frac{\epsilon \sqrt{\log (d)} \log (4 m) m}{b \sqrt{d}} \leq B b_{x}
$$

for appropriate universal constants $c_{5}, c_{6}>0$. The first two conditions are satisfied if we require $m \geq c_{7} d \geq c_{8}$ for suitable universal constants $c_{7}, c_{8}>0$. Thus, it is enough to require the set of conditions

$$
m \geq c_{6} d \geq c_{7}, m \log ^{3}(4 m) \leq \frac{c_{5} n d}{\log (d)}, m \log (4 m) \leq \frac{b B b_{x} \sqrt{d}}{c_{6} \epsilon \sqrt{\log (d)}}
$$

All these conditions are satisfied if we assume $d \geq c_{7} / c_{6}$, pick

$$
\begin{equation*}
m=\tilde{\Theta}\left(\min \left\{n d, \frac{b B b_{x}}{\epsilon} \sqrt{d}\right\}\right) \tag{13}
\end{equation*}
$$

(with the $\tilde{\Theta}$ hiding constants and factors polylogarithmic in $d, n, b, B, b_{x}, \frac{1}{\epsilon}$)), and assume that the parameters are such that this expression is sufficiently larger than d, and that d is larger than some universal constant.

It only remains to track what value of β we have chosen (as a function of the problem parameters). Combining Lemma 1, the choice of a, p from earlier, as well as Eq. (13), it follows that
$\beta=\tilde{\Theta}\left(\frac{a}{\sqrt{d}}(1+\sqrt{p m})\right)=\tilde{\Theta}\left(\frac{\epsilon m}{b d \sqrt{d n}}(1+\sqrt{d})\right)=\tilde{\Theta}\left(\frac{\epsilon m}{b d \sqrt{n}}\right)=\tilde{\Theta}\left(\min \left\{\frac{\epsilon \sqrt{n}}{b}, \frac{B b_{x}}{\sqrt{d n}}\right\}\right)$,
which is at most $\tilde{\mathcal{O}}\left(B b_{x} / \sqrt{d n}\right)$.

A. 4 Proof of Corollary 1

Thm. 3 implies that a certain dataset $\left\{\mathbf{x}_{i}\right\}_{i=1}^{m}$ of points in \mathbb{R}^{d} of norm at most b_{x} (where m is the lower bound stated in the theorem) can be shattered with margin ϵ, using networks in $\mathcal{F}_{b, B, n, d}^{\sigma}$ of the form $\mathbf{x} \mapsto \mathbf{u}^{\top} \sigma(W \mathbf{x})$, where $\sigma=[z-\beta]_{+}$for some $\beta \in\left[0, \tilde{\mathcal{O}}\left(\frac{B b_{x}}{\sqrt{d n}}\right)\right]$. Our key observation is the following: Any network $\mathbf{x} \mapsto \mathbf{u}^{\top} \sigma(W \mathbf{x})$ can be equivalently written as $\tilde{\mathbf{x}} \mapsto \mathbf{u}^{\top}[\tilde{W} \tilde{\mathbf{x}}]_{+}$, where $\tilde{\mathbf{x}}=\left(\mathbf{x}, b_{x}\right)$, and $\tilde{W}=\left[W,-\frac{\beta}{b_{x}} \cdot \mathbf{1}\right]$ (namely, we add to W another column with every entry being equal to $-\frac{\beta}{b_{x}}$. Note that if $\|\mathbf{x}\| \leq b_{x}$, then $\|\tilde{\mathbf{x}}\| \leq \sqrt{2} b_{x}$, and $\|\tilde{W}\| \leq\|W\|+\left\|-\frac{\beta}{b_{x}} \cdot \mathbf{1}\right\| \leq$ $B+\frac{\beta}{b_{x}} \sqrt{n} \leq 2 B$ under the corollary's conditions. Thus, if we can shatter a set of points $\left\{\mathbf{x}_{i}\right\}_{i=1}^{m}$ in the unit ball in \mathbb{R}^{d} using networks from $\mathcal{F}_{b, B, n, d}^{\sigma}$, we can also shatter $\left\{\tilde{\mathbf{x}}_{i}\right\}_{i=1}^{m}$ in \mathbb{R}^{d+1} (with norm $\leq \sqrt{2} b_{x}$) using networks from $\mathcal{F}_{b, 2 B, n, d+1}^{[\cdot]_{+}}$. Rescaling b_{x}, B, d appropriately, we get the same shattering number lower bound for $\mathcal{F}_{b, B, n, d}^{[\cdot]_{+}}$and inputs with norm $\leq b_{x}$ up to small numerical constants which get absorbed into the $\tilde{\Omega}(\cdot)$ notation.

A. 5 Proofs of Thm. 4 and Thm. 5

In what follows, given a vector \mathbf{u}_{i}, we let $u_{i, j}$ denote its j-th entry.
The proofs rely on the following two key technical lemmas:
Lemma 3. Let W be a matrix such that $\|W\| \leq 1$, with row vectors $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots$ Then the following holds for any set of vectors $\left\{\mathbf{u}_{i}\right\}$ with the same dimensionality as \mathbf{w}_{1}, and any scalars $\left\{z_{i, \ell}\right\},\left\{z_{i}\right\}$ indexed by i, ℓ :

$$
\sum_{\ell}\left(\sum_{i}\left(\mathbf{w}_{\ell}^{\top} \mathbf{u}_{i}\right) z_{i, \ell}\right)^{2} \leq \sum_{\ell, r}\left(\sum_{i} u_{i, r} z_{i, \ell}\right)^{2}
$$

and

$$
\sum_{\ell}\left(\sum_{i}\left(\mathbf{w}_{\ell}^{\top} \mathbf{u}_{i}\right) z_{i}\right)^{2} \leq \sum_{r}\left(\sum_{i} u_{i, r} z_{i}\right)^{2}
$$

where the sum r is over all all coordinates of each \mathbf{u}_{i}.
Proof. Starting with the first inequality, the left hand side equals

$$
\sum_{\ell}\left(\mathbf{w}_{\ell}^{\top}\left(\sum_{i} \mathbf{u}_{i} z_{i, \ell}\right)\right)^{2} \leq \sum_{\ell, \ell^{\prime}}\left(\mathbf{w}_{\ell^{\prime}}^{\top}\left(\sum_{i} \mathbf{u}_{i} z_{i, \ell}\right)\right)^{2}=\sum_{\ell}\left\|W^{\top}\left(\sum_{i} \mathbf{u}_{i} z_{i, \ell}\right)\right\|^{2}
$$

By Cauchy-Schwartz and the assumption $\|W\| \leq 1$, this is at most $\sum_{\ell}\left\|\sum_{i} \mathbf{u}_{i} z_{i, \ell}\right\|^{2}=\sum_{\ell, r}\left(\sum_{i} u_{i, r} z_{i, \ell}\right)^{2}$. As to the second inequality, the left hand side
equals

$$
\sum_{\ell}\left(\mathbf{w}_{\ell}^{\top}\left(\sum_{i} \mathbf{u}_{i} z_{i}\right)\right)^{2}=\left\|W^{\top}\left(\sum_{i} \mathbf{u}_{i} z_{i}\right)\right\|^{2} \leq\left\|\sum_{i} \mathbf{u}_{i} z_{i}\right\|^{2}=\sum_{r}\left(\sum_{i} u_{i, r} z_{i}\right)^{2}
$$

where we again used Cauchy Schwartz and the assumption $\|W\| \leq 1$.
Lemma 4. Given a vector $\mathbf{u} \in \mathbb{R}^{d_{i n}}$, a matrix $W \in \mathbb{R}^{d_{\text {out }} \times d_{i n}}$ with row vectors $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots$ such that $\|W\| \leq B$, and a positive integer k, define

$$
f(\mathbf{u})=(W \mathbf{u})^{\circ k}
$$

where ${ }^{\circ k}$ denotes taking the k-th power element-wise. Then for any positive integer r, any vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots$ in $\mathbb{R}^{d_{i n}}$ and any scalars $\epsilon_{1}, \epsilon_{2}, \ldots$, it holds that

$$
\sum_{\ell_{1}, \ldots, \ell_{r}=1}^{d_{o u t}}\left(\sum_{i} \epsilon_{i} f\left(\mathbf{u}_{i}\right)_{\ell_{1}} \cdots f\left(\mathbf{u}_{i}\right)_{\ell_{r}}\right)^{2} \leq B^{2 r k} \cdot \sum_{\ell_{1}, \ldots, \ell_{r k}=1}^{d_{i n}}\left(\sum_{i} \epsilon_{i} u_{i, \ell_{1}} \cdots u_{i, \ell_{r k}}\right)^{2}
$$

Proof. It is enough to prove the result for W such that $\|W\|=1$ (and therefore $B=1$): For any other W, apply the result on $\tilde{f}(\mathbf{u}):=\left(\frac{W}{\|W\|} \mathbf{u}\right)^{\circ k}=\frac{1}{\|W\|^{k}} f(\mathbf{u})$, and rescale accordingly.

The left hand side equals

$$
\begin{equation*}
\sum_{\ell_{1} \ldots \ell_{r}=1}^{d_{\text {out }}}\left(\sum_{i} \epsilon_{i}\left(\mathbf{w}_{\ell_{1}}^{\top} \mathbf{u}_{i}\right)^{\circ k} \cdots\left(\mathbf{w}_{\ell_{r}}^{\top} \mathbf{u}_{i}\right)^{\circ k}\right)^{2} \tag{14}
\end{equation*}
$$

Note that the term inside the square involves the product of $r k$ terms. We now simplify them one-by-one using Lemma 3: To start, we note that the above can be written as

$$
\sum_{\ell_{2} \ldots \ell_{r}=1}^{d_{\text {out }}} \sum_{\ell_{1}=1}^{d_{\text {out }}}\left(\sum_{i}\left(\mathbf{w}_{\ell_{1}}^{\top} \mathbf{u}_{i}\right) \cdot \epsilon_{i}\left(\mathbf{w}_{\ell_{1}}^{\top} \mathbf{u}_{i}\right)^{\circ k-1}\left(\mathbf{w}_{\ell_{2}}^{\top} \mathbf{u}_{i}\right)^{\circ k} \cdots\left(\mathbf{w}_{\ell_{r}}^{\top} \mathbf{u}_{i}\right)^{\circ k}\right)^{2}
$$

Denoting $\epsilon_{i}\left(\mathbf{w}_{\ell_{1}}^{\top} \mathbf{u}_{i}\right)^{\circ k-1}\left(\mathbf{w}_{\ell_{2}}^{\top} \mathbf{u}_{i}\right)^{\circ k} \cdots\left(\mathbf{w}_{\ell_{r}}^{\top} \mathbf{u}_{i}\right)^{\circ k}$ as $z_{i, \ell_{1}}$ and plugging the first inequality in Lemma 3, the above is at most

$$
\sum_{\ell_{2} \ldots \ell_{r}=1}^{d_{o u t}} \sum_{\ell_{1}=1}^{d_{o u t}} \sum_{\ell_{1}^{\prime}=1}^{d_{\text {in }}}\left(\sum_{i} u_{i, \ell_{1}^{\prime}} \epsilon_{i}\left(\mathbf{w}_{\ell_{1}}^{\top} \mathbf{u}_{i}\right)^{\circ k-1}\left(\mathbf{w}_{\ell_{2}}^{\top} \mathbf{u}_{i}\right)^{\circ k} \cdots\left(\mathbf{w}_{\ell_{r}}^{\top} \mathbf{u}_{i}\right)^{\circ k}\right)^{2}
$$

Again pulling out one of the product terms in front, we can rewrite this as

$$
\sum_{\ell_{2} \ldots \ell_{r}=1}^{d_{\text {out }}} \sum_{\ell_{1}^{\prime}=1}^{d_{\text {in }}} \sum_{\ell_{1}=1}^{d_{\text {out }}}\left(\sum_{i}\left(\mathbf{w}_{\ell_{1}}^{\top} \mathbf{u}_{i}\right) \cdot u_{i, \ell_{1}^{\prime}} \epsilon_{i}\left(\mathbf{w}_{\ell_{1}}^{\top} \mathbf{u}_{i}\right)^{\circ k-2}\left(\mathbf{w}_{\ell_{2}}^{\top} \mathbf{u}_{i}\right)^{\circ k} \cdots\left(\mathbf{w}_{\ell_{r}}^{\top} \mathbf{u}_{i}\right)^{\circ k}\right)^{2}
$$

Again using the first inequality in Lemma 3, this is at most

$$
\sum_{\ell_{2} \ldots \ell_{r}=1}^{d_{o u t}} \sum_{\ell_{1}^{\prime}, \ell_{1}^{\prime \prime}=1}^{d_{\text {in }}} \sum_{\ell_{1}=1}^{d_{o u t}}\left(\sum_{i} u_{i, \ell_{1}^{\prime \prime}} u_{i, \ell_{1}^{\prime}} \epsilon_{i}\left(\mathbf{w}_{\ell_{1}}^{\top} \mathbf{u}_{i}\right)^{\circ k-2}\left(\mathbf{w}_{\ell_{2}}^{\top} \mathbf{u}_{i}\right)^{\circ k} \cdots\left(\mathbf{w}_{\ell_{r}}^{\top} \mathbf{u}_{i}\right)^{\circ k}\right)^{2} .
$$

Repeating this to get rid of all but the last $\left(\mathbf{w}_{\ell_{1}}^{\top} \mathbf{u}_{i}\right)$ term, we get the upper bound

$$
\sum_{\ell_{2} \ldots \ell_{r}=1}^{d_{o u t}} \sum_{\ell_{1}^{1} \ldots \ell_{1}^{k-1}=1}^{d_{\text {in }}} \sum_{\ell_{1}=1}^{d_{o u t}}\left(\sum_{i} u_{i, \ell_{1}^{1}} \cdots u_{i, \ell_{1}^{k-1}} \epsilon_{i}\left(\mathbf{w}_{\ell_{1}}^{\top} \mathbf{u}_{i}\right)\left(\mathbf{w}_{\ell_{2}}^{\top} \mathbf{u}_{i}\right)^{\circ k} \cdots\left(\mathbf{w}_{\ell_{r}}^{\top} \mathbf{u}_{i}\right)^{\circ k}\right)^{2}
$$

Again pulling the last $\left(\mathbf{w}_{\ell_{1}}^{\top} \mathbf{u}_{i}\right)$ term in front, and applying now the second inequality in Lemma 3 (as the remaining terms in the product no longer depend on ℓ_{1}), we get the upper bound

$$
\sum_{\ell_{2} \ldots \ell_{r}=1}^{d_{\text {out }}} \sum_{\ell_{1}^{1} \ldots \ell_{1}^{k}=1}^{d_{\text {in }}}\left(\sum_{i} u_{i, \ell_{1}^{1}} \cdots u_{i, \ell_{1}^{k}} \epsilon_{i}\left(\mathbf{w}_{\ell_{2}}^{\top} \mathbf{u}_{i}\right)^{\circ k} \cdots\left(\mathbf{w}_{\ell_{r}}^{\top} \mathbf{u}_{i}\right)^{\circ k}\right)^{2}
$$

Recalling that this is an upper bound on Eq. (14), and applying the same procedure now on the $\left(\mathbf{w}_{\ell_{2}}^{\top} \mathbf{u}_{i}\right),\left(\mathbf{w}_{\ell_{3}}^{\top} \mathbf{u}_{i}\right) \ldots$ terms, we get overall an upper bound of the form

$$
\sum_{\ell_{1}^{1} \ldots \ell_{1}^{k}=1}^{d_{i n}} \ldots \sum_{\ell_{r}^{1} \cdots \ell_{r}^{k}=1}^{d_{i n}}\left(\sum_{i} u_{i, \ell_{1}^{1}} \cdots u_{i, \ell_{r}^{k}} \epsilon_{i}\right)^{2} .
$$

Re-labeling the $r k$ indices as $\ell_{1}, \ldots, \ell_{r k}$, the result follows.

A.5.1 Proof of Thm. 4

Fixing a dataset $\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}$ and applying Cauchy-Schwartz, the Rademacher complexity is

$$
\mathbb{E}_{\epsilon} \sup _{\mathbf{u}, W} \frac{1}{m} \sum_{i=1}^{m} \epsilon_{i} \mathbf{u}^{\top} \sigma\left(W \mathbf{x}_{i}\right) \leq \mathbb{E}_{\epsilon} \sup _{W} \frac{b}{m}\left\|\sum_{i=1}^{m} \epsilon_{i} \sigma\left(W \mathbf{x}_{i}\right)\right\|
$$

Recalling that $\sigma(z)=\sum_{j=1}^{\infty} a_{j} z^{j}$, by the triangle inequality, we have that the above is at most

$$
\mathbb{E}_{\boldsymbol{\epsilon}} \sup _{W} \frac{b}{m} \sum_{j=1}^{\infty}\left|a_{j}\right|\left\|\sum_{i=1}^{m} \epsilon_{i}\left(W \mathbf{x}_{i}\right)^{j}\right\| \leq \frac{b}{m} \sum_{j=1}^{\infty}\left|a_{j}\right| \mathbb{E}_{\boldsymbol{\epsilon}} \sup _{W}\left\|\sum_{i=1}^{m} \epsilon_{i}\left(W \mathbf{x}_{i}\right)^{j}\right\|
$$

where $(\cdot)^{j}$ is applied element-wise. Recalling that the supremum is over matrices of spectral norm at most B, and using Jensen's inequality, the above can be equivalently written as
$\frac{b}{m} \sum_{j=1}^{\infty}\left|a_{j}\right| B^{j} \cdot \mathbb{E}_{\boldsymbol{\epsilon}} \sup _{W:\|W\| \leq 1}\left\|\sum_{i=1}^{m} \epsilon_{i}\left(W \mathbf{x}_{i}\right)^{j}\right\| \leq \frac{b}{m} \sum_{j=1}^{\infty}\left|a_{j}\right| B^{j} \sqrt{\mathbb{E}_{\boldsymbol{\epsilon}} \sup _{W:\|W\| \leq 1}\left\|\sum_{i=1}^{m} \epsilon_{i}\left(W \mathbf{x}_{i}\right)^{j}\right\|^{2}}$.
Using Lemma 4, we have that for any $W:\|W\| \leq 1$,

$$
\left\|\sum_{i=1}^{m} \epsilon_{i}\left(W \mathbf{x}_{i}\right)^{j}\right\|^{2}=\sum_{\ell}\left(\sum_{i} \epsilon_{i}\left(W \mathbf{x}_{i}\right)_{\ell}^{j}\right)^{2} \leq \sum_{\ell_{1}, \ldots, \ell_{j}=1}^{d}\left(\sum_{i=1}^{m} \epsilon_{i} x_{i, \ell_{1}} \cdots x_{i, \ell_{j}}\right)^{2}
$$

Thus,

$$
\begin{aligned}
& \mathbb{E}_{\boldsymbol{\epsilon}} \sup _{W:\|W\| \leq 1}\left\|\sum_{i=1}^{m} \epsilon_{i}\left(W \mathbf{x}_{i}\right)^{j}\right\|^{2} \leq \mathbb{E}_{\boldsymbol{\epsilon}} \sum_{\ell_{1}, \ldots, \ell_{j}=1}^{d}\left(\sum_{i=1}^{m} \epsilon_{i} x_{i, \ell_{1}} \cdots x_{i, \ell_{j}}\right)^{2} \\
& =\mathbb{E}_{\boldsymbol{\epsilon}} \sum_{i, i^{\prime}=1}^{m} \sum_{\ell_{1}, \ldots, \ell_{j}=1}^{d} \epsilon_{i} \epsilon_{i^{\prime}} x_{i, \ell_{1}} x_{i^{\prime}, \ell_{1}} \cdots x_{i, \ell_{j}} x_{i^{\prime}, \ell_{j}} \\
& \stackrel{(*)}{=} \sum_{i=1}^{m} \sum_{\ell_{1}, \ldots, \ell_{j}=1}^{d} x_{i, \ell_{1}}^{2} \cdots x_{i, \ell_{j}}^{2} \\
& =\sum_{i=1}^{m}\left(\sum_{\ell_{1}=1}^{d} x_{i, \ell_{1}}^{2}\right) \cdots\left(\sum_{\ell_{j}=1}^{d} x_{i, \ell_{j}}^{2}\right) \\
& =\sum_{i=1}^{m}\left\|\mathbf{x}_{i}\right\|^{2 j} \leq \sum_{i=1}^{m} b_{x}^{2 j}=m \cdot b_{x}^{2 j}
\end{aligned}
$$

where in $(*)$ we used the fact that each ϵ_{i} is independent and uniformly distributed on ± 1. Plugging this bound back into Eq. (15), we get that the Rademacher complexity is at most

$$
\frac{b}{m} \sum_{j=1}^{\infty}\left|a_{j}\right|\left(B b_{x}\right)^{j} \sqrt{m}=\frac{b \cdot \tilde{\sigma}\left(B b_{x}\right)}{\sqrt{m}}
$$

Upper bounding this by ϵ and solving for m, the result follows.

A. 6 Proof of Example 2

$\sigma(z)=\operatorname{erf}(r z)=\frac{2}{\sqrt{\pi}} \int_{t=0}^{r z} \exp \left(-t^{2}\right) d t=\frac{2}{\sqrt{\pi}} \int_{t=0}^{r z} \sum_{j=0}^{\infty} \frac{\left(-t^{2}\right)^{j}}{j!} d t=\frac{2}{\sqrt{\pi}} \sum_{j=0}^{\infty} \frac{(-1)^{j}(r z)^{2 j+1}}{j!(2 j+1)}$, and therefore $\tilde{\sigma}(z)=\frac{2}{\sqrt{\pi}} \sum_{j=0}^{\infty} \frac{(r z)^{2 j+1}}{j!(2 j+1)} \leq \frac{2 r z}{\sqrt{\pi}} \sum_{j=0}^{\infty} \frac{\left((r z)^{2}\right)^{j}}{j!}=\frac{2 r z}{\sqrt{\pi}} \exp \left((r z)^{2}\right)$.

A. 7 Proof of Example 3

By a computation similar to the previous example, $\sigma(y)=\frac{1}{2} y+\frac{1}{\sqrt{\pi}} \sum_{j=0}^{\infty} \frac{(-1)^{j}\left(r^{2 j+1} y^{2 j+2}\right)}{j!(2 j+1)(2 j+2)}$, and therefore $\tilde{\sigma}(z)=\frac{z}{2}+\frac{1}{\sqrt{\pi}} \sum_{j=0}^{\infty} \frac{r^{2 j+1} z^{2 j+2}}{j!(2 j+1)(2 j+2)} \leq \frac{z}{2}+\frac{r z^{2}}{\sqrt{\pi}} \sum_{j=0}^{\infty} \frac{\left((r z)^{2}\right)^{j}}{j!}=\frac{z}{2}+\frac{r z^{2}}{\sqrt{\pi}} \exp \left((r z)^{2}\right)$.

A. 8 Proof of Thm. 5

For simplicity, we use $\sup _{\mathbf{u}, W^{1}, \ldots, W^{L}}$ as short for $\sup _{\mathbf{u}:\|\mathbf{u}\| \leq b, W^{1}, \ldots, W^{L}: \max _{j}\left\|W^{j}\right\| \leq B}$. The Rademacher complexity equals

$$
\begin{align*}
& \mathbb{E}_{\boldsymbol{\epsilon}} \sup _{\mathbf{u}, W^{1}, \ldots, W^{L}} \frac{1}{m} \sum_{i=1}^{m} \epsilon_{i} f_{L+1}\left(\mathbf{x}_{i}\right)=\mathbb{E}_{\boldsymbol{\epsilon}} \sup _{\mathbf{u}, W^{1}, \ldots, W^{L}} \frac{1}{m} \sum_{i=1}^{m} \epsilon_{i} \mathbf{u}^{\top} f_{L}\left(\mathbf{x}_{i}\right) \\
& \leq \mathbb{E}_{\boldsymbol{\epsilon}} \sup _{\mathbf{u}, W^{1}, \ldots, W^{L}} \mathbf{u}^{\top}\left(\frac{1}{m} \sum_{i=1}^{m} \epsilon_{i} f_{L}\left(\mathbf{x}_{i}\right)\right) \leq \frac{b}{m} \cdot \mathbb{E}_{\boldsymbol{\epsilon}} \sup _{\mathbf{u}, W^{1}, \ldots, W^{L}}\left\|\sum_{i=1}^{m} \epsilon_{i} f_{L}\left(\mathbf{x}_{i}\right)\right\| \\
& \leq \frac{b}{m} \sqrt{\mathbb{E}_{\boldsymbol{\epsilon}} \sup _{\mathbf{u}, W^{1}, \ldots, W^{L}}\left\|\sum_{i=1}^{m} \epsilon_{i} f_{L}\left(\mathbf{x}_{i}\right)\right\|^{2}}=\frac{b}{m} \sqrt{\mathbb{E}_{\boldsymbol{\epsilon}} \sup _{\mathbf{u}, W^{1}, \ldots, W^{L}} \sum_{\ell}\left(\sum_{i=1}^{m} \epsilon_{i}\left(f_{L}\left(\mathbf{x}_{i}\right)\right)_{\ell}\right)^{2}}, \tag{16}
\end{align*}
$$

where we used Cauchy-Schwartz and the assumption $\|\mathbf{u}\| \leq b$, and ℓ ranges over the indices of $f_{L}\left(\mathbf{x}_{i}\right)$. Recalling that $f_{j+1}(\mathbf{x})=\left(W^{j+1} f_{j}(\mathbf{x})\right)^{\circ k}$ and repeatedly applying Lemma 4, we have

$$
\begin{aligned}
& \sum_{\ell}\left(\sum_{i=1}^{m} \epsilon_{i}\left(f_{L}\left(\mathbf{x}_{i}\right)\right)_{\ell}\right)^{2} \leq \sum_{\ell} B^{2 k} \sum_{\ell_{1} \ldots \ell_{k}}\left(\sum_{i=1}^{m} \epsilon_{i}\left(f_{L-1}\left(\mathbf{x}_{i}\right)\right)_{\ell_{1}} \cdots\left(f_{L-1}\left(\mathbf{x}_{i}\right)\right)_{\ell_{k}}\right)^{2} \\
& \leq B^{2 k+2 k^{2}} \sum_{\ell_{1} \ldots \ell_{k^{2}}}\left(\sum_{i=1}^{m} \epsilon_{i}\left(f_{L-2}\left(\mathbf{x}_{i}\right)\right)_{\ell_{1}} \cdots\left(f_{L-2}\left(\mathbf{x}_{i}\right)\right)_{\ell_{k}}\right)^{2} \\
& \leq \cdots \leq B^{2 k+2 k^{2}+\ldots 2 k^{L}} \sum_{\ell_{1} \ldots \ell_{k} L}\left(\sum_{i=1}^{m} \epsilon_{i}\left(f_{0}\left(\mathbf{x}_{i}\right)\right)_{\ell_{1}} \cdots\left(f_{0}\left(\mathbf{x}_{i}\right)\right)_{\ell_{k} L}\right)^{2} \\
& =B^{2 k+2 k^{2}+\ldots 2 k^{L}} \sum_{\ell_{1} \ldots \ell_{k} L}\left(\sum_{i=1}^{m} \epsilon_{i}\left(f_{0}\left(\mathbf{x}_{i}\right)\right)_{\ell_{1}} \cdots\left(f_{0}\left(\mathbf{x}_{i}\right)\right)_{\ell_{k} L}\right)^{2} \\
& =B^{2 k+2 k^{2}+\ldots 2 k^{L}} \sum_{\ell_{1} \ldots \ell_{k} L}\left(\sum_{i=1}^{m} \epsilon_{i} x_{i, \ell_{1}} \cdots x_{i, \ell_{k} L}\right)^{2}
\end{aligned}
$$

Therefore, recalling that $\epsilon_{1} \ldots \epsilon_{m}$ are i.i.d. and uniform on $\{-1,+1\}$, we have

$$
\begin{aligned}
& \mathbb{E}_{\boldsymbol{\epsilon}} \sup _{\mathbf{u}, W^{0}, \ldots, W^{L-1}} \sum_{\ell}\left(\sum_{i=1}^{m} \epsilon_{i}\left(f_{L}\left(\mathbf{x}_{i}\right)\right)_{\ell}\right)^{2} \leq B^{2 k+2 k^{2}+\ldots 2 k^{L}} \mathbb{E}_{\boldsymbol{\epsilon}} \sum_{\ell_{1} \ldots \ell_{k} L}\left(\sum_{i=1}^{m} \epsilon_{i} x_{i, \ell_{1}} \cdots x_{i, \ell_{k} L}\right)^{2} \\
& =B^{2 k+2 k^{2}+\ldots 2 k^{L}} \mathbb{E}_{\boldsymbol{\epsilon}} \sum_{\ell_{1} \ldots \ell_{k} L} \sum_{i, i^{\prime}=1}^{m} \epsilon_{i} \epsilon_{i^{\prime}} x_{i, \ell_{1}} x_{i^{\prime}, \ell_{1}} \cdots x_{i, \ell_{k} L} x_{i^{\prime}, \ell_{k} L} \\
& =B^{2 k+2 k^{2}+\ldots 2 k^{L}} \sum_{\ell_{1} \ldots \ell_{k} L} \sum_{i=1}^{m} x_{i, \ell_{1}}^{2} \cdots x_{i, \ell_{k} L}^{2} \\
& =B^{2 k+2 k^{2}+\ldots 2 k^{L}} \sum_{i=1}^{m}\left(\sum_{\ell_{1}} x_{i, \ell_{1}}^{2}\right) \cdots\left(\sum_{\ell_{k} L} x_{i, \ell_{k} L}^{2}\right) \leq B^{2 k+2 k^{2}+\ldots 2 k^{L}} \cdot m \cdot b_{x}^{2 k^{L}}
\end{aligned}
$$

where in the last step we used the assumption that $\left\|\mathbf{x}_{i}\right\|^{2} \leq b_{x}^{2}$ for all i. Plugging this back into Eq. (16), and solving for the number of inputs m required to make the expression less than ϵ, the result follows.

A. 9 Proof of Thm. 6

We will need the following lemma, based on a contraction result from Ledoux and Talagrand [1991]:
Lemma 5. Let \mathcal{T} be a set of vectors in \mathbb{R}^{m} which contains the origin. If $\epsilon_{1}, \ldots, \epsilon_{m}$ are i.i.d. Rademacher random variables, and σ is an L-Lipschitz function on \mathbb{R} with $\sigma(0)=0$, then

$$
\mathbb{E}_{\boldsymbol{\epsilon}}\left[\sup _{t \in \mathcal{T}}\left(\sum_{i=1}^{m} \epsilon_{i} \sigma\left(t_{i}\right)\right)^{2}\right] \leq 2 L^{2} \cdot \mathbb{E}_{\boldsymbol{\epsilon}}\left[\left(\sup _{t \in \mathcal{T}} \sum_{i=1}^{m} \epsilon_{i} t_{i}\right)^{2}\right]
$$

Proof. For any realization of $\boldsymbol{\epsilon}, \sup _{t \in \mathcal{T}}\left|\sum_{i=1}^{m} \epsilon_{i} \sigma\left(t_{i}\right)\right|$ equals either $\sup _{t \in \mathcal{T}} \sum_{i=1}^{m} \epsilon_{i} \sigma\left(t_{i}\right)$ or $\sup _{t \in \mathcal{T}}-\sum_{i=1}^{m} \epsilon_{i} \sigma\left(t_{i}\right)$. Thus, the left hand side in the lemma can be upper bounded as follows:

$$
\mathbb{E}\left[\left(\sup _{t \in \mathcal{T}}\left|\sum_{i=1}^{m} \epsilon_{i} \sigma\left(t_{i}\right)\right|\right)^{2}\right] \leq \mathbb{E}\left[\left(\sup _{t \in \mathcal{T}} \sum_{i=1}^{m} \epsilon_{i} \sigma\left(t_{i}\right)\right)^{2}+\left(\sup _{t \in \mathcal{T}}-\sum_{i=1}^{m} \epsilon_{i} \sigma\left(t_{i}\right)\right)^{2}\right]
$$

Noting that $\mathbb{E}_{\epsilon}\left[\left(\sup _{t \in \mathcal{T}} \sum_{i} \epsilon_{i} \sigma\left(t_{i}\right)\right)^{2}\right]$ equals $\mathbb{E}_{\epsilon}\left[\left(\sup _{t \in \mathcal{T}}-\sum_{i} \epsilon_{i} \sigma\left(t_{i}\right)\right)^{2}\right]$ by symmetry of the ϵ_{i} random variables, the expression above equals

$$
2 \cdot \mathbb{E}\left[\left(\sup _{t \in \mathcal{T}} \sum_{i=1}^{m} \epsilon_{i} \sigma\left(t_{i}\right)\right)^{2}\right] \stackrel{(*)}{=} 2 \cdot \mathbb{E}\left[\left[\sup _{t \in \mathcal{T}} \sum_{i=1}^{m} \epsilon_{i} \sigma\left(t_{i}\right)\right]_{+}^{2}\right]=2 L^{2} \cdot \mathbb{E}\left[\left[\sup _{t \in \mathcal{T}} \sum_{i=1}^{m} \epsilon_{i} \frac{1}{L} \sigma\left(t_{i}\right)\right]_{+}^{2}\right]
$$

where $(*)$ follows from the fact that the supremum is always non-negative, since $\sigma(0)=0$ and \mathcal{T} contains the origin. We now utilize equation (4.20) in Ledoux and Talagrand [1991], which implies that $\mathbb{E}_{\boldsymbol{\epsilon}} g\left(\sup _{t \in \mathcal{T}} \sum_{i} \epsilon_{i} \phi\left(t_{i}\right)\right) \leq \mathbb{E}_{\boldsymbol{\epsilon}} g\left(\sup _{t \in \mathcal{T}} \sum_{i} \epsilon_{i} t_{i}\right)$ for any 1-Lipschitz ϕ satisfying $\phi(0)=0$, and any convex increasing function g. Plugging into the above, and using the fact that $[z]_{+}^{2} \leq z^{2}$ for all z, the lemma follows.

We now turn to prove the theorem. The Rademacher complexity times m equals

$$
\mathbb{E}_{\boldsymbol{\epsilon}}\left[\sup _{W, \mathbf{u}} \sum_{i=1}^{m} \epsilon_{i} \mathbf{u}^{\top} \sigma\left(W \mathbf{x}_{i}\right)\right]
$$

where for notational convenience we drop the conditions on $W, \mathbf{u}, \mathbf{w}$ in the supremum. Using the Cauchy-Schwartz and Jensen's inequalities, this in turn can be upper bounded as follows:

$$
\begin{aligned}
\mathbb{E}_{\boldsymbol{\epsilon}} & {\left[\sup _{W, \mathbf{u}} \mathbf{u}^{\top}\left(\sum_{i=1}^{m} \epsilon_{i} \sigma\left(W \mathbf{x}_{i}\right)\right)\right] \leq b \cdot \mathbb{E}_{\boldsymbol{\epsilon}}\left[\sup _{W}\left\|\sum_{i=1}^{m} \epsilon_{i} \sigma\left(W \mathbf{x}_{i}\right)\right\|\right] } \\
& \leq b \sqrt{\mathbb{E}_{\boldsymbol{\epsilon}}\left[\sup _{W}\left\|\sum_{i=1}^{m} \epsilon_{i} \sigma\left(W \mathbf{x}_{i}\right)\right\|^{2}\right]}=b \sqrt{\mathbb{E}_{\boldsymbol{\epsilon}}\left[\sup _{W} \sum_{j=1}^{n}\left(\sum_{i=1}^{m} \epsilon_{i} \sigma\left(\mathbf{w}^{\top} \phi_{j}\left(\mathbf{x}_{i}\right)\right)^{2}\right]\right.} \\
& \leq b \sqrt{\sum_{j=1}^{n} \mathbb{E}_{\boldsymbol{\epsilon}}\left[\sup _{W}\left(\sum_{i=1}^{m} \epsilon_{i} \sigma\left(\mathbf{w}^{\top} \phi_{j}\left(\mathbf{x}_{i}\right)\right)\right)^{2}\right]} .
\end{aligned}
$$

Recall that the supremum is over all matrices W which conform to the patches, and has spectral norm at most B. By definition, every row of this matrix has a subset of entries, which correspond to the convolutional filter vector \mathbf{w}. Thus, we must have $\|\mathbf{w}\| \leq B$, since the norm \mathbf{w} equals the norm of any row of W, and the norm of a row of W is a lower bound on the spectral norm. Thus, we can upper bound the expression above by taking the supremum over all vectors \mathbf{w} such that $\|\mathbf{w}\| \leq B$ (and not just those that the corresponding matrix has spectral norm $\leq B$). Thus, we get the upper bound

$$
b \sqrt{\sum_{j=1}^{n} \mathbb{E}_{\boldsymbol{\epsilon}}\left[\sup _{\mathbf{w}:\|\mathbf{w}\| \leq B}\left(\sum_{i=1}^{m} \epsilon_{i} \sigma\left(\mathbf{w}^{\top} \phi_{j}\left(\mathbf{x}_{i}\right)\right)\right)^{2}\right]}
$$

which by Lemma 5 and Cauchy-Shwartz, is at most

$$
\begin{aligned}
& b L \sqrt{\left.2 \sum_{j=1}^{n} \mathbb{E}_{\epsilon}\left[\sup _{\mathbf{w}:\|\mathbf{w}\| \leq B}\left(\sum_{i=1}^{m} \epsilon_{i} \mathbf{w}^{\top} \phi_{j}\left(\mathbf{x}_{i}\right)\right)\right)^{2}\right]} \leq b B L \sqrt{\left.2 \sum_{j=1}^{n} \mathbb{E}_{\epsilon}\left[\| \sum_{i=1}^{m} \epsilon_{i} \phi_{j}\left(\mathbf{x}_{i}\right)\right) \|^{2}\right]} \\
& =b B L \sqrt{2 \sum_{j=1}^{n} \mathbb{E}_{\epsilon}\left[\sum_{i, i^{\prime}=1}^{m} \epsilon_{i} \epsilon_{i}^{\prime} \phi_{j}\left(\mathbf{x}_{i}\right)^{\top} \phi_{j}\left(\mathbf{x}_{i^{\prime}}\right)\right]}=b B L \sqrt{2 \sum_{j=1}^{n} \sum_{i=1}^{m}\left\|\phi_{j}\left(\mathbf{x}_{i}\right)\right\|^{2}} .
\end{aligned}
$$

Recalling that O_{Φ} is the maximal number of times any single input coordinate appears across the patches, and letting $x_{i, l}$ be the l-th coordinate of \mathbf{x}_{i}, we can upper bound the above by

$$
b B L \sqrt{2 \sum_{i=1}^{m} \sum_{l=1}^{d} x_{i, l}^{2} O_{\Phi}}=b B L \sqrt{2 \sum_{i=1}^{m}\left\|\mathbf{x}_{i}\right\|^{2} \cdot O_{\Phi}} \leq b B b_{x} L \sqrt{2 m O_{\Phi}}
$$

Dividing by m, and solving for the number m required to make the resulting expression less than ϵ, the result follows.

A. 10 Proof of Thm. 7

The proof follows from a covering number argument. We start with some required definitions and lemmas.

Definition 2. Let \mathcal{F} be a class of functions from \mathcal{X} to \mathbb{R}. For $1 \leq p \leq \infty, \epsilon>0$, and $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\} \subseteq$ \mathcal{X}, the empirical covering number $\mathcal{N}_{p}\left(\mathcal{F}, \epsilon ; \mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right)$ is the minimal cardinality of a set $V \subseteq \mathbb{R}^{m}$, such that for all $f \in \mathcal{F}$ there is $\mathbf{v} \in V$ such that

$$
\left(\frac{1}{m} \sum_{i=1}^{m}\left|f\left(\mathbf{x}_{i}\right)-v_{i}\right|^{p}\right)^{1 / p} \leq \epsilon
$$

We define the covering number $\mathcal{N}_{p}(\mathcal{F}, \epsilon, m)=\sup _{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}} \mathcal{N}_{p}\left(\mathcal{F}, \epsilon ; \mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right)$.

Lemma 6 (Zhang [2002]). Let $a, b>0$, let $\mathcal{X}=\left\{\mathbf{x} \in \mathbb{R}^{d}:\|\mathbf{x}\| \leq b\right\}$, and consider the class of linear predictors $\mathcal{F}=\left\{f \in \mathbb{R}^{\mathcal{X}}: f(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x},\|\mathbf{w}\| \leq a\right\}$. Then,

$$
\log \mathcal{N}_{\infty}(\mathcal{F}, \epsilon, m) \leq \frac{36 a^{2} b^{2}}{\epsilon^{2}} \log (2 m\lceil 4 a b / \epsilon+2\rceil+1)
$$

Lemma 7 (E.g., Daniely and Granot [2019]). Let $C>0$ and let \mathcal{F} be a class of C-bounded functions from \mathcal{X} to \mathbb{R}, i.e., $|f(\mathbf{x})| \leq C$ for all $f \in \mathcal{F}$ and $\mathbf{x} \in \mathcal{X}$. Then, for every integer $M \geq 1$ we have

$$
\mathcal{R}_{m}(\mathcal{F}) \leq C 2^{-M}+\frac{6 C}{\sqrt{m}} \sum_{k=1}^{M} 2^{-k} \sqrt{\log \mathcal{N}_{2}\left(\mathcal{F}, C 2^{-k}, m\right)}
$$

We are now ready to prove the theorem. For $i \in[m], j \in[n]$ we denote $\mathbf{x}_{i, j}^{\prime}=\phi_{j}\left(\mathbf{x}_{i}\right) \in \mathbb{R}^{n^{\prime}}$. Let $\mathcal{X}_{n^{\prime}}=\left\{\mathbf{x}^{\prime} \in \mathbb{R}^{n^{\prime}}:\left\|\mathbf{x}^{\prime}\right\| \leq b_{x}\right\}$, and let

$$
\mathcal{F}:=\left\{f \in \mathbb{R}^{\mathcal{X}_{n^{\prime}}}: f\left(\mathbf{x}^{\prime}\right)=\mathbf{w}^{\top} \mathbf{x}^{\prime}, \mathbf{w} \in \mathbb{R}^{n^{\prime}},\|\mathbf{w}\| \leq B\right\}
$$

Let $V \subseteq \mathbb{R}^{m n}$ be a set of size at $\operatorname{most} \mathcal{N}_{\infty}(\mathcal{F}, \epsilon / L, m n)$, such that for all $f \in \mathcal{F}$ there is $\mathbf{v} \in V$ that satisfies the following: Letting $v_{i, j}:=v_{(i-1) n+j}$, we have $\left|f\left(\mathbf{x}_{i, j}^{\prime}\right)-v_{i, j}\right| \leq \epsilon / L$ for all $i \in[m], j \in[n]$.
We define
$U:=\left\{\mathbf{u} \in \mathbb{R}^{m}:\right.$ there is $\mathbf{v} \in V$ s.t. $u_{i}=\rho \circ \sigma\left(v_{i, 1}, \ldots, v_{i, n}\right)=\rho\left(\sigma\left(v_{i, 1}\right), \ldots, \sigma\left(v_{i, n}\right)\right)$ for all $\left.i \in[m]\right\}$.
Note that $|U| \leq|V|$. Let $h \in \mathcal{H}_{B, n, d}^{\sigma, \rho, \Phi}$ and suppose that the network h has a filter $\mathbf{w} \in \mathbb{R}^{n^{\prime}}$. Let W be the weight matrix that corresponds to Φ and \mathbf{w}. Thus, we have $\|W\| \leq B$. Let $\mathbf{x} \in \mathbb{R}^{d}$ such that $\phi_{1}(\mathbf{x})=\frac{\mathbf{w}}{\|\mathbf{w}\|}$ and $x_{k}=0$ for every coordinate k that does not appear in ϕ_{1}. That is, \mathbf{x} is a vector of norm 1 such that $(W \mathbf{x})_{1}=\mathbf{w}^{\top} \phi_{1}(\mathbf{x})=\|\mathbf{w}\|$. Therefore, $\|W \mathbf{x}\| \geq(W \mathbf{x})_{1}=\|\mathbf{w}\|$, and thus $B \geq\|W\| \geq\|\mathbf{w}\|$. Let f be the function in \mathcal{F} that corresponds to \mathbf{w}, and let $\mathbf{v} \in V$ such that $\left|f\left(\mathbf{x}_{i, j}^{\prime}\right)-v_{i, j}\right| \leq \epsilon / L$ for all $i \in[m], j \in[n]$. Let $\mathbf{u} \in U$ that corresponds to \mathbf{v}, namely, $u_{i}=\rho \circ \sigma\left(v_{i, 1}, \ldots, v_{i, n}\right)$ for all $i \in[m]$. Note that $\left|h\left(\mathbf{x}_{i}\right)-u_{i}\right| \leq \epsilon$ for all $i \in[m]$. Indeed, we have that $\left|h\left(\mathbf{x}_{i}\right)-u_{i}\right|$ equals

$$
\left|\rho \circ \sigma\left(f\left(\mathbf{x}_{i, 1}^{\prime}\right), \ldots, f\left(\mathbf{x}_{i, n}^{\prime}\right)\right)-\rho \circ \sigma\left(v_{i, 1}, \ldots, v_{i, n}\right)\right| \leq L \cdot \max _{j \in[n]}\left|f\left(\mathbf{x}_{i, j}^{\prime}\right)-v_{i, j}\right| \leq L \cdot \frac{\epsilon}{L}=\epsilon
$$

where the first inequality follows from the L-Lipschitzness of $\rho \circ \sigma$ w.r.t. ℓ_{∞}. Hence,

$$
\mathcal{N}_{\infty}\left(\mathcal{H}_{B, n, d}^{\sigma, \rho, \Phi}, \epsilon, m\right) \leq|U| \leq|V| \leq \mathcal{N}_{\infty}(\mathcal{F}, \epsilon / L, m n)
$$

Combining the above with Lemma 6, and using the fact that the \mathcal{N}_{2} covering number is at most the \mathcal{N}_{∞} covering number (cf. Anthony and Bartlett [1999]), we get

$$
\begin{align*}
\log \mathcal{N}_{2}\left(\mathcal{H}_{B, n, d}^{\sigma, \rho, \Phi}, \epsilon, m\right) & \leq \log \mathcal{N}_{\infty}\left(\mathcal{H}_{B, n, d}^{\sigma, \rho, \Phi}, \epsilon, m\right) \\
& \leq \log \mathcal{N}_{\infty}(\mathcal{F}, \epsilon / L, m n) \\
& \leq \frac{36 b_{x}^{2} B^{2}}{(\epsilon / L)^{2}} \log \left(2 m n\left\lceil 4 b_{x} B /(\epsilon / L)+2\right\rceil+1\right) \tag{17}
\end{align*}
$$

Note that for every $\mathbf{x} \in \mathcal{X}:=\left\{\mathbf{x} \in \mathbb{R}^{d}:\left\|\phi_{j}(\mathbf{x})\right\| \leq b_{x}\right.$ for all $\left.j \in[n]\right\}$ and $h \in \mathcal{H}_{B, n, d}^{\sigma, \rho, \Phi}$ we have $|h(\mathbf{x})|=\left|\rho\left(\sigma\left(\mathbf{w}^{\top} \phi_{1}(\mathbf{x})\right), \ldots, \sigma\left(\mathbf{w}^{\top} \phi_{n}(\mathbf{x})\right)\right)\right| \leq L b_{x} B$, since $\left|\mathbf{w}^{\top} \phi_{j}(\mathbf{x})\right| \leq B b_{x}$, the activation σ is L-Lipschitz and satisfies $\sigma(0)=0$, and ρ is 1 -Lipschitz w.r.t. ℓ_{∞} and satisfies $\rho(\mathbf{0})=0$. By Lemma 7, we conclude that

$$
\mathcal{R}_{m}\left(\mathcal{H}_{B, n, d}^{\sigma, \rho, \Phi}\right) \leq L b_{x} B 2^{-M}+\frac{6 L b_{x} B}{\sqrt{m}} \sum_{\ell=1}^{M} 2^{-\ell} \sqrt{\log \mathcal{N}_{2}\left(\mathcal{H}_{B, n, d}^{\sigma, \rho, \Phi}, L b_{x} B 2^{-\ell}, m\right)}
$$

for every integer $M \geq 1$. By plugging-in $M=\lceil\log (\sqrt{m})\rceil$ and the expression from Eq. (17), we get

$$
\begin{aligned}
\mathcal{R}_{m}\left(\mathcal{H}_{B, n, d}^{\sigma, \rho, \Phi}\right) & \leq \frac{L b_{x} B}{\sqrt{m}}+\frac{6 L b_{x} B}{\sqrt{m}} \sum_{\ell=1}^{\lceil\log (\sqrt{m})\rceil} 2^{-\ell} \sqrt{\frac{36 b_{x}^{2} B^{2}}{\left(b_{x} B 2^{-\ell}\right)^{2}} \log \left(2 m n\left\lceil 4 b_{x} B /\left(b_{x} B 2^{-\ell}\right)+2\right\rceil+1\right)} \\
& =\frac{L b_{x} B}{\sqrt{m}}+\frac{36 L b_{x} B}{\sqrt{m}} \sum_{\ell=1}^{\lceil\log (\sqrt{m})\rceil} \sqrt{\log \left(2 m n\left\lceil 4 \cdot 2^{\ell}+2\right\rceil+1\right)} \\
& \leq \frac{L b_{x} B}{\sqrt{m}}+\frac{36 L b_{x} B}{\sqrt{m}}\lceil\log (\sqrt{m})\rceil \cdot \sqrt{\log (23 m n \sqrt{m})} .
\end{aligned}
$$

Hence, for some universal constant $c^{\prime}>0$ the above is at most

$$
c^{\prime} \cdot \frac{L b_{x} B \log (m) \sqrt{\log (m n)}}{\sqrt{m}}
$$

Requiring this to be at most ϵ and rearranging, the result follows.

A. 11 Proof of Thm. 8

To help the reader track the main proof ideas, we first prove the claim for the case where $B=b_{x}=1$ and $\epsilon=1 / 2$ (in Subsection A.11.1), and then extend the proof for arbitrary $B, b_{x}, \epsilon>0$ in Subsection A.11.2.
A.11.1 Proof for $B=b_{x}=1$ and $\epsilon=1 / 2$

Let $m=\log (n)$ and let $d=3^{m}$. Consider m points $\mathbf{x}^{1}, \ldots, \mathbf{x}^{m}$, where for every $i \in[m]$ the point $\mathbf{x}^{i} \in \mathbb{R}^{d}$ is a vectorization of an order- m tensor $\hat{\mathbf{x}}^{i}$ such that each component is indexed by $\left(j_{1}, \ldots, j_{m}\right) \in[3]^{m}$. We define the components $x_{j_{1}, \ldots, j_{m}}^{i}$ of $\hat{\mathbf{x}}^{i}$ such that $x_{j_{1}, \ldots, j_{m}}^{i}=1$ if $j_{i}=3$, and $j_{r}=2$ for all $r \neq i$, and $x_{j_{1}, \ldots, j_{m}}^{i}=0$ otherwise. Note that $\left\|\mathbf{x}^{i}\right\|=1$ for all $i \in[m]$. Consider patches of dimensions $2 \times \ldots \times 2$ and stride 1 . Thus, the set Φ corresponds to all the patches of dimensions $2 \times \ldots \times 2$ in the tensor. Note that there are $2^{m}=n$ such patches. Indeed, given an index $\left(j_{1}, \ldots, j_{m}\right) \in[2]^{m}$, we can define a patch which contains the indices $\left\{\left(j_{1}, \ldots, j_{m}\right)+\left(\Delta_{1}, \ldots, \Delta_{m}\right):\left(\Delta_{1}, \ldots, \Delta_{m}\right) \in\{0,1\}^{m}\right\}$. We say that $\left(j_{1}, \ldots, j_{m}\right)$ is the base index of this patch. Note that each $\left(j_{1}, \ldots, j_{m}\right) \in[2]^{m}$ is a base index of exactly one patch. Also, an index $\left(j_{1}, \ldots, j_{m}\right)$ which includes some $r \in[m]$ with $j_{r}=3$ does not induce a patch of the form $\left\{\left(j_{1}, \ldots, j_{m}\right)+\left(\Delta_{1}, \ldots, \Delta_{m}\right):\left(\Delta_{1}, \ldots, \Delta_{m}\right) \in\{0,1\}^{m}\right\}$, since for $\Delta_{r}=1$ we get an invalid index.
We show that for any $\mathbf{y} \in\{0,1\}^{m}$ we can find a filter \mathbf{w}, such that \mathbf{w} is an order- m tensor of dimensions $2 \times \ldots \times 2$ and satisfies the following. Let $N_{\mathbf{w}}$ be the neural network that consists of a convolutional layer with the patches Φ and the filter \mathbf{w}, followed by a max-pooling layer. Then, $N_{\mathbf{w}}\left(\mathbf{x}^{i}\right)=y_{i}$ for all $i \in[m]$. Thus, we can shatter $\mathbf{x}^{1}, \ldots, \mathbf{x}^{m}$ with margin $\epsilon=1 / 2$. Moreover, the spectral norm of the matrix W that corresponds to the convolutional layer is at most 1.
Consider the filter \mathbf{w} of dimensions $2 \times \ldots \times 2$ such that $w_{j_{1}, \ldots, j_{m}}=1$ if $\left(j_{1}, \ldots, j_{m}\right)=\mathbf{1}+\mathbf{y}$, and $w_{j_{1}, \ldots, j_{m}}=0$ otherwise. We now show that $N_{\mathbf{w}}\left(\mathbf{x}^{i}\right)=y_{i}$ for all $i \in[m]$. Since the filter \mathbf{w} has a single non-zero component, then the inner product between \mathbf{w} and a patch of \mathbf{x}^{i} is non-zero iff the patch of \mathbf{x}^{i} has a non-zero component in the appropriate position. More precisely, for a patch with base index $\left(j_{1}, \ldots, j_{m}\right)$, the inner product between the components of \mathbf{x}^{i} in the indices of the patch and the filter \mathbf{w} is 1 iff $x_{\left(j_{1}, \ldots, j_{m}\right)+\mathbf{y}}^{i}=1$, and otherwise the inner product is 0 . Since $x_{q_{1}, \ldots, q_{m}}^{i}=1$ iff $q_{i}=3$ and $q_{r}=2$ for $r \neq i$, then $x_{\left(j_{1}, \ldots, j_{m}\right)+\mathbf{y}}^{i}=1$ iff $j_{i}=3-y_{i}$ and $j_{r}=2-y_{r}$ for $r \neq i$. Now, if $y_{i}=0$ then there is no patch such that the base index satisfies $j_{i}=3-y_{i}=3$, since all base indices are in $[2]^{m}$, and therefore $N_{\mathbf{w}}\left(\mathbf{x}^{i}\right)=0$. If $y_{i}=1$ then the patch whose base index satisfies $j_{i}=3-y_{i}$ and $j_{r}=2-y_{r}$ for $r \neq i$ gives output 1 (and all other patches give output 0) and hence $N_{\mathbf{w}}\left(\mathbf{x}^{i}\right)=1$. Thus, we have $N_{\mathbf{w}}\left(\mathbf{x}^{i}\right)=y_{i}$ as required.
For example, consider the case where $m=2$. Then, the tensor $\hat{\mathbf{x}}^{1}$ is the matrix

$$
\hat{\mathbf{x}}^{1}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

For $\mathbf{y}=(1,1)^{\top}$ we have $\mathbf{w}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ and hence the patch with base index $(2,1)$ gives output 1. For $\mathbf{y}=(1,0)^{\top}$ we have $\mathbf{w}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ and hence the patch with base index $(2,2)$ gives output 1. However, for $\mathbf{y}=(0,1)^{\top}$ we have $\mathbf{w}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ and hence there is no patch that gives output 1. Thus, in all the above cases we have $N_{\mathbf{w}}\left(\mathbf{x}^{1}\right)=y_{1}$.
It remains to show that the spectral norm of the matrix W that corresponds to the convolutional layer with the filter \mathbf{w} is at most 1 . Thus, we show that for every input $\mathbf{x} \in \mathbb{R}^{d}$ with $\|\mathbf{x}\|=1$ the inputs to the hidden layer is a vector with norm at most 1 . We view \mathbf{x} as the vectorization of a tensor $\hat{\mathbf{x}}$ with components $x_{j_{1}, \ldots, j_{m}}$ for $\left(j_{1}, \ldots, j_{m}\right) \in[3]^{m}$. Since the filter \mathbf{w} contains a single 1-component and all other components are 0 , then the input to each hidden neuron is a different component of $\hat{\mathbf{x}}$. More precisely, since the filter \mathbf{w} contains 1 at index $\mathbf{1}+\mathbf{y}$ then for the patch with base index $\left(j_{1}, \ldots, j_{m}\right)$ the corresponding hidden neuron has input $x_{\left(j_{1}, \ldots, j_{m}\right)+\mathbf{y}}$. Note that each hidden neuron corresponds to a different base index and hence the input to each hidden neuron is a different component of $\hat{\mathbf{x}}$. Therefore, the norm of the vector whose components are the inputs to the hidden neurons is at most the norm of the input \mathbf{x}, and hence it is at most 1 .

A.11.2 Proof for arbitrary $B, b_{x}, \epsilon>0$

Let $m=\left(\frac{b_{x} B}{2 \epsilon}\right)^{2} \cdot \log (n)$ and let $d=\left(\frac{b_{x} B}{2 \epsilon}\right)^{2} \cdot 3^{\log (n)}$. Let $m^{\prime}=\log (n)$ and let $L=\left(\frac{b_{x} B}{2 \epsilon}\right)^{2}$. Consider m points $\mathbf{x}^{1}, \ldots, \mathbf{x}^{m}$, where for every $i \in[m]$ the point $\mathbf{x}^{i} \in \mathbb{R}^{d}$ is a vectorization of a tensor $\hat{\mathbf{x}}^{i}$ of order $m^{\prime}+1$, such that each component is indexed by $\left(j_{1}, \ldots, j_{m^{\prime}}, \ell\right) \in[3]^{m^{\prime}} \times[L]$. Consider a partition of $[m]$ into L disjoint susets S_{1}, \ldots, S_{L}, each of size $m / L=m^{\prime}$.
We define the components $x_{j_{1}, \ldots, j_{m^{\prime}}, \ell}^{i}$ of $\hat{\mathbf{x}}^{i}$ as follows: Suppose that $i \in S_{r}:=\left\{k_{1}, \ldots, k_{m^{\prime}}\right\}$ for some $r \in L$, and that $i=k_{t}$, i.e., i is the t-th element in the subset S_{r}. For every $\ell \neq r$ we define $x_{j_{1}, \ldots, j_{m^{\prime}}, \ell}^{i}=0$ for every $j_{1}, \ldots, j_{m^{\prime}} \in[3]^{m^{\prime}}$, namely, if ℓ does not correspond to the subset of i then the component is 0 . For $\ell=r$ the component $x_{j_{1}, \ldots, j_{m^{\prime}}, \ell}^{i}$ is defined in a similar way to the tensor $\hat{\mathbf{x}}^{i}$ from Subsection A.11.1, but with respect to the subset S_{r} and at scale b_{x}. Formally, for $\ell=r$ we have $x_{j_{1}, \ldots, j_{m^{\prime}}, \ell}^{i}=b_{x}$ if $j_{t}=3$, and $j_{k}=2$ for all $k \neq t$, and $x_{j_{1}, \ldots, j_{m^{\prime}}, \ell}^{i}=0$ otherwise. Note that $\left\|\mathbf{x}^{i}\right\|=b_{x}$ for all $i \in[m]$.
Consider patches of dimensions $2 \times \ldots \times 2 \times L$ and stride 1 . Thus, the set Φ corresponds to all the patches of dimensions $2 \times \ldots \times 2 \times L$ in the tensor. Note that since the last dimension is L, then the filter can "move" only in the first m^{\prime} dimensions. Also, note that there are $2^{m^{\prime}}=n$ such patches. Indeed, given $\left(j_{1}, \ldots, j_{m^{\prime}}\right) \in[2]^{m^{\prime}}$, we can define a patch which contains the indices $\left\{\left(j_{1}, \ldots, j_{m^{\prime}}, 0\right)+\left(\Delta_{1}, \ldots, \Delta_{m^{\prime}}, \Delta_{m^{\prime}+1}\right):\left(\Delta_{1}, \ldots, \Delta_{m^{\prime}}\right) \in\{0,1\}^{m^{\prime}}, \Delta_{m^{\prime}+1} \in[L]\right\}$. We say that $\left(j_{1}, \ldots, j_{m^{\prime}}\right)$ is the base index of this patch. Note that each $\left(j_{1}, \ldots, j_{m^{\prime}}\right) \in[2]^{m^{\prime}}$ is a base index of exactly one patch. Also, if $\left(j_{1}, \ldots, j_{m^{\prime}}\right)$ includes some $r \in\left[m^{\prime}\right]$ with $j_{r}=3$ then it does not induce a patch of the form $\left\{\left(j_{1}, \ldots, j_{m^{\prime}}, 0\right)+\left(\Delta_{1}, \ldots, \Delta_{m^{\prime}}, \Delta_{m^{\prime}+1}\right):\left(\Delta_{1}, \ldots, \Delta_{m^{\prime}}\right) \in\{0,1\}^{m^{\prime}}, \Delta_{m^{\prime}+1} \in[L]\right\}$, since for $\Delta_{r}=1$ we get an invalid index.
We show that for any $\mathbf{y} \in\{0,1\}^{m}$ we can find a filter \mathbf{w}, such that \mathbf{w} is an order- $\left(m^{\prime}+1\right)$ tensor of dimensions $2 \times \ldots \times 2 \times L$ and satisfies the following. Let N_{w} be the neural network that consists of a convolutional layer with the patches Φ and the filter \mathbf{w}, followed by a max-pooling layer. Then, for all $i \in[m]$ we have: if $y_{i}=0$ then $N_{\mathbf{w}}\left(\mathbf{x}^{i}\right)=0$, and if $y_{i}=1$ then $N_{\mathbf{w}}\left(\mathbf{x}^{i}\right)=2 \epsilon$. Thus, we can shatter $\mathbf{x}^{1}, \ldots, \mathbf{x}^{m}$ with margin ϵ. Moreover, the spectral norm of the matrix W that corresponds to the convolutional layer is at most B.

We now define the filter \mathbf{w} of dimensions $2 \times \ldots \times 2 \times L$. For every $\ell \in[L]$ we define the components $w_{j_{1}, \ldots, j_{m^{\prime}}, \ell}$ as follows. Let $\mathbf{y}_{S_{\ell}} \in\{0,1\}^{m^{\prime}}$ be the restriction of \mathbf{y} to the indices in S_{ℓ}. Then, $w_{j_{1}, \ldots, j_{m^{\prime}}, \ell}=\frac{2 \epsilon}{b_{x}}$ if $\left(j_{1}, \ldots, j_{m^{\prime}}\right)=\mathbf{1}+\mathbf{y}_{S_{\ell}}$, and $w_{j_{1}, \ldots, j_{m^{\prime}}, \ell}=0$ otherwise. We show that for all $i \in[m]$, if $y_{i}=0$ then $N_{\mathbf{w}}\left(\mathbf{x}^{i}\right)=0$, and if $y_{i}=1$ then $N_{\mathbf{w}}\left(\mathbf{x}^{i}\right)=2 \epsilon$. Suppose that $i \in S_{r}:=\left\{k_{1}, \ldots, k_{m^{\prime}}\right\}$ for some $r \in L$, and that $i=k_{t}$, i.e., i is the t-th element in the
subset S_{r}. Then, the tensor $\hat{\mathbf{x}}^{i}$ has a non-zero component only at $x_{j_{1}, \ldots, j_{m^{\prime}}, r}^{i}$ with $j_{t}=3$, and $j_{s}=2$ for all $s \neq t$. Moreover, the filter \mathbf{w} has a non-zero component at index $\left(q_{1}, \ldots, q_{m^{\prime}}, r\right)$ iff $\left(q_{1}, \ldots, q_{m^{\prime}}\right)=\mathbf{1}+\mathbf{y}_{S_{r}}$. Hence, the inner product between \mathbf{w} and a patch of \mathbf{x}^{i} is non-zero iff the patch has a base index $\left(j_{1}, \ldots, j_{m^{\prime}}\right)$ such that $\left(j_{1}, \ldots, j_{m^{\prime}}\right)+\mathbf{y}_{S_{r}}=\left(p_{1}, \ldots, p_{m^{\prime}}\right)$ where $p_{t}=3$, and $p_{s}=2$ for all $s \neq t$. If $y_{i}=0$ then the t-th component of $\mathbf{y}_{S_{r}}$ is 0 , and there is no patch such that the base index satisfies $j_{t}+\left(\mathbf{y}_{S_{r}}\right)_{t}=j_{t}+0=p_{t}=3$. Therefore, $N_{\mathbf{w}}\left(\mathbf{x}^{i}\right)=0$. If $y_{i}=1$ then the patch whose base index satisfies $j_{t}=3-\left(\mathbf{y}_{S_{r}}\right)_{t}=3-1=2$, and $j_{s}=2-\left(\mathbf{y}_{S_{r}}\right)_{s}$ for $s \neq t$, gives output $\frac{2 \epsilon}{b_{x}} \cdot b_{x}=2 \epsilon$ (and all other patches give output 0).
It remains to show that the spectral norm of the matrix W that corresponds to the convolutional layer with the filter \mathbf{w} is at most B. Thus, we show that for every input $\mathbf{x} \in \mathbb{R}^{d}$ with $\|\mathbf{x}\|=1$ the inputs to the hidden layer are a vector with norm at most B. We view \mathbf{x} as the vectorization of a tensor $\hat{\mathbf{x}}$ with components $x_{j_{1}, \ldots, j_{m^{\prime}}, \ell}$ for $\left(j_{1}, \ldots, j_{m^{\prime}}, \ell\right) \in[3]^{m^{\prime}} \times[L]$. The inner product between a patch of \mathbf{x} and the filter \mathbf{w} can be written as

$$
\sum_{\ell \in[L]} \frac{2 \epsilon}{b_{x}} \cdot x_{q_{1}^{(\ell)}, \ldots, q_{m^{\prime}}^{(\ell)}, \ell}
$$

Thus, for each ℓ there is a single index of $\hat{\mathbf{x}}$ that contributes to the inner product, since for every ℓ the filter w has a single non-zero component, which equals $\frac{2 \epsilon}{b_{x}}$. By Cauchy-Schwarz, the above sum is at most

$$
\begin{equation*}
\frac{2 \epsilon}{b_{x}} \cdot \sqrt{L} \cdot \sqrt{\sum_{\ell \in[L]} x_{q_{1}^{(\ell)}, \ldots, q_{m^{\prime}}^{(\ell)}, \ell}^{2}}=\frac{2 \epsilon}{b_{x}} \cdot \frac{b_{x} B}{2 \epsilon} \cdot \sqrt{\sum_{\ell \in[L]} x_{q_{1}^{(\ell)}, \ldots, q_{m^{\prime}}^{(\ell)}, \ell}^{2}}=B \cdot \sqrt{\sum_{\ell \in[L]} x_{q_{1}^{(\ell)}, \ldots, q_{m^{\prime}}^{\prime}, \ell}^{2}} . \tag{18}
\end{equation*}
$$

Hence, the input to the hidden neuron that corresponds to the patch is bounded by the above expression. Moreover, since for every $\ell \in[L]$ the filter \mathbf{w} has a single non-zero component such that the last dimension of its index is ℓ, then for every two patches with different base indices, the bound in the above expression includes different indices of $\hat{\mathbf{x}}$. Namely, if the inner product between one patch of \mathbf{x} and the filter \mathbf{w} is $\sum_{\ell \in[L]} \frac{2 \epsilon}{b_{x}} \cdot x_{q_{1}^{(\ell)}, \ldots, q_{m^{\prime}}^{(\ell)}, \ell}$ and the inner product between another patch of \mathbf{x} and the filter \mathbf{w} is $\sum_{\ell \in[L]} \frac{2 \epsilon}{b_{x}} \cdot x_{p_{1}^{(\ell)}, \ldots, p_{m^{\prime}}^{(\ell)}, \ell}$, then for every ℓ we have $\left(q_{1}^{(\ell)}, \ldots, q_{m^{\prime}}^{(\ell)}\right) \neq\left(p_{1}^{(\ell)}, \ldots, p_{m^{\prime}}^{(\ell)}\right)$. Since by Eq. (18) the square of the input to each hidden neuron can be bounded by $B^{2} \cdot \sum_{\ell \in[L]} x_{q_{1}^{(\ell)}, \ldots, q_{m^{\prime}}^{(\ell)}, \ell}^{2}$ for some subset $\left\{x_{q_{1}^{(\ell)}, \ldots, q_{m^{\prime}}^{(\ell)}, \ell}\right\}_{\ell \in[L]}$ of components, and since for each two hidden neurons these subsets are disjoint, then the norm of the vector of inputs to the hidden neurons can be bounded by

$$
\sqrt{B^{2} \cdot \sum_{k \in[d]} x_{k}^{2}} \leq \sqrt{B^{2} \cdot 1}=B
$$

[^0]: ${ }^{2}$ This follows from the probabilistic method: If we pick the entries of V uniformly at random, then both conditions will hold with some arbitrarily large probability (assuming m is sufficiently larger than $1 / \alpha^{2}$, see for example Seginer [2000]), hence the required matrix will result with some positive probability.

