
A Proofs

A.1 Proof of Thm. 1

We will assume without loss of generality that the condition infδ∈(0,1)

∣∣∣σ(δ)+σ(−δ)δ

∣∣∣ ≥ α stated in
the theorem holds without an absolute value, namely

inf
δ∈(0,1)

σ(δ) + σ(−δ)
δ

≥ α . (2)

To see why, note that if infδ∈(0,1)

∣∣∣σ(δ)+σ(−δ)δ

∣∣∣ ≥ α ≥ 0, then σ(δ)+σ(−δ)
δ can never change sign

as a function of δ (otherwise it will be 0 for some δ). Hence, the condition implies that either
σ(δ)+σ(−δ)

δ ≥ α for all δ ∈ (0, 1), or that −σ(δ)+σ(−δ)
δ ≥ α for all δ ∈ (0, 1). We simply choose

to treat the first case, as the second case can be treated with a completely identical analysis, only
flipping some of the signs.

Fix some sufficiently large dimension d and integer m ≤ d to be chosen later. Choose x1, . . . ,xm to
be some m orthogonal vectors of norm bx in Rd. Let X be the d×m matrix whose i-th column is xi.
Given this input set, it is enough to show that there is some number s, such that for any y ∈ {0, 1}m,
we can find a predictor (namely, u,W depending on y) in our class, such that ∥u∥ ≤ b, ∥W∥ ≤ B,
and

∀i ,u⊤σ(Wxi) is
{
≤ s− ϵ yi = 0

≥ s+ ϵ yi = 1
. (3)

We will do so as follows: We let

u =
b√
n
1 and W =

δ

b2x
V diag(y)X⊤ ,

Where δ ∈ (0, 1) is a certain scaling factor and V is a ±1-valued matrix of size n×m, both to be
chosen later. In particular, we will assume that V is approximately balanced, in the sense that for any
column i ∈ [n] of V , if pi is the portion of +1 entries in the column, then

max
i

∣∣∣∣12 − pi

∣∣∣∣ ≤ α

8
. (4)

For any i ∈ [m], since x1, . . . ,xm are orthogonal and of norm bx, we have

u⊤σ(Wxi) = u⊤σ

(
δ

b2x
V diag(y)X⊤xi

)
= u⊤σ(δyivi) =

b√
n

n∑
j=1

σ(δyiVj,i)

where vi is the i-th column of V , and Vj,i is the entry of V in the j-th row and i-th column. Then we
have the following:

• If yi = 0, this equals b
√
nσ(0) = 0.

• If yi = 1, this equals b
√
n (piσ(δ) + (1− pi)σ(−δ)), where pi ∈ [ 12 − α

8 ,
1
2 + α

8 ] is the
portion of entries in the i-th column of V with value +1. Rewriting it and using Eq. (2),
Eq. (4) and the fact that σ(·) is 1-Lipschitz on [−1,+1], we get the expression

b
√
n

(
σ(δ) + σ(−δ)

2
−
(
1

2
− pi

)
(σ(δ)− σ(−δ))

)
≥ b

√
n

(
δα

2
− α

8
· 2δ
)

=
b
√
nδα

4
.

Recalling Eq. (3), we get that by fixing s =
√
nδα
8 , we can shatter the dataset as long as

b
√
nδα

8
≥ ϵ ⇒ δ ≥ 8ϵ

αb
√
n
. (5)

Leaving this condition for a moment, we now turn to specify how δ, V is chosen, so as to satisfy the
condition ∥W∥ = ∥ δ

b2x
V diag(y)X⊤∥ ≤ B. To that end, we let V be any ±1-valued n×m matrix

which satisfies Eq. (4) as well as ∥V ∥ ≤ c(
√
n +

√
m), where c ≥ 1 is some universal constant.
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Such a matrix necessarily exists assuming m is sufficiently larger than 1
α2

2. It then follows that
∥W∥ ≤ δ

b2x
∥V ∥ · ∥diag(y)∥ · ∥X∥ ≤ δ

b2x
· c(

√
n +

√
m) · bx = δ

bx
· c(

√
n +

√
m). Therefore, by

assuming

δ ≤ Bbx
c(
√
n+

√
m)

,

we ensure that ∥W∥ ≤ B.

Collecting the conditions on δ (namely, that it is in (0, 1), satisfies Eq. (5), as well as the displayed
equation above), we get that there is an appropriate choice of δ and we can shatter our m points, as
long as m is sufficiently larger than 1/α2 and that

1 >
Bbx

c(
√
n+

√
m)

≥ 8ϵ

αb
√
n
.

The first inequality is satisfied if (say) we can choose m ≥ (Bbx/c)
2 (which we will indeed do in the

sequel). As to the second inequality, it is certainly satisfied if m ≥ n, as well as

Bbx
2c
√
m

≥ 8ϵ

αb
√
n

=⇒ m ≤
( α

16c

)2
· (bBbx)

2n

ϵ2
.

Thus, we can shatter any number m of points up to this upper bound. Picking m on this order
(assuming it is sufficiently larger than 1/α2, B2 or n), assuming that the dimension d is larger than
m, and renaming the universal constants, the result follows.

A.2 Proof of Thm. 2

To simplify notation, we rewrite supu,W :∥u∥≤b,∥W∥F≤B as simply supu,W . Also, we let wj denote
the j-th row of the matrix W .

Fix some set of inputs x1, . . . ,xm with norm at most bx. The Rademacher complexity equals

Eϵ sup
u,W

1

m

m∑
i=1

ϵiu
⊤σ(Wxi) = Eϵ sup

u,W

1

m
u⊤

(
m∑
i=1

ϵiσ(Wxi)

)

=
b

m
· Eϵ sup

W

∥∥∥∥∥
m∑
i=1

ϵiσ(Wxi)

∥∥∥∥∥ =
b

m
· Eϵ sup

W

√√√√ n∑
j=1

(
m∑
i=1

ϵiσ(w⊤
j xi)

)2

.

Each matrix in the set {W ∈ Rd×n : ∥W∥F ≤ B} is composed of rows, whose sum of squared
norms is at mostB2. Thus, the set can be equivalently defined as the set of d×nmatrices, where each
row j equals vjwj for some vj > 0, ∥w∥j ≤ 1, and ∥(v1, . . . , vn)∥2 = ∥v∥2 ≤ B2. Noting that
each vj is positive, we can upper bound the expression in the displayed equation above as follows:

b

m
· Eϵ sup

v,{wj}

√√√√ n∑
j=1

(
m∑
i=1

ϵiσ(vjw⊤
j xi)

)2

=
b

m
· Eϵ sup

v,{wj}

√√√√ n∑
j=1

v2j

(
m∑
i=1

ϵi
vj
σ(vjw⊤

j xi)

)2

≤ b

m
· Eϵ sup

v,v′,{wj}

√√√√ n∑
j=1

v′2j

(
m∑
i=1

ϵi
vj
σ(vjw⊤

j xi)

)2

, (6)

where v′ = (v′1, . . . , v
′
n) satisfies ∥v′∥2 =

∑n
j=1 v

′2
j ≤ B2 (note that v must also satisfy

this constraint). Considering this constraint in Eq. (6), we see that for any choice of ϵ,v and
w1, . . . ,wn, the supremum over v′ is clearly attained by letting v′j∗ = B for some j∗ for which

2This follows from the probabilistic method: If we pick the entries of V uniformly at random, then both
conditions will hold with some arbitrarily large probability (assuming m is sufficiently larger than 1/α2, see for
example Seginer [2000]), hence the required matrix will result with some positive probability.
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(∑m
i=1

ϵi
vj
σ(vjw

⊤
j xi)

)2
is maximized, and v′j = 0 for all j ̸= j∗. Plugging this observation back

into Eq. (6) and writing the supremum constraints explicitly, we can upper bound the displayed
equation by

bB

m
· Eϵ sup

v:minj vj>0,∥v∥≤B
sup

w1,...wn:maxj ∥wj∥≤1

max
j

∣∣∣∣∣
m∑
i=1

ϵi
vj
σ(vjw

⊤
j xi)

∣∣∣∣∣
=

bB

m
· Eϵ sup

v∈(0,B],w:∥w∥≤1

∣∣∣∣∣
m∑
i=1

ϵi
v
σ(vw⊤xi)

∣∣∣∣∣
=

bB

m
· Eϵ sup

v∈(0,B],w:∥w∥≤1

∣∣∣∣∣
m∑
i=1

ϵiψv
(
w⊤xi

)∣∣∣∣∣ , (7)

where ψv(z) := σ(vz)
v for any z ∈ R. Since σ(·) is L-Lipschitz, it follows that ψv(·) is also

L-Lipschitz regardless of v, since for any z, z′ ∈ R,

|ψv(z)− ψv(z
′)| =

|σ(vz)− σ(vz′)|
v

≤ L|vz − vz′|
v

= L|z − z′| .

Thus, the supremum over v in Eq. (7) corresponds to a supremum over a class of L-Lipschitz functions
which all equal 0 at the origin (since ψv(0) =

σ(0)
v = 0 by assumption). As a result, we can upper

bound Eq. (7) by

bB

m
· Eϵ sup

ψ∈ΨL,w:∥w∥≤1

∣∣∣∣∣
m∑
i=1

ϵiψ
(
w⊤xi

)∣∣∣∣∣ ,
where ΨL is the class of all L-Lipschitz functions which equal 0 at the origin.

To continue, it will be convenient to get rid of the absolute value in the displayed expression above.
This can be done by noting that the expression equals

bB

m
· Eϵ sup

ψ∈ΨL,w:∥w∥≤1

max

{
m∑
i=1

ϵiψ
(
w⊤xi

)
, −

m∑
i=1

ϵiψ
(
w⊤xi

)}
(∗)
≤ bB

m
· Eϵ

[
sup

ψ∈ΨL,w:∥w∥≤1

m∑
i=1

ϵiψ
(
w⊤xi

)
+ sup
ψ∈ΨL,w:∥w∥≤1

−
m∑
i=1

ϵiψ
(
w⊤xi

)]
(∗∗)
=

2bB

m
· Eϵ sup

ψ∈ΨL,w:∥w∥≤1

m∑
i=1

ϵiψ
(
w⊤xi

)
, (8)

where (∗) follows from the fact that max{a, b} ≤ a + b for non-negative a, b and the observation
that the supremum is always non-negative (it is only larger, say, than the specific choice of ψ being
the zero function), and (∗∗) is by symmetry of the function class ΨL (if ψ ∈ ΨL, then −ψ ∈ ΨL as
well).

Considering Eq. (8), this is 2bB times the Rademacher complexity of the function class {x 7→
ψ(w⊤x) : ψ ∈ ΨL, ∥w∥ ≤ 1}. In other words, this class is a composition of all linear functions
of norm at most 1, and all univariate L-Lipschitz functions crossing the origin. Fortunately, the
Rademacher complexity of such composed classes was analyzed in Golowich et al. [2017] for a
different purpose. In particular, noting that w⊤xi is bounded in [−bx, bx], and applying Theorem 4
from that paper, we get that Eq. (8) is upper bounded by

2bB · cL
(
bx√
m

+ log3/2(m) · Rm(H)

)
(9)

for some universal constant c > 0, where H = {x 7→ w⊤x : ∥w∥ ≤ 1}, and Rm(H) is the
Rademacher complexity of H.
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To complete the proof, we need to employ a standard upper bound on R̂m(H) (see Bartlett and
Mendelson [2002], Shalev-Shwartz and Ben-David [2014]), which we derive below for completeness:

R̂m(H) = Eϵ sup
h∈H

1

m

m∑
i=1

ϵih(xi) =
1

m
Eϵ sup

w:∥w∥≤1

m∑
i=1

ϵiw
⊤xi

=
1

m
Eϵ sup

w:∥w∥≤1

w⊤

(
m∑
i=1

ϵixi

)
(∗)
=

1

m
Eϵ

∥∥∥∥∥
m∑
i=1

ϵixi

∥∥∥∥∥
(∗∗)
≤ 1

m

√√√√Eϵ

∥∥∥∥∥
m∑
i=1

ϵixi

∥∥∥∥∥
2

=
1

m

√√√√Eϵ

m∑
i,i′=1

ϵiϵi′x⊤
i xi′

=
1

m

√√√√ m∑
i=1

∥xi∥2 ≤ 1

m

√
mb2x =

bx√
m
,

where (∗) is by the Cauchy-Schwarz inequality, and (∗∗) is by Jensen’s inequality. Plugging this
back into Eq. (9), we get the following upper bound:

2bB · cL
(
bx√
m

+ log3/2(m) · bx√
m

)
= 2cbBbxL · 1 + log3/2(m)√

m
.

Upper bounding this by ϵ, solving for m and simplifying a bit, the result follows.

A.3 Proof of Thm. 3

We fix a number of inputs m to be chosen later. We let X be the d×m matrix whose i-th column is
xi. We choose X to be any matrix such that the following conditions hold for some universal constant
c > 0:

• Every entry of X is in {± bx√
d
} (hence ∀i, ∥xi∥ = 1)

• maxi′ ̸=i |x⊤
i xi′ | ≤ cb2x

√
log(d)
d

• ∥X∥ ≤ cbx
(
1 +

√
m
d

)
.

The existence of such a matrix follows from the probabilistic method: If we simply choose each entry
of X independently and uniformly from {± 1√

d
}, then the first condition automatically holds; The

second condition holds with high probability by a standard concentration of measure argument and a
union bound; And the third condition holds with arbitrarily high constant probability (by Markov’s
inequality and the fact that E[∥

√
d
bx

·X∥] ≤ c(
√
d+

√
m), see for example Seginer [2000]). Thus, by

a union bound, a random matrix satisfies all of the above with some positive probability, hence such a
matrix X exists.

Given this input set, it is enough to show that for any y ∈ {0, 1}m, we can find a predictor (namely,
u,W depending on y) in our class, such that ∥u∥ ≤ b, ∥W∥ ≤ B, and

∀i ,u⊤σ(Wxi) is
{
≤ 0 yi = 0

≥ 2ϵ yi = 1
. (10)

We will do so as follows: Letting a ≥ 0, p ∈ [0, 1] be some parameters to be chosen later, we let

u =
b√
n
1 and W =

1

b2x
· V diag(y)X⊤ ,

Where V ∈ Rn×m is a random matrix with i.i.d. entries chosen as follows:

Vk,i =


0 w.p. 1− p

a w.p. p2
−a w.p. p2 .
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Note that the condition ∥u∥ ≤ b follows directly from the definition of u. We will show that there is
a way to choose the parameters a, p such that the following holds: For any y ∈ {0, 1}m, with high
probability over the choice of V , Eq. (10) holds as well as ∥W∥ ≤ B. This implies that for any y,
there exists some fixed choice of V (and hence W ) such that ∥W∥ ≤ B as well as Eq. (10) holds,
implying the theorem statement.

We break this argument into two lemmas:
Lemma 1. There exists a universal constant c′ > 0 such that the following holds: For any ϵ ≥ 0,
δ ∈ (0, exp(−1)) and y ∈ {0, 1}m, if we assume

β = c′a

√
log(d)

d
log
(m
δ

)
(
√
pm+ 1)

as well as a ≥ 4β and bap
√
n ≥ 8ϵ, then Eq. (10) holds with probability at least 1 − δ −

m exp(−pn/16) over the choice of V .

Proof. Let wk be the k-th row of W . Fixing some i ∈ [m], we have

u⊤σ(Wxi) = u⊤[Wxi − β]+ =
b√
n

n∑
k=1

[w⊤
k xi − β]+ =

b√
n

n∑
k=1

[
m∑
i′=1

1

b2x
Vk,i′yi′x

⊤
i′xi − β

]
+

=
b√
n

n∑
k=1

Vk,iyi +∑
i′ ̸=i

1

b2x
Vk,i′yi′x

⊤
i′xi − β


+

. (11)

Recalling the assumptions on X and the random choice of V , note that
∑
i′ ̸=i

1
b2x
Vk,i′yi′x

⊤
i′xi

is the sum of m − 1 independent random variables, each with mean 0, absolute value at most

| ab2x yi′xi′⊤xi| ≤ ac
√

log(d)
d , and standard deviation at most

√
p · ac

√
log(d)
d . Thus, by Bernstein’s

inequality, for any δ ∈ (0, exp(−1)), it holds with probability at least 1− δ that∣∣∣∣∣∣
∑
i′ ̸=i

1

b2x
Vk,i′yi′x

⊤
i′xi

∣∣∣∣∣∣ ≤ c′

(
√
p · a

√
log(d)

d
·

√
(m− 1) log

(
1

δ

)
+ a

√
log(d)

d
· log

(
1

δ

))

≤ c′a

√
log(d)

d
log

(
1

δ

)
(
√
pm+ 1) ,

where c′ > 0 is some universal constant. Applying a union bound over all i ∈ [m], we get that with
probability at least 1− δ,

max
i∈[m]

∣∣∣∣∣∣
∑
i′ ̸=i

1

b2x
Vk,i′yi′x

⊤
i′xi

∣∣∣∣∣∣ ≤ c′a

√
log(d)

d
log
(m
δ

)
(
√
pm+ 1) .

Recalling that we choose β to equal this upper bound, and plugging back into Eq. (11), we get that
with probability at least 1− δ,

∀i ∈ [m], u⊤σ(Wxi) is

{
≤ b√

n

∑n
k=1[Vk,iyi]+ = 0 if yi = 0

≥ b√
n

∑n
k=1[Vk,iyi − 2β]+ = b√

n

∑n
k=1[Vk,i − 2β]+ if yi = 1

.

Moreover, by the assumption a ≥ 4β, we have

b√
n

n∑
k=1

[Vk,i − 2β]+ ≥ b√
n

∑
k:Vk,i=a

[
a− a

2

]
+

≥ ba

2
√
n

∑
k:Vk,i=a

1 .

Note that EV [
∑
k:Vk,i=a

1] = pn
2 . Thus, by a standard multiplicative Chernoff bound and

a union bound,
∑
k:Vk,i=a

1 ≥ pn
4 simultaneously for all i ∈ [m], with probability at least

1 − m exp(−pn/16). Combining with the above using a union bound, we get that with proba-
bility at least 1− δ −m exp(−pn/16) over the choice of V ,

∀i ∈ [m], u⊤σ(Wxi) is

{
≤ 0 if yi = 0

≥ bap
√
n

4 if yi = 1
.

Since we assume bap
√
n

4 ≥ 2ϵ, the result follows.
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Lemma 2. For any y ∈ {0, 1}m, with probability at least 1
2 over the random choice of V , the matrix

W satisfies

∥W∥F ≤ a
√
2nmp

bx
.

Proof. By definition of W,V and X , we have

E[∥W∥2F ] =

n∑
k=1

d∑
i=1

E[W 2
k,i] =

n∑
k=1

d∑
i=1

E


 m∑
j=1

1

b2x
Vk,jyjXi,j

2


=
1

b4x
·
n∑
k=1

d∑
i=1

E

 m∑
j,j′=1

Vk,jVk,j′yjyj′Xi,jXi,j′


=

1

b4x
·
n∑
k=1

d∑
i=1

m∑
j=1

E
[
V 2
k,jy

2
jX

2
i,j

]
≤ 1

b4x
· b

2
x

d
·
n∑
k=1

d∑
i=1

m∑
j=1

E[V 2
k,j ]

=
1

b2xd
· ndm · pa2 =

nmpa2

b2x
.

By Markov’s inequality, it follows that with probability at least 1
2 , ∥W∥2F ≤ 2 · nmpa

2

b2x
, from which

the result follows.

Combining Lemma 1 and Lemma 2, and choosing δ = 1/4, we get that with some positive probability
over the choice of V , both the shattering condition in Eq. (10) holds, as well as ∥W∥F ≤ B, if the
following combination of conditions are met (for suitable universal constant c1 > 0):

m exp
(
−pn
16

)
<

1

4
, a ≥ c1a

√
log(d)

d
log(4m)(

√
pm+1) , bap

√
n ≥ 8ϵ , a

√
2nmp ≤ Bbx .

We now wish to choose the free parameters p, a, to ensure that all these conditions are met (hence
we indeed manage to shatter the dataset), while allowing the size m of the shattered set to be as
large as possible. We begin by noting that the first condition is satisfied if p > c2

log(m)
n , and the

second condition is satisfied if d ≥ c3 and p ≤ c4
d

log(d) log2(4m)m
(for suitable universal constants

c2, c3, c4 > 0). Thus, it is enough to require

d ≥ c3 , c2
log(m)

n
< p ≤ c4

d

log(d) log2(4m)m
, bap

√
n ≥ 8ϵ , a

√
2nmp ≤ Bbx . (12)

Let us pick in particular

p = c4
d

log(d) log2(4m)m

(which is valid if it is in [0, 1] and if c2
log(m)
n ≤ c4

d
log(d) log2(4m)m

, or equivalently

m log(m) log2(4m) ≤ c4nd
c2 log(d) ) and

a =
8ϵ

bp
√
n

=
8ϵ log(d) log2(4m)m

c4bd
√
n

(which automatically satisfied the third condition in Eq. (12)). Plugging into Eq. (12), the required
conditions hold if we assume

d ≥ c3 ,
c4d

log(d) log2(4m)m
≤ 1 , m log3(4m) ≤ c5nd

log(d)
, c6

ϵ
√
log(d) log(4m)m

b
√
d

≤ Bbx

for appropriate universal constants c5, c6 > 0. The first two conditions are satisfied if we require
m ≥ c7d ≥ c8 for suitable universal constants c7, c8 > 0. Thus, it is enough to require the set of
conditions

m ≥ c6d ≥ c7 , m log3(4m) ≤ c5nd

log(d)
, m log(4m) ≤ bBbx

√
d

c6ϵ
√

log(d)
.
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All these conditions are satisfied if we assume d ≥ c7/c6, pick

m = Θ̃

(
min

{
nd,

bBbx
ϵ

√
d

})
(13)

(with the Θ̃ hiding constants and factors polylogarithmic in d, n, b, B, bx, 1ϵ )), and assume that the
parameters are such that this expression is sufficiently larger than d, and that d is larger than some
universal constant.

It only remains to track what value of β we have chosen (as a function of the problem parameters).
Combining Lemma 1, the choice of a, p from earlier, as well as Eq. (13), it follows that

β = Θ̃

(
a√
d
(1 +

√
pm)

)
= Θ̃

(
ϵm

bd
√
dn

(1 +
√
d)

)
= Θ̃

(
ϵm

bd
√
n

)
= Θ̃

(
min

{
ϵ
√
n

b
,
Bbx√
dn

})
,

which is at most Õ(Bbx/
√
dn).

A.4 Proof of Corollary 1

Thm. 3 implies that a certain dataset {xi}mi=1 of points in Rd of norm at most bx (where m is the
lower bound stated in the theorem) can be shattered with margin ϵ, using networks in Fσ

b,B,n,d of

the form x 7→ u⊤σ(Wx), where σ = [z − β]+ for some β ∈
[
0, Õ( Bbx√

dn
)
]
. Our key observation is

the following: Any network x 7→ u⊤σ(Wx) can be equivalently written as x̃ 7→ u⊤[W̃ x̃]+, where
x̃ = (x, bx), and W̃ = [W , − β

bx
· 1] (namely, we add to W another column with every entry

being equal to − β
bx

. Note that if ∥x∥ ≤ bx, then ∥x̃∥ ≤
√
2bx, and ∥W̃∥ ≤ ∥W∥+ ∥ − β

bx
· 1∥ ≤

B + β
bx

√
n ≤ 2B under the corollary’s conditions. Thus, if we can shatter a set of points {xi}mi=1

in the unit ball in Rd using networks from Fσ
b,B,n,d, we can also shatter {x̃i}mi=1 in Rd+1 (with

norm ≤
√
2bx) using networks from F [·]+

b,2B,n,d+1. Rescaling bx, B, d appropriately, we get the same

shattering number lower bound for F [·]+
b,B,n,d and inputs with norm ≤ bx up to small numerical

constants which get absorbed into the Ω̃(·) notation.

A.5 Proofs of Thm. 4 and Thm. 5

In what follows, given a vector ui, we let ui,j denote its j-th entry.

The proofs rely on the following two key technical lemmas:
Lemma 3. Let W be a matrix such that ∥W∥ ≤ 1, with row vectors w1,w2, . . . Then the fol-
lowing holds for any set of vectors {ui} with the same dimensionality as w1, and any scalars
{zi,ℓ}, {zi}indexed by i, ℓ:

∑
ℓ

(∑
i

(w⊤
ℓ ui)zi,ℓ

)2

≤
∑
ℓ,r

(∑
i

ui,rzi,ℓ

)2

and ∑
ℓ

(∑
i

(w⊤
ℓ ui)zi

)2

≤
∑
r

(∑
i

ui,rzi

)2

,

where the sum r is over all all coordinates of each ui.

Proof. Starting with the first inequality, the left hand side equals

∑
ℓ

(
w⊤
ℓ

(∑
i

uizi,ℓ

))2

≤
∑
ℓ,ℓ′

(
w⊤
ℓ′

(∑
i

uizi,ℓ

))2

=
∑
ℓ

∥∥∥∥∥W⊤

(∑
i

uizi,ℓ

)∥∥∥∥∥
2

.

By Cauchy-Schwartz and the assumption ∥W∥ ≤ 1, this is at most∑
ℓ ∥
∑
i uizi,ℓ∥

2
=

∑
ℓ,r (
∑
i ui,rzi,ℓ)

2. As to the second inequality, the left hand side
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equals∑
ℓ

(
w⊤
ℓ

(∑
i

uizi

))2

=

∥∥∥∥∥W⊤

(∑
i

uizi

)∥∥∥∥∥
2

≤

∥∥∥∥∥∑
i

uizi

∥∥∥∥∥
2

=
∑
r

(∑
i

ui,rzi

)2

where we again used Cauchy Schwartz and the assumption ∥W∥ ≤ 1.

Lemma 4. Given a vector u ∈ Rdin , a matrix W ∈ Rdout×din with row vectors w1,w2, . . . such
that ∥W∥ ≤ B, and a positive integer k, define

f(u) = (Wu)◦k ,

where ◦k denotes taking the k-th power element-wise. Then for any positive integer r, any vectors
u1,u2, . . . in Rdin and any scalars ϵ1, ϵ2, . . ., it holds that

dout∑
ℓ1,...,ℓr=1

(∑
i

ϵif(ui)ℓ1 · · · f(ui)ℓr

)2

≤ B2rk ·
din∑

ℓ1,...,ℓrk=1

(∑
i

ϵiui,ℓ1 · · ·ui,ℓrk

)2

.

Proof. It is enough to prove the result for W such that ∥W∥ = 1 (and therefore B = 1): For any
other W , apply the result on f̃(u) := ( W

∥W∥u)
◦k = 1

∥W∥k f(u), and rescale accordingly.

The left hand side equals

dout∑
ℓ1...ℓr=1

(∑
i

ϵi(w
⊤
ℓ1ui)

◦k · · · (w⊤
ℓrui)

◦k

)2

(14)

Note that the term inside the square involves the product of rk terms. We now simplify them
one-by-one using Lemma 3: To start, we note that the above can be written as

dout∑
ℓ2...ℓr=1

dout∑
ℓ1=1

(∑
i

(w⊤
ℓ1ui) · ϵi(w

⊤
ℓ1ui)

◦k−1(w⊤
ℓ2ui)

◦k · · · (w⊤
ℓrui)

◦k

)2

Denoting ϵi(w
⊤
ℓ1
ui)

◦k−1(w⊤
ℓ2
ui)

◦k · · · (w⊤
ℓr
ui)

◦k as zi,ℓ1 and plugging the first inequality in
Lemma 3, the above is at most

dout∑
ℓ2...ℓr=1

dout∑
ℓ1=1

din∑
ℓ′1=1

(∑
i

ui,ℓ′1ϵi(w
⊤
ℓ1ui)

◦k−1(w⊤
ℓ2ui)

◦k · · · (w⊤
ℓrui)

◦k

)2

Again pulling out one of the product terms in front, we can rewrite this as

dout∑
ℓ2...ℓr=1

din∑
ℓ′1=1

dout∑
ℓ1=1

(∑
i

(w⊤
ℓ1ui) · ui,ℓ′1ϵi(w

⊤
ℓ1ui)

◦k−2(w⊤
ℓ2ui)

◦k · · · (w⊤
ℓrui)

◦k

)2

.

Again using the first inequality in Lemma 3, this is at most

dout∑
ℓ2...ℓr=1

din∑
ℓ′1,ℓ

′′
1 =1

dout∑
ℓ1=1

(∑
i

ui,ℓ′′1 ui,ℓ′1ϵi(w
⊤
ℓ1ui)

◦k−2(w⊤
ℓ2ui)

◦k · · · (w⊤
ℓrui)

◦k

)2

.

Repeating this to get rid of all but the last (w⊤
ℓ1
ui) term, we get the upper bound

dout∑
ℓ2...ℓr=1

din∑
ℓ11...ℓ

k−1
1 =1

dout∑
ℓ1=1

(∑
i

ui,ℓ11 · · ·ui,ℓk−1
1

ϵi(w
⊤
ℓ1ui)(w

⊤
ℓ2ui)

◦k · · · (w⊤
ℓrui)

◦k

)2

.

Again pulling the last (w⊤
ℓ1
ui) term in front, and applying now the second inequality in Lemma 3 (as

the remaining terms in the product no longer depend on ℓ1), we get the upper bound

dout∑
ℓ2...ℓr=1

din∑
ℓ11...ℓ

k
1=1

(∑
i

ui,ℓ11 · · ·ui,ℓk1 ϵi(w
⊤
ℓ2ui)

◦k · · · (w⊤
ℓrui)

◦k

)2

.
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Recalling that this is an upper bound on Eq. (14), and applying the same procedure now on the
(w⊤

ℓ2
ui), (w

⊤
ℓ3
ui) . . . terms, we get overall an upper bound of the form

din∑
ℓ11...ℓ

k
1=1

· · ·
din∑

ℓ1r···ℓkr=1

(∑
i

ui,ℓ11 · · ·ui,ℓkr ϵi

)2

.

Re-labeling the rk indices as ℓ1, . . . , ℓrk, the result follows.

A.5.1 Proof of Thm. 4

Fixing a dataset x1, . . . ,xm and applying Cauchy-Schwartz, the Rademacher complexity is

Eϵ sup
u,W

1

m

m∑
i=1

ϵiu
⊤σ(Wxi) ≤ Eϵ sup

W

b

m

∥∥∥∥∥
m∑
i=1

ϵiσ(Wxi)

∥∥∥∥∥ .
Recalling that σ(z) =

∑∞
j=1 ajz

j , by the triangle inequality, we have that the above is at most

Eϵ sup
W

b

m

∞∑
j=1

|aj |

∥∥∥∥∥
m∑
i=1

ϵi(Wxi)
j

∥∥∥∥∥ ≤ b

m

∞∑
j=1

|aj |Eϵ sup
W

∥∥∥∥∥
m∑
i=1

ϵi(Wxi)
j

∥∥∥∥∥
where (·)j is applied element-wise. Recalling that the supremum is over matrices of spectral norm at
most B, and using Jensen’s inequality, the above can be equivalently written as

b

m

∞∑
j=1

|aj |Bj ·Eϵ sup
W :∥W∥≤1

∥∥∥∥∥
m∑
i=1

ϵi(Wxi)
j

∥∥∥∥∥ ≤ b

m

∞∑
j=1

|aj |Bj

√√√√Eϵ sup
W :∥W∥≤1

∥∥∥∥∥
m∑
i=1

ϵi(Wxi)j

∥∥∥∥∥
2

.

(15)
Using Lemma 4, we have that for any W : ∥W∥ ≤ 1,∥∥∥∥∥

m∑
i=1

ϵi(Wxi)
j

∥∥∥∥∥
2

=
∑
ℓ

(∑
i

ϵi(Wxi)
j
ℓ

)2

≤
d∑

ℓ1,...,ℓj=1

(
m∑
i=1

ϵixi,ℓ1 · · ·xi,ℓj

)2

.

Thus,

Eϵ sup
W :∥W∥≤1

∥∥∥∥∥
m∑
i=1

ϵi(Wxi)
j

∥∥∥∥∥
2

≤ Eϵ

d∑
ℓ1,...,ℓj=1

(
m∑
i=1

ϵixi,ℓ1 · · ·xi,ℓj

)2

= Eϵ

m∑
i,i′=1

d∑
ℓ1,...,ℓj=1

ϵiϵi′xi,ℓ1xi′,ℓ1 · · ·xi,ℓjxi′,ℓj

(∗)
=

m∑
i=1

d∑
ℓ1,...,ℓj=1

x2i,ℓ1 · · ·x
2
i,ℓj

=

m∑
i=1

(
d∑

ℓ1=1

x2i,ℓ1

)
· · ·

 d∑
ℓj=1

x2i,ℓj


=

m∑
i=1

∥xi∥2j ≤
m∑
i=1

b2jx = m · b2jx ,

where in (∗) we used the fact that each ϵi is independent and uniformly distributed on ±1. Plugging
this bound back into Eq. (15), we get that the Rademacher complexity is at most

b

m

∞∑
j=1

|aj |(Bbx)j
√
m =

b · σ̃(Bbx)√
m

.

Upper bounding this by ϵ and solving for m, the result follows.

21



A.6 Proof of Example 2

σ(z) = erf(rz) = 2√
π

∫ rz
t=0

exp(−t2)dt = 2√
π

∫ rz
t=0

∑∞
j=0

(−t2)j
j! dt = 2√

π

∑∞
j=0

(−1)j(rz)2j+1

j!(2j+1) , and

therefore σ̃(z) = 2√
π

∑∞
j=0

(rz)2j+1

j!(2j+1) ≤
2rz√
π

∑∞
j=0

((rz)2)
j

j! = 2rz√
π
exp

(
(rz)2

)
.

A.7 Proof of Example 3

By a computation similar to the previous example, σ(y) = 1
2y +

1√
π

∑∞
j=0

(−1)j(r2j+1y2j+2)
j!(2j+1)(2j+2) , and

therefore σ̃(z) = z
2 +

1√
π

∑∞
j=0

r2j+1z2j+2

j!(2j+1)(2j+2) ≤ z
2 +

rz2√
π

∑∞
j=0

((rz)2)
j

j! = z
2 +

rz2√
π
exp((rz)2).

A.8 Proof of Thm. 5

For simplicity, we use supu,W 1,...,WL as short for supu:∥u∥≤b,W 1,...,WL:maxj ∥W j∥≤B . The
Rademacher complexity equals

Eϵ sup
u,W 1,...,WL

1

m

m∑
i=1

ϵifL+1(xi) = Eϵ sup
u,W 1,...,WL

1

m

m∑
i=1

ϵiu
⊤fL(xi)

≤ Eϵ sup
u,W 1,...,WL

u⊤

(
1

m

m∑
i=1

ϵifL(xi)

)
≤ b

m
· Eϵ sup

u,W 1,...,WL

∥∥∥∥∥
m∑
i=1

ϵifL(xi)

∥∥∥∥∥
≤ b

m

√√√√Eϵ sup
u,W 1,...,WL

∥∥∥∥∥
m∑
i=1

ϵifL(xi)

∥∥∥∥∥
2

=
b

m

√√√√Eϵ sup
u,W 1,...,WL

∑
ℓ

(
m∑
i=1

ϵi(fL(xi))ℓ

)2

, (16)

where we used Cauchy-Schwartz and the assumption ∥u∥ ≤ b, and ℓ ranges over the indices of
fL(xi). Recalling that fj+1(x) = (W j+1fj(x))

◦k and repeatedly applying Lemma 4, we have

∑
ℓ

(
m∑
i=1

ϵi(fL(xi))ℓ

)2

≤
∑
ℓ

B2k
∑
ℓ1...ℓk

(
m∑
i=1

ϵi(fL−1(xi))ℓ1 · · · (fL−1(xi))ℓk

)2

≤ B2k+2k2
∑

ℓ1...ℓk2

(
m∑
i=1

ϵi(fL−2(xi))ℓ1 · · · (fL−2(xi))ℓk

)2

≤ · · · ≤ B2k+2k2+...2kL
∑

ℓ1...ℓkL

(
m∑
i=1

ϵi(f0(xi))ℓ1 · · · (f0(xi))ℓkL

)2

= B2k+2k2+...2kL
∑

ℓ1...ℓkL

(
m∑
i=1

ϵi(f0(xi))ℓ1 · · · (f0(xi))ℓkL

)2

= B2k+2k2+...2kL
∑

ℓ1...ℓkL

(
m∑
i=1

ϵixi,ℓ1 · · ·xi,ℓkL

)2
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Therefore, recalling that ϵ1 . . . ϵm are i.i.d. and uniform on {−1,+1}, we have

Eϵ sup
u,W 0,...,WL−1

∑
ℓ

(
m∑
i=1

ϵi(fL(xi))ℓ

)2

≤ B2k+2k2+...2kLEϵ

∑
ℓ1...ℓkL

(
m∑
i=1

ϵixi,ℓ1 · · ·xi,ℓkL

)2

= B2k+2k2+...2kLEϵ

∑
ℓ1...ℓkL

m∑
i,i′=1

ϵiϵi′xi,ℓ1xi′,ℓ1 · · ·xi,ℓkL
xi′,ℓkL

= B2k+2k2+...2kL
∑

ℓ1...ℓkL

m∑
i=1

x2i,ℓ1 · · ·x
2
i,ℓkL

= B2k+2k2+...2kL
m∑
i=1

(∑
ℓ1

x2i,ℓ1

)
· · ·

∑
ℓkL

x2i,ℓkL

 ≤ B2k+2k2+...2kL ·m · b2k
L

x ,

where in the last step we used the assumption that ∥xi∥2 ≤ b2x for all i. Plugging this back into
Eq. (16), and solving for the number of inputs m required to make the expression less than ϵ, the
result follows.

A.9 Proof of Thm. 6

We will need the following lemma, based on a contraction result from Ledoux and Talagrand [1991]:

Lemma 5. Let T be a set of vectors in Rm which contains the origin. If ϵ1, . . . , ϵm are i.i.d.
Rademacher random variables, and σ is an L-Lipschitz function on R with σ(0) = 0, then

Eϵ

sup
t∈T

(
m∑
i=1

ϵiσ(ti)

)2
 ≤ 2L2 · Eϵ

(sup
t∈T

m∑
i=1

ϵiti

)2
 .

Proof. For any realization of ϵ, supt∈T |
∑m
i=1 ϵiσ(ti)| equals either supt∈T

∑m
i=1 ϵiσ(ti) or

supt∈T −
∑m
i=1 ϵiσ(ti). Thus, the left hand side in the lemma can be upper bounded as follows:

E

(sup
t∈T

∣∣∣∣∣
m∑
i=1

ϵiσ(ti)

∣∣∣∣∣
)2
 ≤ E

(sup
t∈T

m∑
i=1

ϵiσ(ti)

)2

+

(
sup
t∈T

−
m∑
i=1

ϵiσ(ti)

)2
 .

Noting that Eϵ[(supt∈T
∑
i ϵiσ(ti))

2] equals Eϵ[(supt∈T −
∑
i ϵiσ(ti))

2] by symmetry of the ϵi
random variables, the expression above equals

2·E

(sup
t∈T

m∑
i=1

ϵiσ(ti)

)2
 (∗)

= 2·E

[sup
t∈T

m∑
i=1

ϵiσ(ti)

]2
+

 = 2L2·E

[sup
t∈T

m∑
i=1

ϵi
1

L
σ(ti)

]2
+

 ,

where (∗) follows from the fact that the supremum is always non-negative, since σ(0) = 0 and T
contains the origin. We now utilize equation (4.20) in Ledoux and Talagrand [1991], which implies
that Eϵg(supt∈T

∑
i ϵiϕ(ti)) ≤ Eϵg(supt∈T

∑
i ϵiti) for any 1-Lipschitz ϕ satisfying ϕ(0) = 0,

and any convex increasing function g. Plugging into the above, and using the fact that [z]2+ ≤ z2 for
all z, the lemma follows.

We now turn to prove the theorem. The Rademacher complexity times m equals

Eϵ

[
sup
W,u

m∑
i=1

ϵiu
⊤σ(Wxi)

]
,
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where for notational convenience we drop the conditions on W,u,w in the supremum. Using the
Cauchy-Schwartz and Jensen’s inequalities, this in turn can be upper bounded as follows:

Eϵ

[
sup
W,u

u⊤

(
m∑
i=1

ϵiσ(Wxi)

)]
≤ b · Eϵ

[
sup
W

∥∥∥∥∥
m∑
i=1

ϵiσ(Wxi)

∥∥∥∥∥
]

≤ b

√√√√√Eϵ

sup
W

∥∥∥∥∥
m∑
i=1

ϵiσ(Wxi)

∥∥∥∥∥
2
 = b

√√√√√Eϵ

sup
W

n∑
j=1

(
m∑
i=1

ϵiσ(w⊤ϕj(xi))

)2


≤ b

√√√√√ n∑
j=1

Eϵ

sup
W

(
m∑
i=1

ϵiσ(w⊤ϕj(xi))

)2
 .

Recall that the supremum is over all matrices W which conform to the patches, and has spectral norm
at most B. By definition, every row of this matrix has a subset of entries, which correspond to the
convolutional filter vector w. Thus, we must have ∥w∥ ≤ B, since the norm w equals the norm of
any row of W , and the norm of a row of W is a lower bound on the spectral norm. Thus, we can
upper bound the expression above by taking the supremum over all vectors w such that ∥w∥ ≤ B
(and not just those that the corresponding matrix has spectral norm ≤ B). Thus, we get the upper
bound

b

√√√√√ n∑
j=1

Eϵ

 sup
w:∥w∥≤B

(
m∑
i=1

ϵiσ(w⊤ϕj(xi))

)2
,

which by Lemma 5 and Cauchy-Shwartz, is at most

bL

√√√√√2

n∑
j=1

Eϵ

 sup
w:∥w∥≤B

(
m∑
i=1

ϵiw⊤ϕj(xi))

)2
 ≤ bBL

√√√√√2

n∑
j=1

Eϵ

∥∥∥∥∥
m∑
i=1

ϵiϕj(xi))

∥∥∥∥∥
2


= bBL

√√√√√2

n∑
j=1

Eϵ

 m∑
i,i′=1

ϵiϵ′iϕj(xi)
⊤ϕj(xi′)

 = bBL

√√√√2

n∑
j=1

m∑
i=1

∥ϕj(xi)∥2.

Recalling that OΦ is the maximal number of times any single input coordinate appears across the
patches, and letting xi,l be the l-th coordinate of xi, we can upper bound the above by

bBL

√√√√2

m∑
i=1

d∑
l=1

x2i,lOΦ = bBL

√√√√2

m∑
i=1

∥xi∥2 ·OΦ ≤ bBbxL
√

2mOΦ.

Dividing by m, and solving for the number m required to make the resulting expression less than ϵ,
the result follows.

A.10 Proof of Thm. 7

The proof follows from a covering number argument. We start with some required definitions and
lemmas.

Definition 2. Let F be a class of functions from X to R. For 1 ≤ p ≤ ∞, ϵ > 0, and {x1, . . . ,xm} ⊆
X , the empirical covering number Np(F , ϵ;x1, . . . ,xm) is the minimal cardinality of a set V ⊆ Rm,
such that for all f ∈ F there is v ∈ V such that(

1

m

m∑
i=1

|f(xi)− vi|p
)1/p

≤ ϵ .

We define the covering number Np(F , ϵ,m) = supx1,...,xm
Np(F , ϵ;x1, . . . ,xm).
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Lemma 6 (Zhang [2002]). Let a, b > 0, let X = {x ∈ Rd : ∥x∥ ≤ b}, and consider the class of
linear predictors F = {f ∈ RX : f(x) = w⊤x, ∥w∥ ≤ a}. Then,

logN∞(F , ϵ,m) ≤ 36a2b2

ϵ2
log (2m⌈4ab/ϵ+ 2⌉+ 1) .

Lemma 7 (E.g., Daniely and Granot [2019]). Let C > 0 and let F be a class of C-bounded functions
from X to R, i.e., |f(x)| ≤ C for all f ∈ F and x ∈ X . Then, for every integer M ≥ 1 we have

Rm(F) ≤ C2−M +
6C√
m

M∑
k=1

2−k
√
logN2(F , C2−k,m) .

We are now ready to prove the theorem. For i ∈ [m], j ∈ [n] we denote x′
i,j = ϕj(xi) ∈ Rn′

. Let
Xn′ = {x′ ∈ Rn′

: ∥x′∥ ≤ bx}, and let

F := {f ∈ RXn′ : f(x′) = w⊤x′, w ∈ Rn
′
, ∥w∥ ≤ B} .

Let V ⊆ Rmn be a set of size at most N∞(F , ϵ/L,mn), such that for all f ∈ F there is v ∈ V
that satisfies the following: Letting vi,j := v(i−1)n+j , we have |f(x′

i,j) − vi,j | ≤ ϵ/L for all
i ∈ [m], j ∈ [n].

We define

U := {u ∈ Rm : there is v ∈ V s.t. ui = ρ◦σ(vi,1, . . . , vi,n) = ρ (σ(vi,1), . . . , σ(vi,n)) for all i ∈ [m]} .

Note that |U | ≤ |V |. Let h ∈ Hσ,ρ,Φ
B,n,d and suppose that the network h has a filter w ∈ Rn′

. Let W
be the weight matrix that corresponds to Φ and w. Thus, we have ∥W∥ ≤ B. Let x ∈ Rd such
that ϕ1(x) = w

∥w∥ and xk = 0 for every coordinate k that does not appear in ϕ1. That is, x is a
vector of norm 1 such that (Wx)1 = w⊤ϕ1(x) = ∥w∥. Therefore, ∥Wx∥ ≥ (Wx)1 = ∥w∥, and
thus B ≥ ∥W∥ ≥ ∥w∥. Let f be the function in F that corresponds to w, and let v ∈ V such
that |f(x′

i,j) − vi,j | ≤ ϵ/L for all i ∈ [m], j ∈ [n]. Let u ∈ U that corresponds to v, namely,
ui = ρ ◦ σ(vi,1, . . . , vi,n) for all i ∈ [m]. Note that |h(xi) − ui| ≤ ϵ for all i ∈ [m]. Indeed, we
have that |h(xi)− ui| equals∣∣ρ ◦ σ (f(x′

i,1), . . . , f(x
′
i,n)
)
− ρ ◦ σ (vi,1, . . . , vi,n)

∣∣ ≤ L ·max
j∈[n]

∣∣f(x′
i,j)− vi,j

∣∣ ≤ L · ϵ
L

= ϵ ,

where the first inequality follows from the L-Lipschitzness of ρ ◦ σ w.r.t. ℓ∞. Hence,

N∞

(
Hσ,ρ,Φ
B,n,d, ϵ,m

)
≤ |U | ≤ |V | ≤ N∞(F , ϵ/L,mn) .

Combining the above with Lemma 6, and using the fact that the N2 covering number is at most the
N∞ covering number (cf. Anthony and Bartlett [1999]), we get

logN2

(
Hσ,ρ,Φ
B,n,d, ϵ,m

)
≤ logN∞

(
Hσ,ρ,Φ
B,n,d, ϵ,m

)
≤ logN∞(F , ϵ/L,mn)

≤ 36b2xB
2

(ϵ/L)2
log (2mn⌈4bxB/(ϵ/L) + 2⌉+ 1) . (17)

Note that for every x ∈ X :=
{
x ∈ Rd : ∥ϕj(x)∥ ≤ bx for all j ∈ [n]

}
and h ∈ Hσ,ρ,Φ

B,n,d we have
|h(x)| = |ρ(σ(w⊤ϕ1(x)), . . . , σ(w

⊤ϕn(x)))| ≤ LbxB, since |w⊤ϕj(x)| ≤ Bbx, the activation
σ is L-Lipschitz and satisfies σ(0) = 0, and ρ is 1-Lipschitz w.r.t. ℓ∞ and satisfies ρ(0) = 0. By
Lemma 7, we conclude that

Rm

(
Hσ,ρ,Φ
B,n,d

)
≤ LbxB2−M +

6LbxB√
m

M∑
ℓ=1

2−ℓ
√

logN2

(
Hσ,ρ,Φ
B,n,d, LbxB2−ℓ,m

)
,
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for every integer M ≥ 1. By plugging-in M = ⌈log(
√
m)⌉ and the expression from Eq. (17), we get

Rm

(
Hσ,ρ,Φ
B,n,d

)
≤ LbxB√

m
+

6LbxB√
m

⌈log(
√
m)⌉∑

ℓ=1

2−ℓ

√
36b2xB

2

(bxB2−ℓ)2
log (2mn⌈4bxB/(bxB2−ℓ) + 2⌉+ 1)

=
LbxB√
m

+
36LbxB√

m

⌈log(
√
m)⌉∑

ℓ=1

√
log (2mn⌈4 · 2ℓ + 2⌉+ 1)

≤ LbxB√
m

+
36LbxB√

m
⌈log(

√
m)⌉ ·

√
log
(
23mn

√
m
)
.

Hence, for some universal constant c′ > 0 the above is at most

c′ ·
LbxB log(m)

√
log (mn)√

m
.

Requiring this to be at most ϵ and rearranging, the result follows.

A.11 Proof of Thm. 8

To help the reader track the main proof ideas, we first prove the claim for the case where B = bx = 1
and ϵ = 1/2 (in Subsection A.11.1), and then extend the proof for arbitraryB, bx, ϵ > 0 in Subsection
A.11.2.

A.11.1 Proof for B = bx = 1 and ϵ = 1/2

Let m = log(n) and let d = 3m. Consider m points x1, . . . ,xm, where for every i ∈ [m] the
point xi ∈ Rd is a vectorization of an order-m tensor x̂i such that each component is indexed
by (j1, . . . , jm) ∈ [3]m. We define the components xij1,...,jm of x̂i such that xij1,...,jm = 1 if
ji = 3, and jr = 2 for all r ̸= i, and xij1,...,jm = 0 otherwise. Note that ∥xi∥ = 1 for all
i ∈ [m]. Consider patches of dimensions 2 × . . . × 2 and stride 1. Thus, the set Φ corresponds to
all the patches of dimensions 2 × . . . × 2 in the tensor. Note that there are 2m = n such patches.
Indeed, given an index (j1, . . . , jm) ∈ [2]m, we can define a patch which contains the indices
{(j1, . . . , jm) + (∆1, . . . ,∆m) : (∆1, . . . ,∆m) ∈ {0, 1}m}. We say that (j1, . . . , jm) is the base
index of this patch. Note that each (j1, . . . , jm) ∈ [2]m is a base index of exactly one patch. Also, an
index (j1, . . . , jm) which includes some r ∈ [m] with jr = 3 does not induce a patch of the form
{(j1, . . . , jm) + (∆1, . . . ,∆m) : (∆1, . . . ,∆m) ∈ {0, 1}m}, since for ∆r = 1 we get an invalid
index.

We show that for any y ∈ {0, 1}m we can find a filter w, such that w is an order-m tensor of
dimensions 2× . . .× 2 and satisfies the following. Let Nw be the neural network that consists of
a convolutional layer with the patches Φ and the filter w, followed by a max-pooling layer. Then,
Nw(xi) = yi for all i ∈ [m]. Thus, we can shatter x1, . . . ,xm with margin ϵ = 1/2. Moreover, the
spectral norm of the matrix W that corresponds to the convolutional layer is at most 1.

Consider the filter w of dimensions 2× . . .× 2 such that wj1,...,jm = 1 if (j1, . . . , jm) = 1+y, and
wj1,...,jm = 0 otherwise. We now show that Nw(xi) = yi for all i ∈ [m]. Since the filter w has a
single non-zero component, then the inner product between w and a patch of xi is non-zero iff the
patch of xi has a non-zero component in the appropriate position. More precisely, for a patch with
base index (j1, . . . , jm), the inner product between the components of xi in the indices of the patch
and the filter w is 1 iff xi(j1,...,jm)+y = 1, and otherwise the inner product is 0. Since xiq1,...,qm = 1

iff qi = 3 and qr = 2 for r ̸= i, then xi(j1,...,jm)+y = 1 iff ji = 3 − yi and jr = 2 − yr for r ̸= i.
Now, if yi = 0 then there is no patch such that the base index satisfies ji = 3− yi = 3, since all base
indices are in [2]m, and therefore Nw(xi) = 0. If yi = 1 then the patch whose base index satisfies
ji = 3− yi and jr = 2− yr for r ̸= i gives output 1 (and all other patches give output 0) and hence
Nw(xi) = 1. Thus, we have Nw(xi) = yi as required.

For example, consider the case where m = 2. Then, the tensor x̂1 is the matrix

x̂1 =

[
0 0 0
0 0 0
0 1 0

]
.
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For y = (1, 1)⊤ we have w =

[
0 0
0 1

]
and hence the patch with base index (2, 1) gives output 1.

For y = (1, 0)⊤ we have w =

[
0 0
1 0

]
and hence the patch with base index (2, 2) gives output 1.

However, for y = (0, 1)⊤ we have w =

[
0 1
0 0

]
and hence there is no patch that gives output 1.

Thus, in all the above cases we have Nw(x1) = y1.

It remains to show that the spectral norm of the matrix W that corresponds to the convolutional layer
with the filter w is at most 1. Thus, we show that for every input x ∈ Rd with ∥x∥ = 1 the inputs to
the hidden layer is a vector with norm at most 1. We view x as the vectorization of a tensor x̂ with
components xj1,...,jm for (j1, . . . , jm) ∈ [3]m. Since the filter w contains a single 1-component and
all other components are 0, then the input to each hidden neuron is a different component of x̂. More
precisely, since the filter w contains 1 at index 1+ y then for the patch with base index (j1, . . . , jm)
the corresponding hidden neuron has input x(j1,...,jm)+y. Note that each hidden neuron corresponds
to a different base index and hence the input to each hidden neuron is a different component of x̂.
Therefore, the norm of the vector whose components are the inputs to the hidden neurons is at most
the norm of the input x, and hence it is at most 1.

A.11.2 Proof for arbitrary B, bx, ϵ > 0

Let m =
(
bxB
2ϵ

)2 · log(n) and let d =
(
bxB
2ϵ

)2 · 3log(n). Let m′ = log(n) and let L =
(
bxB
2ϵ

)2
.

Consider m points x1, . . . ,xm, where for every i ∈ [m] the point xi ∈ Rd is a vectorization of a
tensor x̂i of order m′ + 1, such that each component is indexed by (j1, . . . , jm′ , ℓ) ∈ [3]m

′ × [L].
Consider a partition of [m] into L disjoint susets S1, . . . , SL, each of size m/L = m′.

We define the components xij1,...,jm′ ,ℓ of x̂i as follows: Suppose that i ∈ Sr := {k1, . . . , km′} for
some r ∈ L, and that i = kt, i.e., i is the t-th element in the subset Sr. For every ℓ ̸= r we define
xij1,...,jm′ ,ℓ = 0 for every j1, . . . , jm′ ∈ [3]m

′
, namely, if ℓ does not correspond to the subset of i then

the component is 0. For ℓ = r the component xij1,...,jm′ ,ℓ is defined in a similar way to the tensor x̂i

from Subsection A.11.1, but with respect to the subset Sr and at scale bx. Formally, for ℓ = r we
have xij1,...,jm′ ,ℓ = bx if jt = 3, and jk = 2 for all k ̸= t, and xij1,...,jm′ ,ℓ = 0 otherwise. Note that
∥xi∥ = bx for all i ∈ [m].

Consider patches of dimensions 2 × . . . × 2 × L and stride 1. Thus, the set Φ corresponds to all
the patches of dimensions 2 × . . . × 2 × L in the tensor. Note that since the last dimension is
L, then the filter can “move" only in the first m′ dimensions. Also, note that there are 2m

′
= n

such patches. Indeed, given (j1, . . . , jm′) ∈ [2]m
′
, we can define a patch which contains the

indices
{
(j1, . . . , jm′ , 0) + (∆1, . . . ,∆m′ ,∆m′+1) : (∆1, . . . ,∆m′) ∈ {0, 1}m′

, ∆m′+1 ∈ [L]
}

.
We say that (j1, . . . , jm′) is the base index of this patch. Note that each
(j1, . . . , jm′) ∈ [2]m

′
is a base index of exactly one patch. Also, if (j1, . . . , jm′) in-

cludes some r ∈ [m′] with jr = 3 then it does not induce a patch of the form{
(j1, . . . , jm′ , 0) + (∆1, . . . ,∆m′ ,∆m′+1) : (∆1, . . . ,∆m′) ∈ {0, 1}m′

, ∆m′+1 ∈ [L]
}

, since
for ∆r = 1 we get an invalid index.

We show that for any y ∈ {0, 1}m we can find a filter w, such that w is an order-(m′ + 1) tensor of
dimensions 2× . . .× 2× L and satisfies the following. Let Nw be the neural network that consists
of a convolutional layer with the patches Φ and the filter w, followed by a max-pooling layer. Then,
for all i ∈ [m] we have: if yi = 0 then Nw(xi) = 0, and if yi = 1 then Nw(xi) = 2ϵ. Thus, we can
shatter x1, . . . ,xm with margin ϵ. Moreover, the spectral norm of the matrix W that corresponds to
the convolutional layer is at most B.

We now define the filter w of dimensions 2 × . . . × 2 × L. For every ℓ ∈ [L] we define the
components wj1,...,jm′ ,ℓ as follows. Let ySℓ

∈ {0, 1}m′
be the restriction of y to the indices in

Sℓ. Then, wj1,...,jm′ ,ℓ =
2ϵ
bx

if (j1, . . . , jm′) = 1 + ySℓ
, and wj1,...,jm′ ,ℓ = 0 otherwise. We show

that for all i ∈ [m], if yi = 0 then Nw(xi) = 0, and if yi = 1 then Nw(xi) = 2ϵ. Suppose
that i ∈ Sr := {k1, . . . , km′} for some r ∈ L, and that i = kt, i.e., i is the t-th element in the
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subset Sr. Then, the tensor x̂i has a non-zero component only at xij1,...,jm′ ,r with jt = 3, and
js = 2 for all s ̸= t. Moreover, the filter w has a non-zero component at index (q1, . . . , qm′ , r) iff
(q1, . . . , qm′) = 1+ ySr

. Hence, the inner product between w and a patch of xi is non-zero iff the
patch has a base index (j1, . . . , jm′) such that (j1, . . . , jm′) + ySr

= (p1, . . . , pm′) where pt = 3,
and ps = 2 for all s ̸= t. If yi = 0 then the t-th component of ySr

is 0, and there is no patch such
that the base index satisfies jt + (ySr

)t = jt + 0 = pt = 3. Therefore, Nw(xi) = 0. If yi = 1 then
the patch whose base index satisfies jt = 3− (ySr )t = 3− 1 = 2, and js = 2− (ySr )s for s ̸= t,
gives output 2ϵ

bx
· bx = 2ϵ (and all other patches give output 0).

It remains to show that the spectral norm of the matrix W that corresponds to the convolutional layer
with the filter w is at most B. Thus, we show that for every input x ∈ Rd with ∥x∥ = 1 the inputs to
the hidden layer are a vector with norm at most B. We view x as the vectorization of a tensor x̂ with
components xj1,...,jm′ ,ℓ for (j1, . . . , jm′ , ℓ) ∈ [3]m

′ × [L]. The inner product between a patch of x
and the filter w can be written as ∑

ℓ∈[L]

2ϵ

bx
· x

q
(ℓ)
1 ,...,q

(ℓ)

m′ ,ℓ
.

Thus, for each ℓ there is a single index of x̂ that contributes to the inner product, since for every ℓ the
filter w has a single non-zero component, which equals 2ϵ

bx
. By Cauchy–Schwarz, the above sum is at

most

2ϵ

bx
·
√
L ·
√∑
ℓ∈[L]

x2
q
(ℓ)
1 ,...,q

(ℓ)

m′ ,ℓ
=

2ϵ

bx
· bxB
2ϵ

·
√∑
ℓ∈[L]

x2
q
(ℓ)
1 ,...,q

(ℓ)

m′ ,ℓ
= B ·

√∑
ℓ∈[L]

x2
q
(ℓ)
1 ,...,q

(ℓ)

m′ ,ℓ
. (18)

Hence, the input to the hidden neuron that corresponds to the patch is bounded by the above expression.
Moreover, since for every ℓ ∈ [L] the filter w has a single non-zero component such that the last
dimension of its index is ℓ, then for every two patches with different base indices, the bound in the
above expression includes different indices of x̂. Namely, if the inner product between one patch of x
and the filter w is

∑
ℓ∈[L]

2ϵ
bx

· x
q
(ℓ)
1 ,...,q

(ℓ)

m′ ,ℓ
and the inner product between another patch of x and the

filter w is
∑
ℓ∈[L]

2ϵ
bx
·x
p
(ℓ)
1 ,...,p

(ℓ)

m′ ,ℓ
, then for every ℓwe have (q(ℓ)1 , . . . , q

(ℓ)
m′) ̸= (p

(ℓ)
1 , . . . , p

(ℓ)
m′). Since

by Eq. (18) the square of the input to each hidden neuron can be bounded byB2 ·
∑
ℓ∈[L] x

2

q
(ℓ)
1 ,...,q

(ℓ)

m′ ,ℓ

for some subset
{
x
q
(ℓ)
1 ,...,q

(ℓ)

m′ ,ℓ

}
ℓ∈[L]

of components, and since for each two hidden neurons these

subsets are disjoint, then the norm of the vector of inputs to the hidden neurons can be bounded by√
B2 ·

∑
k∈[d]

x2k ≤
√
B2 · 1 = B .
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