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Abstract

We study norm-based uniform convergence bounds for neural networks, aiming
at a tight understanding of how these are affected by the architecture and type of
norm constraint, for the simple class of scalar-valued one-hidden-layer networks,
and inputs bounded in Euclidean norm. We begin by proving that in general,
controlling the spectral norm of the hidden layer weight matrix is insufficient to
get uniform convergence guarantees (independent of the network width), while a
stronger Frobenius norm control is sufficient, extending and improving on previous
work. Motivated by the proof constructions, we identify and analyze two important
settings where (perhaps surprisingly) a mere spectral norm control turns out to be
sufficient: First, when the network’s activation functions are sufficiently smooth
(with the result extending to deeper networks); and second, for certain types of
convolutional networks. In the latter setting, we study how the sample complexity
is additionally affected by parameters such as the amount of overlap between
patches and the overall number of patches.

1 Introduction

Understanding why large neural networks are able to generalize is one of the most important puzzles
in the theory of deep learning. Since sufficiently large neural networks can approximate any function,
their success must be due to a strong inductive bias in the learned network weights, which is still not
fully understood.

A useful approach to understand such biases is studying what types of constraints on the network
weights can lead to uniform convergence bounds, which ensure that empirical risk minimization
will not lead to overfitting. Notwithstanding the ongoing debate on whether uniform convergence
can fully explain the learning performance of neural networks [Nagarajan and Kolter, 2019, Negrea
et al., 2020, Koehler et al., 2021], these bounds provide us with important insights on what norm-
based biases can potentially aid in generalization. For example, for linear predictors, it is well-
understood that constraints on the Euclidean norm of the weights imply uniform convergence
guarantees independent of the number of parameters. This indicates that minimizing the Euclidean
norm (without worrying about the number of parameters) is often a useful inductive bias, whether
used explicitly or implicitly, or whether uniform convergence formally holds or not for some specific
setup. However, neural networks have a more complicated structure than linear predictors, and we
still lack a good understanding of what norm-based constraints imply a good inductive bias.
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In this paper, we study this question in the simple case of scalar-valued one-hidden-layer neural
networks, which generally compute functions from Rd to R of the form x 7→ u⊤σ(Wx), with weight
matrix W ∈ Rn×d, weight vector u, and a fixed (generally non-linear) activation function σ. We
focus on an Euclidean setting, where the inputs x and output weight vector v are assumed to have
bounded Euclidean norm. Our goal is to understand what kind of norm control on the matrix W
is required to achieve uniform convergence guarantees, independent of the underlying distribution
and the network width n (i.e., the number of neurons). Previous work clearly indicates that a bound
on the spectral norm is generally necessary, but (as we discuss below) does not conclusively imply
whether it is also sufficient.

Our first contribution (in Subsection 3.1) is formally establishing that spectral norm control is
generally insufficient to get width-independent sample complexity bounds in high dimensions,
by directly lower bounding the fat-shattering number of the predictor class. On the flip side, if we
assume that the Frobenius norm ofW is bounded, then we can prove uniform convergence guarantees,
independent of the network width or input dimension. The latter result is based on Rademacher
complexity, and extends previous results (e.g., [Neyshabur et al., 2015, Golowich et al., 2018], which
crucially required homogeneous activations) to general Lipschitz activations. In Subsection 3.2, we
also prove a variant of our lower bound in the case where the input dimension is fixed, pointing at a
possibly interesting regime for which good upper bounds are currently lacking.

The constructions used in these lower bounds crucially require activation functions which are non-
smooth around 0, and arbitrary weight matrices W with bounded norm. Motivated by this, we
identify and analyze two important settings where (perhaps surprisingly) these lower bounds can
be circumvented, and where a mere spectral norm control is sufficient to obtain width-independent
guarantees:

• The first case (studied in Sec. 4) is for networks where the activation function σ is sufficiently
smooth: Specifically, when it is analytic and the coefficients of its Taylor expansion decay suffi-
ciently rapidly. Some examples include polynomial activations, sigmoidal functions such as the
error function, and appropriate smoothings of the ReLU function. Perhaps surprisingly, the mere
smoothness of the activation allows us to prove uniform convergence guarantees that depend only
on the spectral norm of W and the structure of the activation function, independent of the network
width. Moreover, we can extend our results for deeper networks when the activations is a power
function (e.g., quadratic activations).

• A second important case (studied in Sec. 5) is when the network employs weight-sharing on W , as
in convolutional networks. Specifically, we consider two variants of one-hidden-layer convolutional
networks, one with a linear output layer, and another employing max-pooling. In both cases, we
present bounds on the sample complexity that depend only on the spectral norm, and study how
they depend on the convolutional architecture of the network (such as the number of patches or
their amount of overlap).

Our work leaves open quite a few questions and possible avenues for future research, which we
discuss in Sec. 6. For lack of space, all proofs of our results appear in the appendix.

Related Work

The literature on the sample complexity of neural networks has rapidly expanded in recent years, and
cannot be reasonably surveyed here. In what follows, we discuss only works which deal specifically
with the issues we focus on in this paper.

Frobenius vs. spectral norm Control, lower bounds. Fat-shattering lower bounds for neural
networks were developed in Anthony and Bartlett [1999], but involve size or dimension dependencies
rather than norm control. Bartlett et al. [2017] proved a lower bound on the Rademacher complexity
of neural networks, implying that a dependence on the spectral norm is generally necessary. Golowich
et al. [2018] extended this to show that a dependence on the network width is also necessary, if only
the spectral norm is controlled. However, their construction requires a vector-valued (rather than
scalar-valued) output. More importantly, the lower bound is on the Rademacher complexity of the
predictor class rather than the fat-shattering dimension, and thus (as we further discuss below) does
not necessarily imply that the actual sample complexity with some bounded loss function indeed
suffers from such a width dependence. Daniely and Granot [2019] do provide a fat-shattering lower
bound, which implies that neural networks on Rd with bounded spectral norm and width at most
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d can shatter Ω̃(d2) points with constant margin, assuming that the inputs have norm at most
√
d.

However, this lower bound does not separate between the input norm bound and the width of the
hidden layer (which both scale with d), and thus does not clarify the contribution of the network
width to the bound. Moreover, their proof technique appears to crucially rely on the input’s norm
scaling with the dimension, rather than being an independent parameter.

Frobenius vs. spectral norm control, upper bounds. A width-independent uniform convergence
guarantee, depending on the Frobenius norm, has been established in Neyshabur et al. [2015] for
constant-depth networks, and in Golowich et al. [2018] for arbitrary-depth networks. However,
these bounds are specific to homogeneous activation functions, whereas we tackle general Lipschitz
activations (at least for one-hidden layer networks). Bounds based on other norms include Anthony
and Bartlett [1999], Bartlett et al. [2017], Liang [2016], but are potentially more restrictive than the
Frobenius norm, or do not lead to width-independence. Also, we note that the bound of Bartlett et al.
[2017] has the nice property of depending on the distance to some fixed reference matrix, rather than
the norm itself. However, we do not pursue this generalization here as it is not the focus of our work.

Sample complexity with smooth activations. The Rademacher complexity for networks with
quadratic activations has been studied in Du and Lee [2018], but assuming Frobenius norm constraints,
whereas we show that mere spectral norm constraint is sufficient to bound the Rademacher complexity
independent of the network width. The strong influence of the activation function on the sample
complexity has been observed in the context of VC-dimension bounds for binary classification (see
Anthony and Bartlett [1999, Section 7.2]). However, we are not aware of previous results showing
how the smoothness of the activation functions provably affects scale-sensitive bounds such as the
Rademacher complexity in our setting.

Sample complexity of convolutional networks. Norm-based bounds for convolutional networks
(including more general ones than the one we study) have been provided in Du et al. [2018], Long
and Sedghi [2019]. However, these bounds either depend on the overall number of parameters, or
apply only to average-pooling. For convolutional networks with max-pooling, Ledent et al. [2021]
provide a norm-based analysis which we build on (see Sec. 5 for details). Cao and Gu [2019] showed
an algorithm-dependent sample complexity of learning one-hidden-layer convolutional networks with
non-overlapping filters and general activation functions. Additional works studying the generalization
performance of convolutional networks in settings different than ours include Li et al. [2018], Arora
et al. [2018], Wei and Ma [2019], Hsu et al. [2020], Brutzkus and Globerson [2021].

2 Preliminaries

Notation. We use bold-face letters to denote vectors, and let [m] be shorthand for {1, . . . ,m}. Given
a matrix M , Mi,j is the entry in row i and column j. Given a function σ(·) on R, we somewhat abuse
notation and let σ(x) (for a vector x) or σ(M) (for a matrix M ) denote applying σ element-wise.
A special case is when σ(·) = [·]+ = max{·, 0} is the ReLU function. We use standard big-Oh
notation, with Ω(·),Θ(·),O(·) hiding constants and Ω̃(·), Θ̃(·), Õ(·) hiding constants and factors
polylogarithmic in the problem parameters.

Norms. ∥ · ∥ denotes the operator norm: For vectors, it is the Euclidean norm, and for matrices, the
spectral norm (i.e., ∥M∥ = supx:∥x∥=1 ∥Mx∥). ∥ · ∥F denotes the Frobenius norm (i.e., ∥M∥F =√∑

i,jM
2
i,j ). It is well-known that for any matrix M , ∥M∥ ≤ ∥M∥F , so the class of matrices

whose Frobenius norm is bounded by some B is a subset of the class of matrices whose spectral norm
is bounded by the same B. Moreover, if M is an n× d matrix, then ∥M∥F ≤ ∥M∥ ·

√
min{n, d}.

Network Architecture. Most of our results pertain to scalar-valued one-hidden-layer networks, of
the form x 7→ u⊤σ(Wx), where x ∈ Rd, W ∈ Rn×d, u is a vector and σ(·) is some fixed non-linear
function. The width of the network is n, the number of rows of W (or equivalently, the number of
neurons in the hidden layer of the network).

Fat-Shattering and Rademacher Complexity. When studying lower bounds on the sample com-
plexity of a given function class, we use the following version of its fat-shattering dimension:

Definition 1. A class of functions F on an input domain X shatters m points {xi}mi=1 ⊆ X with
margin ϵ, if there exist a number s, such that for all y ∈ {0, 1}m we can find some f ∈ F such that
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for all i ∈ [m], f(xi) ≤ s− ϵ if yi = 0 and f(xi) ≥ s+ ϵ if yi = 1. The fat-shattering dimension of
F (at scale ϵ) is the cardinality m of the largest set of points in X for which the above holds.

It is well-known that the fat-shattering dimension lower bounds the number of samples needed to
learn in a distribution-free learning setting, up to accuracy ϵ (see for example Anthony and Bartlett
[1999, Part III]). Thus, by proving the existence of a large set of points shattered by the function
class, we get lower bounds on the fat-shattering dimension, and thus on the sample complexity.

As to upper bounds on the sample complexity, our results utilize the Rademacher
complexity of a function class F , which for our purposes can be defined as
Rm(F) = sup{xi}m

i=1⊆X Eϵ

[
supf∈F

1
m

∑m
i=1 ϵifi(xi)

]
, where ϵ = (ϵ1, . . . , ϵm) is a

vector of m independent random variables ϵi uniformly distributed on {−1,+1}. Upper bounds on
the Rademacher complexity directly translate to upper bounds on the sample complexity required
for learning F : Specifically, the number of inputs m required to make Rm(F) smaller than some ϵ
is generally an upper bound on the number of samples required to learn F up to accuracy ϵ, using
any Lipschitz loss (see Bartlett and Mendelson [2002], Shalev-Shwartz and Ben-David [2014],
Mohri et al. [2018]). We note that Rademacher complexity bounds can also be easily converted to
margin-based bounds (where the 0 − 1 classification risk is upper-bounded by the proportion of
margin violations on the training data) by considering a composition of the hypothesis class with an
appropriate ramp loss (which upper bounds the 0-1 loss and lower bounds the margin loss, as was
done for example in Bartlett and Mendelson [2002], Bartlett et al. [2017]).

We note that although the fat-shattering dimension and Rademacher complexity of the predictor class
are closely related, they do no always behave the same: For example, the class of norm-bounded
linear predictors {x 7→ ⟨w,x⟩ : w ∈ Rd, ∥w∥ ≤ B} has Rademacher complexity Θ(B/

√
m),

implying Θ((B/ϵ)2) samples to make it less than ϵ. In contrast, the fat-shattering dimension of the
class is smaller, Θ(min{d, (B/ϵ)2}) [Anthony and Bartlett, 1999, Bartlett and Mendelson, 2002].
The reason for this discrepancy is that the Rademacher complexity of the predictor class necessarily
scales with the range of the function outputs, which is not necessarily relevant if we use bounded
losses (that is, if we are actually interested in the function class of linear predictors composed with a
bounded loss). Such bounded losses are common, for example, when we are interested in bounding
the expected misclassification error (see for example Bartlett and Mendelson [2002], Bartlett et al.
[2017]). For this reason, when considering the predictor class itself, we focus on fat-shattering
dimension in our lower bounds, and Rademacher complexity in our upper bounds.

3 Frobenius Norm Control is Necessary for General Networks

We begin by considering one-hidden-layer networks x 7→ u⊤σ(Wx), where σ is a function on R
applied element-wise (such as the ReLU activation function). In Subsection 3.1, we consider the
dimension-free case (where we are interested in bounds that do not depend on the input dimension d).
In Subsection 3.2, we consider the case where the dimension d is a fixed parameter.

3.1 Dimension-Free Bounds

We focus on the following hypothesis class of scalar-valued, one-hidden-layer neural networks of
width n on inputs in Rd, where σ is a function on R applied element-wise, and where we only bound
the operator norms:

Hσ
b,B,n,d :=

{
x 7→ u⊤σ(Wx) : u ∈ Rn , W ∈ Rn×d , ∥u∥ ≤ b , ∥W∥ ≤ B

}
.

The following theorem shows that if the input dimension is large enough, then under a mild condition
on the non-smoothness of σ around 0, the fat-shattering dimension of this class necessarily scales
with the network width n:

Theorem 1. Suppose that the activation function σ (as a function on R) is 1-Lipschitz on [−1,+1],

and satisfies σ(0) = 0 as well as infδ∈(0,1)

∣∣∣σ(δ)+σ(−δ)δ

∣∣∣ ≥ α for some α > 0.

Then there exist universal constants c, c′ > 0 such that the following hold: For any b, B, bx, n, ϵ > 0,
there is some d0 = poly(b, B, bx, n, 1/ϵ) such that for any input dimension d ≥ d0, Hσ

b,B,n,d can
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shatter

cα2 · (bBbx)
2n

ϵ2

points from {x ∈ Rd : ∥x∥ ≤ bx} with margin ϵ, provided the expression above is larger than
c′( 1

α2 +B2 + n).

To understand the condition on σ in the theorem, suppose that σ has a left-hand derivative σ′
−(0)

and right-hand derivative σ′
+(0) at 0. Recalling that σ(0) = 0, the condition stated in the theorem

implies that
∣∣∣σ(δ)−σ(0)δ − σ(0)−σ(−δ)

δ

∣∣∣ ≥ α for all δ > 0. In particular, as δ → 0, we get
|σ′

+(0) − σ′
−(0)| > α. Thus, σ is necessarily non-differentiable at 0. For example, the ReLU

activation function satisfies the assumption in the theorem with α = 1, and the leaky ReLU function
σ(z) = βz + (1− β)[z]+ (with parameter β) satisfies the assumption with α = 1− β.
Remark 1. The assumption σ(0) = 0 is without much loss of generality: If σ(0) ̸= 0, then let
σ̂(z) := σ(z)− σ(0) be a centering of σ, and note that our predictors can be rewritten in the form
x 7→ u⊤σ̂(Wx) + σ(0) · u⊤1. Thus, our hypothesis class is contained in the hypothesis class of
predictors of the form x 7→ u⊤σ̂(Wx) + r for some bounded bias parameter r ∈ R. This bias term
does not change the fat-shattering dimension, and thus is not of much interest.

The theorem implies that with only spectral norm control (i.e. where ∥u∥, ∥W∥ is bounded), it is
impossible to get bounds independent of the width of the network n. Initially, the lower bound
might appear surprising, since if the activation function σ is the identity, Hσ

b,B,n,d simply contains
linear predictors of norm ≤ bB, for which the sample complexity / fat-shattering dimension is well
known to be O(bB/ϵ2) in high input dimensions, completely independent of n (see discussion in
the previous section). Intuitively, the extra n term in the lower bound comes from the fact that for
random matrices M , ∥σ(M)∥ can typically be much larger than ∥M∥, even when σ is a Lipschitz
function satisfying σ(0) = 0. To give a concrete example, if M is an n× n matrix with i.i.d. entries
uniform on {± 1√

n
}, then standard concentration results imply that E[∥M∥] is upper-bounded by a

universal constant independent of n, yet the matrix σ(M) (where σ is entry-wise absolute value)
satisfies ∥σ(M)∥ =

√
n (since σ(M) is just the constant matrix with value 1√

n
at every entry). The

formal proof (in the appendix) relies on constructing a network involving random weights, so that the
spectral norm is small yet the network can return sufficiently large values due to the non-linearity.
Remark 2. Thm. 1 has an interesting connection to the recent work of Bubeck et al. [2021], which
implies that in order to fit m points with bounded norm using a width-n one-hidden-layer neural
network x 7→ v⊤σ(Wx), the Lipschitz constant of the network (and hence ∥v∥ · ∥W∥) must be
generally at least Ω(

√
m/n). The lower bound in Thm. 1 implies a related statement in the opposite

direction: If we allow ∥v∥ · ∥W∥ to be sufficiently larger than
√
m/n, then there exist m points

that can be shattered with constant margin. Thus, we seem to get a good characterization of the
expressiveness of one-hidden layer neural networks on finite datasets, as a function of their width
and the magnitude of the weights.

Considering the lower bound, and noting that B2n is an upper bound on ∥W∥2F which is tight in the
worst-case, the bound suggests that a control over the Frobenius norm ∥W∥F would be sufficient
to get width-independent bounds. Indeed, such results were previously known when σ is the ReLU
function, or more generally, a positive-homogeneous function of degree 1 [Neyshabur et al., 2015,
Golowich et al., 2018], with the proofs crucially relying on that property. In what follows, we will
prove such a result for general Lipschitz functions (at least for one-hidden layer networks).

Specifically, consider the following hypothesis class, where the previous spectral norm constraint on
W is replaced by a Frobenius norm constraint:

Fσ
b,B,n,d :=

{
x 7→ u⊤σ(Wx) : u ∈ Rn , W ∈ Rn×d , ∥u∥ ≤ b , ∥W∥F ≤ B

}
.

Theorem 2. Suppose σ(·) (as a function on R) is L-Lipschitz and σ(0) = 0. Then for any
b, B, bx, n, d, ϵ > 0, the Rademacher complexity of Fσ

b,B,n,d on m inputs from {x ∈ Rd : ∥x∥ ≤ bx}
is at most ϵ, if

m ≥ c · (bBbxL)
2(1 + log3(m))

ϵ2

for some universal constant c > 0. Thus, it suffices to have m = Õ
((

bBbxL
ϵ

)2)
.
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The bound is indeed independent of the network width n. Also, the result (as an upper bound on the
Rademacher complexity) is clearly tight up to log-factors, since in the special case where σ(z) = L ·z
and we fix u = b · e1, then Fσ

b,B,n,d reduces to the class of linear predictors with Euclidean norm at
most bBL (on data of norm at most bx), whose Rademacher complexity matches the bound above up
to log-factors.

Remark 3 (Connection to Implicit Regularization). It was recently proved that training neural
networks employing homogeneous activations on losses such as the logistic loss, without any explicit
regularization, gradient methods are implicitly biased towards models which minimize the squared
Euclidean norm of their parameters [Lyu and Li, 2019, Ji and Telgarsky, 2020]. In our setting of one-
hidden-layer networks x 7→ u⊤σ(Wx), this reduces to ∥u∥2+∥W∥2F . For homogeneous activations,
multiplying u by some scalar α and dividing W by the same scalar leaves the network unchanged.
Based on this observation, and the fact that minα∈R ∥αu∥2 + ∥ 1

αW∥2F = 2∥u∥ · ∥W∥F , it follows
that minimizing ∥u∥2 + ∥W∥2F (under any constraints on the network’s outputs) is equivalent to
minimizing ∥u∥ · ∥W∥F (under the same constraints). Thus, gradient methods are biased towards
models which minimize our bound from Thm. 2 in terms of the norms of u,W .

3.2 Dimension-Dependent Lower Bound

The bounds presented above are dimension-free, in the sense that the upper bound holds for any input
dimension d, and the lower bound applies once d is sufficiently large. However, for neural networks
the case of d being a fixed parameter is also of interest, since we often wish to apply large neural
networks on inputs whose dimensionality is reasonably bounded (e.g., the number of pixels in an
image).

For fixed d, and for the predictor class itself (without an additional loss composed), it is well-known
that there can be a discrepancy between the fat-shattering dimension and the Rademacher complexity,
even for linear predictors (see discussion in Sec. 2). Thus, although Thm. 2 is tight as a bound on
the Rademacher complexity, one may conjecture that the fat-shattering dimension (and true sample
complexity for bounded losses) is actually smaller for fixed d.

In what follows, we focus on the case of the Frobenius norm, and provide a dimension-dependent
lower bound on the fat-shattering dimension. We first state the result for a ReLU activation with a
bias term (Thm. 3), and then extend it to the standard ReLU activation under a slightly more stringent
condition (Corollary 1).

Theorem 3. For any b, B, bx, n, ϵ, and any d larger than some universal constant, there exists a
choice of β ∈ [0, Õ( Bbx√

dn
)] such that the following hold: If σ(z) = [z − β]+, then Fσ

b,B,n,d can
shatter

Ω̃

(
min

{
nd,

bBbx
ϵ

√
d

})
(1)

points from {x ∈ Rd : ∥x∥ ≤ bx} with margin ϵ, assuming the expression above is larger than cd for
some universal constant c > 0, and where Ω̃ hides factors polylogarithmic in d, n, b, B, bx, 1ϵ .

Corollary 1. The lower bound of Thm. 3 also holds for the standard ReLU activation σ(z) = [z]+,
if β ≤ Bbx√

n
(which happens if the input dimension d is larger than a factor polylogarithmic in the

problem parameters).

The lower bound is the minimum of two terms: The first is nd, which is the order of the number
of parameters in the network. This term is to be expected, since the fat-shattering dimension of F
is at most the pseudodimension of F , which indeed scales with the number of parameters nd (see
Anthony and Bartlett [1999], Bartlett et al. [2019]). Hence, we cannot expect to be able to shatter
many more than nd points. The second term is norm- and dimension-dependent, and dominates
the overall lower bound if the network width n is large enough. Comparing the theorem with the
Õ((bBbx/ϵ)

2) upper bound from Thm. 2, it seems to suggest that having a bounded dimension d
may improve the sample complexity compared to the dimension-free case, with a smaller dependence
on the norm bounds. However, at the moment we do not have upper bounds which match this lower
bound, or even establish that bounds better than Thm. 2 are possible when the dimension d is small.
We leave the question of understanding the sample complexity in the fixed-dimension regime as an
interesting problem for future research.
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Remark 4 (No contradiction to upper bound in Thm. 2, due to implicit bound on d). Thm. 3
requires that Eq. (1) is at least order of d for the lower bound to be valid. This in turn requires that
bBbx
ϵ

√
d≫ d, or equivalently d≪

(
bBbx
ϵ

)2
. Thus, the theorem only applies when the dimension d

is not too large with respect to the other parameters. We note that this is to be expected: If we allow
d≫

(
bBbx
ϵ

)2
(and n sufficiently large), then the lower bound in Eq. (1) will be larger than

(
bBbx
ϵ

)2
,

and this would violate the Õ
(
(bBbx/ϵ)

2
)

upper bound implied by Thm. 2.

4 Spectral Norm Control Suffices for Sufficiently Smooth Activations

The lower bounds in the previous section crucially rely on the non-smoothness of the activation
functions. Thus, one may wonder whether smoothness can lead to better upper bounds. In this section,
we show that perhaps surprisingly, this is indeed the case: For sufficiently smooth activations (e.g.,
polynomials), one can provide width-independent Rademacher complexity bounds, using only the
spectral norm. Formally, we return to the class of one-hidden-layer neural networks with spectral
norm constraints,

Hσ
b,B,n,d =

{
x 7→ u⊤σ(Wx) : u ∈ Rn , W ∈ Rn×d , ∥u∥ ≤ b , ∥W∥ ≤ B

}
,

and state the following theorem:

Theorem 4. Fix some b, B, bx, n, d, ϵ > 0. Suppose σ(z) =
∑∞
j=1 ajz

j for some a1, a2, . . . ∈ R,
simultaneously for all z : |z| ≤ Bbx. Then the Rademacher complexity of Hσ

b,B,n,d on m inputs from
{x ∈ Rd : ∥x∥ ≤ bx} is at most ϵ, if

m ≥
(
b · σ̃(Bbx)

ϵ

)2

where σ̃(z) :=

∞∑
j=1

|aj |zj

(assuming the sum converges).

We note that the conditions imply σ(0) = 0, which is assumed for simplicity (see Remark 1). We
emphasize that this bound depends only on spectral norms of the network and properties of the
activation σ. In particular, it is independent of the network width n as well as the Frobenius norm
of W . We also note that the bound is clearly tight in some cases: For example, if σ(·) is just the
identity function, then Hσ

b,B,n,d reduces to the class of linear predictors of Euclidean norm at most bB,
whose Rademacher complexity on inputs of norm at most bx is well-known to equal Θ((bBbx/ϵ)

2).
This also demonstrates that the dependence on the spectral norm B is necessary, even with smooth
activations.

The proof of the theorem (in the appendix) depends on algebraic manipulations, which involve
‘unrolling’ the Rademacher complexity as a polynomial function of the network inputs, and employing
a certain technical trick to simplify the resulting expression, given a bound on the spectral norm of
the weight matrix.

We now turn to provide some specific examples of σ(·) and the resulting expression σ̃(Bbx):

Example 1. If σ(z) is a polynomial of degree k, then σ̃(Bbx) = O((Bbx)
k) for large enough Bbx.

In the example above, the output values of predictors in the class are at most O((Bbx)
k), so it is not

surprising that the resulting Rademacher complexity scales in the same manner.

The theorem also extends to non-polynomial activations, as long as they are sufficiently smooth
(although the dependence on Bbx in σ̃(Bbx) generally becomes exponential). The following is an
example for a sigmoidal activation based on the error function:

Example 2. If σ(z) = erf(rz) (where erf is the error function, and r > 0 is a scaling parameter),
then σ̃(Bbx) ≤ 2rBbx√

π
exp((rBbx)

2).

See the appendix for a proof. A sigmoidal activation also allows us to define a smooth approximation
of the ReLU function, to which the theorem can be applied:

Example 3. If σ(y) = 1
2

(
y +

∫ y
z=0

erf(rz)dz
)
, then σ̃(Bbx) ≤ Bbx

2 + r(Bbx)
2

√
π

exp((rBbx)
2).
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We note that as r → ∞, σ(y) converges uniformly to the ReLU function.

Although the last two examples imply an exponential dependence on the spectral norm bound B
in the theorem, they still imply that for any fixed B, we can get a finite size-independent sample
complexity (regardless of the network’s width or input dimension) while controlling only the spectral
norm of the weight matrices.

4.1 Extension to Higher Depths for Power Activations

When the activation functions are powers of the form σ(z) = zk for some k, then the previous
theorem can be extended to deeper networks. To formalize this, fix integers k ≥ 1 and L ≥ 1, and
consider a depth-(L+ 1) network fL+1(x) (parameterized by weight matrices W 1,W 2, . . . ,WL of
some arbitrary fixed dimensions, and a weight vector u) defined recursively as follows:

f0(x) = x , ∀j ∈ {0, . . . , L− 1}, fj+1(x) = (W j+1fj(x))
◦k , fL+1(x) = u⊤fL(x) .

where (v)◦k denotes applying the k-th power element-wise on a vector v.

Theorem 5. For any integers k, L ≥ 1 and choice of matrix dimensions at each layer, consider the
class of neural networks fL+1 as above, over all weight matrices W 1 . . .WL such that ∥W j∥ ≤ B
for all j, and all u such that ∥u∥ ≤ b. Then the Rademacher complexity of this class on m inputs
from {x : ∥x∥ ≤ bx} is at most ϵ, if

m ≥

(
b ·Bk+k2+...kL · bkLx

ϵ

)2

.

For constant k and constant-depth networks, the sample complexity bound in the theorem is b ·
poly(Bbx)/

√
m, where B bounds merely the (relatively weak) spectral norm. We also note that the

exponential/doubly-exponential dependence on k, L is to be expected: Even if we consider networks
where each matrix is a scalar B, and the input is exactly bk, then multiplying by B and taking the
k-th power L− 1 times over leads to the exact same Bk+k

2+...kL · bkLx factor. Since the Rademacher
complexity depends on the scale of the outputs, such a factor is generally unavoidable. The proof of
the theorem (in the appendix) builds on the proof ideas of Thm. 4, which can be extended to deeper
networks at least when the activations are power functions.

5 Convolutional Networks

In this section, we study another important example of neural networks which circumvent our lower
bounds from Sec. 3, this time by adding additional constraints on the weight matrix. Specifically,
we consider one-hidden-layer convolutional neural networks. These networks are defined via a
set of patches Φ = {ϕj}nj=1, where for each j, the patch ϕj : Rd 7→ Rn′

projects the input
vector x ∈ Rd into some subset of its coordinates, namely ϕj(x) = (xij1

, . . . , xij
n′
) for some

{ij1, . . . , i
j
n′} ⊆ {1, . . . , d}. The hidden layer is parameterized by a convolutional filter vector

w ∈ Rn′
, and given an input x, outputs the vector (σ(w⊤ϕ1(x)), . . . , σ(w

⊤ϕn(x))) ∈ Rn, where σ
is some activation function (e.g., ReLU). Note that this can be equivalently written as σ(Wx), where
each row j of W embeds the w vector in the coordinates corresponding to ϕj(·). In what follows, we
say that a matrix W conforms to a set of patches Φ = {ϕj}nj=1, if there exists a vector w such that
(Wx)j = w⊤ϕj(x) for all x. Thus, our convolutional hidden layer corresponds to a standard hidden
layer (same as in previous sections), but with the additional constraint on W that it must conform to a
certain set of patches.

In the first subsection below, we study networks where the convolutional hidden layer is combined
with a linear output layer. In the following section, we study the case where the hidden layer is
combined with a fixed pooling operation. In both cases, we will get bounds that depend on the
spectral norm of W and the architecture of the patches.
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5.1 Convolutional Hidden Layer + Linear Output Layer

We begin by considering convolutional networks consisting of a convolutional hidden layer (with
spectral norm control and with respect to some set of patches), followed by a linear output layer:

Hσ,Φ
b,B,n,d = {x 7→ u⊤σ(Wx) : u ∈ Rn,W ∈ Rn×d, ∥u∥ ≤ b , ∥W∥ ≤ B , W conforms to Φ}

The following theorem shows that we can indeed obtain a Rademacher complexity bound depending
only on the spectral norm of W , and independent of the network width n, under a mild assumption
about the architecture of the patches:
Theorem 6. Suppose σ(·) is L-Lipschitz and σ(0) = 0. Fix some set of patches Φ, and let OΦ be the
maximal number of patches that any single input coordinate (in {1, . . . , d}) appears in. Then for any
b, B, bx, n, d, ϵ > 0, the Rademacher complexity of Hσ,Φ

b,B,n,d on m inputs from {x ∈ Rd : ∥x∥ ≤ bx}
is at most ϵ, if

m ≥ 2 ·OΦ ·
(
bBbxL

ϵ

)2

.

Other than the usual parameters, the bound in the theorem also depends on the architectural parameter
OΦ ∈ {1, . . . , n}, which quantifies the amount of “overlap” between the patches. Although it can
be as large as n in the worst case (when some single coordinate appears in all patches), for standard
convolutional architectures it is usually quite small, and does not scale with the input dimension or
the total number of patches. For example, it equals 1 if the patches are disjoint, and more generally it
equals the patch size divided by the stride. Nevertheless, an interesting open question is whether the
OΦ factor in the bound can be reduced or avoided altogether.

5.2 Convolutional Hidden Layer + Pooling Layer

We now turn to consider a slightly different one-hidden-layer convolutional networks, where the
linear output layer is replaced by a fixed pooling layer. Specifically, we consider networks of the form

x 7→ ρ ◦ σ(Wx) = ρ
(
σ(w⊤ϕ1(x)), . . . , σ(w

⊤ϕn(x))
)
,

where σ : R → R is an activation function as before, and ρ : Rn → R is 1-Lipschitz with respect to
the ℓ∞ norm. For example, ρ(·) may correspond to a max-pooling layer z 7→ maxj∈[n] zj , or to an
average-pooling layer z 7→ 1

n

∑
j∈[n] zj . We define the following class of networks:

Hσ,ρ,Φ
B,n,d :=

{
x 7→ ρ ◦ σ(Wx) : W ∈ Rn×d , ∥W∥ ≤ B , W conforms to Φ

}
.

This class is very closely related to a class of convolutional networks recently studied in Ledent et al.
[2021] using an elegant covering number argument. Using their proof technique, we first provide a
Rademacher complexity upper bound (Thm. 7 below), which depends merely on the spectral norm of
W , as well as a logarithmic dependence on the network width n. Although a logarithmic dependence
is relatively mild, one may wonder if we can remove it and get a fully width-independent bound,
same as our previous results. Our main novel contribution in this section (Thm. 8) is to show that this
is not the case: The fat-shattering dimension of the class necessarily has a log(n) factor, so the upper
bound is tight up to factors polylogarithmic in the sample size m.
Theorem 7. There exists a universal constant c > 0 such that the following holds. Suppose that
σ : R → R is L-Lipschitz and σ(0) = 0, and that ρ : Rn → R is 1-Lipschitz w.r.t. ℓ∞ and satisfies
ρ(0) = 0. Fix some set of patches Φ = {ϕj}nj=1. Then, for any B,n, d, bx, ϵ > 0, the Rademacher
complexity of Hσ,ρ,Φ

B,n,d on m inputs from
{
x ∈ Rd : ∥ϕj(x)∥ ≤ bx for all j ∈ [n]

}
is at most ϵ, if

m ≥ c ·
(
LBbx
ϵ

)2

· log2(m) log(mn) .

Thus, it suffices to have m = Õ
((

LBbx
ϵ

)2)
.

For the lower bound, we focus for simplicity on the case where ρ(z) = maxj zj is a max-pooling
layer, and where σ is the ReLU function (which satisfies the conditions of Thm. 7 with L = 1).
However, we emphasize that unlike the lower bound we proved in Sec. 3, the construction does not
rely on the non-smoothness of σ, and in fact can easily be verified to apply (up to constants) for any
σ satisfying σ(0) = 0 and σ(ϵ) ≥ c · ϵ (where c > 0 is a constant).
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Theorem 8. For any B,n, bx, ϵ > 0, there is d,Φ such that the following hold: The class Hσ,ρ,Φ
B,n,d,

with σ being the ReLU function and ρ being the max function, can shatter

1

4
·
(
Bbx
ϵ

)2

· log(n)

points from {x ∈ Rd : ∥x∥ ≤ bx} with margin ϵ.

Moreover, this claim holds already where Φ corresponds to a convolutional layer with a constant
stride 1, in the following sense: If we view the input x ∈ Rd as a vectorization of a tensor of order
p = O(log(n)), then Φ corresponds to all patches of certain fixed dimensions s1 × . . .× sp in the
tensor.

6 Conclusions and Open Questions

In this paper, we studied sample complexity upper and lower bounds for one-hidden layer neural
networks, based on bounding the norms of the weight matrices. We showed that in general, bounding
the spectral norm cannot lead to size-independent guarantees, whereas bounding the Frobenius norm
does. However, the constructions also pointed out where the lower bounds can be circumvented, and
where a spectral norm control suffices for width-independent guarantees: First, when the activations
are sufficiently smooth, and second, for certain types of convolutional networks.

Our work raises many open questions for future research. For example, how does having a fixed
input dimension d affect the sample complexity of neural networks? Our lower bound in Thm. 3
indicates small d might reduce the sample complexity, but currently we do not have good upper
bounds that actually establish that. In a different direction, we showed that spectral norm control
does not lead to width-free guarantees with non-smooth activations, whereas such guarantees are
possible with very smooth activations. Can we characterize what we can get for other activation?
As to convolutional networks, we studied two particular architectures employing weight-sharing:
One with a linear output layer, and one with a fixed Lipschitz pooling layer mapping to R. Even for
one-hidden-layer networks, this leaves open the question of characterizing the width-independent
sample complexity of networks x 7→ u⊤ρ ◦ σ(Wx), where W implements weight-sharing and ρ
is a pooling operator mapping to Rp with p > 1 (Ledent et al. [2021] provide upper bounds in this
setting, but they are not size-independent and we conjecture that they can be improved). Beyond
these, perhaps the most tantalizing open question is whether our results can be extended to deeper
networks, and what types of bounds we might expect.
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