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Abstract

This work offers a novel theoretical perspective on why, despite numerous at-
tempts, adversarial approaches to generative modeling (e.g., GANs) have not been
as successful for certain generation tasks, particularly sequential tasks such as
Natural Language Generation, as they have in others, such as Computer Vision.
In particular, on sequential data such as text, maximum-likelihood approaches
are significantly more utilized than GANs. We show that, while it may seem that
maximizing likelihood is inherently different than minimizing distinguishability,
this distinction is largely an artifact of the limited representational capacity of the
model family, for a wide class of adversarial objectives. We give a theoretical
model in which minimizing KL-divergence (i.e., maximizing likelihood) is a more
efficient approach to effectively minimizing the same distinguishability criteria
that adversarial models seek to optimize. Reductions show that minimizing dis-
tinguishability can be seen as simply boosting likelihood for certain families of
models including n-gram models and neural networks with a softmax output layer.
To achieve a full polynomial-time reduction, a novel next-token distinguishability
model is considered. Some preliminary empirical evidence is also provided to
substantiate our theoretical analyses.

1 Introduction

Consider a situation where one has samples from a true distribution p over a set X and one wishes
to learn to generate similar samples, such as learning to generate English sentences from a large
English text corpus. One seeks an approximation q of p which is “close” in some sense and from
which samples can efficiently be generated. A common approach to fit these models is Maximum
Likelihood Estimation (MLE), which given a training set from p and a parametrized distribution gy
seeks parameters # that maximize the likelihood gy assigns to a training set. MLE has long been one
of the most popular methods for fitting generative models of sequential data, such as language, where
autoregressive neural language models generate remarkably realistic text, e.g., GPT-3 [6] and PaLM
[11]. MLE generally involves computing likelihoods gy (x) which can be more challenging in some
domains than others, e.g., it may be more difficult to estimate the probability of a (high-dimensional,
real-valued) image than a (discrete-valued) sentence.

An alternative approach, Generative Adversarial Networks (GANs), has become popular across
several domains, particularly Computer Vision, owing to breakthrough realism in the images they
output [e.g., 19, 65]. GANs employ an adversarial approach to generation through a zero-sum game
between a generator and a distinguisher in which the generator produces samples x € X which
the distinguisher tries to distinguish from real samples from p. Often, both the generator and the
distinguisher are differentiable neural networks, though this min-max approach of choosing a model
whose outputs are nearly indistinguishable from real examples might be considered for any families
of generative models and distinguishers. A major advantage of GANSs (particularly for images) is
that they can be used for generation without requiring computing likelihoods. This advantage is not
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significant for many sequential models such as language models, where computing likelihoods is not
difficult.

In contrast, the adversarial approach has yet to demonstrate significant improvements in some other
domains such as Natural Language Processing (NLP). One well-known barrier to NLP GANSs is
that language models produce discrete outputs (words), so they are not naturally differentiable [18].
However, despite numerous works circumventing this limitation and adapting GANS to text generation
[63, 42, 23, 12], adversarial-based models have yet to achieve the same popularity or performance
gains that were seen for images. In particular, language GANs have been shown to under-perform
MLE in terms of quality [55] while facing the challenge of lack of diversity due to mode collapse [7],
which is a well-known issue with GANs in other domains.

1.1 Likelihood and Distinguishability: Two sides of the same coin?

In this work, we suggest a different, fundamental barrier to adopting GANs in domains where MLE
is prevalent: the adversarial approach of minimizing distinguishability can be seen as an indirect
method of maximizing likelihood on observed data, and hence employing MLE directly can be more
efficient. This is the case in NLP where, unlike computer vision, a measure of likelihood called
perplexity has been the prevailing metric for training and evaluating language models for decades.
We show how GAN s boost likelihood in the spirit of, and inspired by, the related celebrated work of
Friedman et al. [16] that showed how boosting can be viewed as an iterative approach for logistic
regression.

Consider a large finite set or countably infinite set X and a family @ of probability distributions
over X. For language, these might be n-gram models or neural models. Also consider a family F
of distinguishers f : X — [0, 1] that aim to distinguish random examples drawn from a distribution
p from those sampled from ¢. For any such classifier f, we call the difference a(f) = E,[f(x)] —
E,[f ()] the distinguishability advantage of f because it quantifies the accuracy of f at the task of
identifying “fake” examples. A perfect distinguisher would thus have «(f) = 1, while f(x) = 1/2
which predicts at random has «(f) = 0. More formally, imagine picking y € {0, 1} uniformly at
random and picking a random example x from ¢ if y = 1 and from p if y = 0. The (randomized)
binary classifier that predicts, for any x, § = 1 with probability f(x), has (expected) accuracy:

3 @) (@) + 5 Y P (1 - (@) = 5+ sal).

Given a family F', we define the distinguishability of ¢ from p to be d(g) = maxscp a(f). Distin-
guishability is known to be a lower-bound on fotal variation distance (also called statistical distance),
a measure of distance between distributions that is difficult to directly estimate for large domains
X [54]. The “Bayes-optimal” distinguisher simply predicts 1 iff ¢(z) > p(x), and has advantage
equal to the total variation distance [see, e.g., 24]. Clearly d(p) = 0, i.e., p is indistinguishable from
itself. Motivated by this observation, numerous adversarial approaches to approximating ¢ have been
attempted to minimize distinguishability d(q). If p € Q then d(q) is minimized at ¢ = p. We first
discuss some important aspects of distinguisability.

What adversarial objectives can be analyzed via distinguishability? It is important to emphasize
that distinguishability is indeed the objective that several adversarial approaches, such as many
variants of GANSs, seek to optimize. Depending on the context, it serves the purpose of discriminator
or critic. In particular, as established in [54], GANS that are trained based on Kantorovich metric,
Fortet-Mourier metric, dual-bounded Lipschitz distance (or the Dudley metric), total variation
distance, and kernel distance can all be cast in terms of distinguishability. Thus, in particular, our
results hold for GNN formulations such as Wasserstein GANs [1], MMD GANSs [33], Fisher GANs
[36], and Sobolev GANSs [49], for an appropriately chosen family F' of distinguishers. For example,
we obtain Wasserstein GANSs, in its dual form, as a special case when F' is restricted to 1-Lipschitz
functions in which case it can also be viewed as a special case of the so-called f-GANs [3, 37, 50].
Likewise, we obtain MMD-GANs when F' pertains to functions (kernels) defined over a ball in some
Reproducing Kernel Hilbert Space [4]. Note that distinguishability allows us to accommodate other
sophisticared GAN variants such as WGAN-GP [22, 60] that do not suffer from the issue of gradients
vanishing on discrete spaces. Recall the WGAN-GP objective can be expressed in our notation as:

Eq[f ()] = Bp[f(2)] + AE (| Vo f ()2 — 1)?].



This can be viewed as Lagrangian relaxation of the following hard objective for e > 0 as:
Eolf@)] = Eplf(@)]  stE(IVaf(@)ll2 -1 < e.

Distinguishability advantage can then be readily be expressed as

ma Eq[f (#)] = Eplf ()] -

X
FE(IVe f(x)|[2—1)?]<e

Is distinguishability symmetric or asymmetric? Note that, by definition, distinguishability is
asymmetric in the sense that in general q is distinguishable from p is different from p is distinguishable
from q. Note, however, that we recover integral probability metric (IPM) [54] when — f € F for all
f € F. Clearly, in this case the notion of distinguishability becomes symmetric as the advantage
reduces to  maxyser |Eq[f(z)] — Ep[f(x)]| . Thus, distinguishability lets us handle an extremely
wide class of discrepancies, symmetric as well as asymmetric.

Example where maximizing likelihood # minimizing distinguishability. When p ¢ (), mini-
mizing distinguishability among ¢ € () may be different than maximizing the likelihood of ¢. For
instance, consider modeling the age in years of humans (say the entire population on earth) as a
uniform distribution ¢, over x € {0,1,2,..., m}. Now, the m which maximizes likelihood would
be the age of the oldest person, which is m = 119 at the time of this article—any smaller m would
assign zero probability to the 119-year-old and thus to the entire population. However, this distribution
is very distinguishable from the true distribution—for instance it assigns probability ~ 17% to being
over 100 years, which is extremely unlikely among today’s population. A smaller m < 100 would
yield less distinguishable samples. While it may seem therefore that distinguishability and likelihood
are inherently different criteria, as we shall see this is an artificial limitation due to the weakness of
family Q.

Of course, the (in)equivalence depends on the families F' of distinguishers and () of probability distri-
butions. We give two results showing that maximizing likelihood and minimizing distinguishability
are equivalent as long as F' and () are similar in representational capacity, even when p & Q. First,
we consider families () that are “log-linear” over some set F' of functions, which include n-gram
models and neural networks whose top layer is a softmax, among others. The equivalence in this
case is particularly simple and serves to illustrate how MLE can be a simpler way to reach the same
optimum. In this case, ) and F' are naturally paired.

Maximizing likelihood = minimizing distinguishability for log-linear (). In the above age ex-
ample, the family @ of geometric distributions gp(n) x exp(—6n) for # > 0 is an example of a
log-linear family. We show that if ¢ can be distinguished from the population distribution p by a
function f € F, then folding f into g yields a new model in () with greater likelihood. In practice, one
only has a sample of the true distribution p (not the entire population) and maximizing log-likelihood
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statements about minimizing KL-divergence as well.

The conclusion of this first observation is that if a GAN were to converge within a log-linear family
(and making GANs converge is often not an easy feat in practice), it would converge to the MLE.

General polynomial-time reduction. Our second result is a polynomial-time reduction from
likelihood maximization to next-token distinguishability, without the log-linear requirement. We
consider the common case of (unidirectional) sequential models that predict the next token based on
the previous tokens, which have several practical advantages including being efficient to compute—
the probability of a sequence is simply the product of the conditional probabilities of each subsequent
word given the previous words. Many state-of-the-art transformer language models such as GPT-3

take this form. Achieving an efficient reduction is challenging due to the normalization requirement
of computing partition functions. In order to achieve a polynomial-time reduction, we consider a
notion of next-token distinguishability, where the game is as follows: a prefix of tokens is chosen,
based on which the generator generates a token to follow the prefix. Given the actual next token and
the generated next token, the distinguisher aims is to identify which is which. Algorithm 1 leverages
a next-token distinguisher to iteratively increase likelihood. In particular, given any target ¢ > 0,
Theorem | shows that Algorithm 1 will terminate and output an efficiently computable model ¢
which is nearly (to within €) indistinguishable from the truth, and it runs in time polynomial in 1/e.



If p € @ and one has an optimal distinguisher, one will eventually converge to a model close to p, as
has been discussed heavily in the literature. However, our results are also meaningful in the more
realistic case where one has imperfect distinguishers.

Contributions. The main contributions of this paper are:

e showing that, although in general minimizing distinguishability and maximizing likelihood
seem to be different, they are in fact closely related,

e introducing a new model of next-token distinguishability that is necessary to make the
reduction efficient, and

e offering a new perspective on why GANs might have been less successful in NLP and other
sequential domains as they have been, e.g., for images.

Organization. We begin by summarizing related work on GANSs, especially for text. We then
illustrate how GANSs can be overkill for the simple case of n-gram models in Section 3. Section 4
covers log-linear models. Section 5 gives explicit bounds on general reductions between maximizing
likelihood and minimizing distinguishability. Section 6 shows how the reduction can be efficiently
computed in the case of sequential inputs, from which we propose a simple polynomial time algorithm
that provably finds a distribution which is nearly-indistinguishable with respect to a given class of
discriminator functions. Finally, we discuss the relevance of our work in Section 8. All proofs are
deferred to the Appendix.

2 Related Work

Generative models. Several approaches to generative modeling have been investigated, especially in
the context of images. In particular, impressive results have been obtained recently with variational
autoencoders, GANs, normalizing flows, autoregressive models, diffusion processes, and score/energy
based models [28, 19, 41, 40, 25, 53, 59, 10]. Generally, training approaches are either adversarial;
or rely on MLE, contrastive divergence estimation, or score matching [52]. Some connections have
begun to emerge between these models, and alternate training procedures have been advocated [9, 53,
62].

A word of caution: Understanding the theoretical underpinnings of generative models with respect
to their sample quality is an intriguing question that has been previously investigated by several
seminal works such as [27, 21, 39, 56] and requires further analyses. Our objective here is not to
claim at all that maximizing likelihood is universally better than adversarial methods or vice-versa,
but to emphasize that for many problems, in domains like NLP, the two objectives often turn out to
be equivalent mathematically via the notion of distinguishability and maximizing MLE could provide
a more efficient (and stable way) of optimizing the common objective. Also, note that maximizing
likelihood does not always correlate with the perceptual sample quality [21]. A more comprehensive
analysis encompassing the effect of architecture, optimization procedures and issues such as trade-off
between perception and distortion [5], training and inference time, mode-collapse etc. is required for
better understanding of generative models. In that sense, our message is consistent with observations
made previously [39, 56, 21] that there is no single model that fits all situations, and the right model
depends on the specific requirements of applications.

GAN:s for text. Since their introduction [19], there has been interest in adapting GANSs to text
data. The driving motivation was that —up until very recently— samples generated by traditional
(likelihood-based) models had been easy to distinguish from human-generated text, and the success
of image GANSs at generating realistic-looking samples suggested a possible avenue to improve the
quality of their natural language counterparts.

The first and most significant challenge in adapting GANSs to text arises from the very nature of
this data. Goodfellow [18] points out that GANs require the generator to be differentiable, which
poses a challenge for discrete text representations such as one-hot word or character representations.
Two of the most popular approaches to circumvent this obstacle are policy gradient techniques (e.g.,
REINFORCE [61]) —which when applied to language modeling nevertheless often require maximum
likelihood pre-training [8, 63])— and the Gumbel-Softmax approximation [30]. The few adversarial
methods that do not require pre-training (e.g., [42, 45]) have failed to show significant promise in all
but a few artificial tasks.



This nascent but active line of work seemed to suggest for a period of time that GANs might provide
a breakthrough in text generation. This promise did not fully materialize, and instead the most recent
breakthrough came from models building very large transformer-based architectures like GPT [43,
44, 6] or PaLM [11] — which are trained with traditional cross-entropy (MLE) objectives.

Yet the question of how GAN-based methods for text compare with likelihood-based ones still garners
significant interest, and while various works have provided an empirical comparison between them
—with most of these suggesting the advantage of MLE-based ones [7]— theoretical explanations have
been less explored.

Relating objectives via divergences. The connection between maximum likelihood estimation,
distinguishability and divergences between probability distributions has been explored before. For
example, it is well known that maximizing likelihood is equivalent to minimizing the KL divergence
between certain families of fitted and reference distributions, though this is not the only divergence
for which such a connection exists [46]. On the other hand, from the moment GANs were introduced,
Goodfellow et al. [19] noted that —assuming a perfect discriminator— the adversarial objective
corresponds to minimizing a Jensen-Shannon divergence. Furthermore, the minimal discrimination
error is also directly related to the total variation distance (see, e.g., Hashimoto et al. [24]). On the
other hand, for exponential families the gradient of the KL divergence is known to be related to the
discrepancy between distributions [57]. While conceptually similar to this line of work, here instead
we give an explicit reduction that shows how distinguishability and (log) likelihood are in direct
correspondence.

Pinsker’s inequality is a well-known result linking KL divergence and total variation distance (TVD):
TVD < /KL/2. While related, this inequality is not directly relevant to the context of this work.
First, while total variation provides an upper bound to distinguishability, it is not computable in
general, so it is rarely used as a training objective for generative models. On the other hand, being
one-sided,” it does not imply that reducing TVD reduces KL divergence. Furthermore, Pinsker’s is
in general a very loose inequality, particularly for the direction of KLD that is equivalent to MLE
(i.e., DxL(p || o)), since if p(x) > 0 ~ gg(x) even for a single x leads to unbounded KL divergence.
In contrast, in this work we provide a direct reduction directly linking the two criteria of interest:
distinguishability and maximum likelihood.

Log-linear language models. In this work we focus our analysis on log-linear models [31, 34],
which are widely used in natural language processing (often known in that community as Maximum
Entropy -MaxEnt— models) for various tasks. In particular, these models have been a cornerstone of
both neural [2, 35] and non-neural [47, 26] language modeling.

Boosting. The reduction shown here bears resemblance to boosting. It is well-known that boosting
can be analyzed through the lens of maximum likelihood (Friedman et al. [16]), while Lebanon
and Lafferty [32] formalized the equivalence of AdaBoost and maximum likelihood training for
exponential models. More recently, boosting has been applied to generative adversarial models [58,
20], albeit with a different approach and objective than the connection drawn in this work.

3 Illustration: GANs for n-gram language models

To illustrate our main point, consider first the simplest model of language: a unigram model where the
probability of each word is independent, and the end of sentence token EOS has a given probability
as well. If 6, represents the log-probability of word w, then the log-probability of sentence wy . .. w;
is given by:

log g(wiws ... wy) = Oy, + Oy + ... + O, + Or0s-
The MLE parameters 6 can be computed in linear time by simply counting word frequencies.

A more roundabout approach to fitting a unigram language model would be to start with any initial
unigram model g, generate random samples from ¢ and compare them to those from p. One could
then distinguish the two by finding a word that appears significantly more often in one than in the
other. For example, if one generates text from the model ¢ and finds that the word “the” occurs much
more often in text generated from p, one would then update the parameters by increasing 6y, (and

Reverse Pinsker’s inequalities exist only for particular cases, but they too are very loose in general [48].



decreasing 6, for all other words w’ to keep ¢ a probability distribution). As we shall see later, if this
more involved procedure converged, it would necessarily converge to the same maximum-likelihood
estimator 6*.

A similar argument applies to any n-gram model in which the probability of each subsequent word is
determined only by the previous n — 1 words. This is also optimized by frequency counts (a variety
of “smoothing” techniques, e.g., adding 1 to counts, also known as Laplace Smoothing [17, 29] are
often used as a form of regularization on top of these counts). Distinguishers could similarly be used
to find a model ¢ that is indistinguishable from p according to n-gram frequencies, but again this
would simply converge to the MLE parameters.

4 Equivalence for log-linear models

In this section, we show that there is one optimal log-linear model that both minimizes distinguisha-
bility and maximizes log-likelihood. Consider a log-linear model with features f : X — [0,1]¢, i.e.,
d bounded features f; : X — [0, 1]. The model predicts

exp ((f(z),0)
iy U0
0
where (-, -) denotes inner product, § € R? is a parameter vector and Zp = >__exp(f, f(z)) is a
normalizing constant called the partition function.

In the unigram example, the features f; would be word counts normalized by dividing by the
maximum allowed sentence length (to ensure f;(x) < 1). In a neural network the features f; would
correspond to the top layer and ¢ computes a softmax. Multiple strategies have been studied for
computing or estimating the partition function Zj [see, e.g., 14].

As discussed earlier, these feature functions can also be thought of as classifiers that distin-
guish examples drawn from p from those drawn from gy and the advantage of f; is a(f;) =
>, fi(z)(go(x) — p(z)). The advantage vector is a(f) = (a(f;))L ;. Note that a negative advan-
tage can be used for distinguishing by using the reverse classifier 1 — f; as a distinguisher, which has
opposite advantage a(1 — f;) = —a(f;).

Observation 1. The gradient of D (p || qo) with respect to 0 is the advantage vector a(f), i.e., for
alli=1,2,...,d:

ODalr L0) _ 57 1) an(e) — ple) = (),

The above straightforward calculation is well-known as is the fact that Dy (p || o) is convex in 6.
However, we interpret this fact in the context of GANSs: searching for 6 which gives a zero-gradient
for KL divergence is equivalent to finding 6 which is indistinguishable with respect to each f;.
While a number of GANs have be designed in various architectures that solve the seemingly more
complex problem of ming d(gp), it can generally be more efficient to maximize likelihood, which
(approximately) minimizes the KL divergence.

5 Distinguishability is equivalent to increasing likelihood for general F, ()

In this section, we show how reducing log-loss is equivalent to distinguishing real and generated
examples. This is the basis behind a single step of our main algorithm (the reduction in this section
is efficient for a single step, but the increase in runtime would lead to a general exponential-time
algorithm). The bounds here are in terms of log-loss, as measured on a specific sample, rather than
the abstract KL divergence quantity of the previous section, which cannot be computed exactly using
a finite sample. In particular, we show how, if one can distinguish a given distribution from the
sample, then one can decrease that distribution’s log-loss, and vice versa.

For the remainder of this section, we drop 6 from the variable denoting the fitted distribution gy to
avoid cluttering the notation. Fix a sample S = (x1,...,2,) € X™ of n training examples drawn
from p, and define the log-loss to be:

L(g;S) = —% > logg(a;) = —Esflogg(x)],
=1



where we use hat on L to denote that the loss is estimated on a (finite) training set S. Likewise,
Es[g(x)] denotes the empirical expectation = 5" | g(z;). Note that the expected log-loss over

. . . n
training sets is known as the cross-entropy

H(p7 Q) = ESN;D" [L(q7 8)]7

and hence the expected difference in log-loss between two candidate distributions ¢ and ¢’ is equal to
the difference

Espr [L(a:S) = L(¢;8)] = Dxe(p | 9) — Dxe(p || ¢')
so minimizing log-loss approximately minimizes the KL divergence. Also, we define the training
advantage of distinguisher f : X — [0, 1] to be:

a(f) = Eqlf(2)] — Es[f(2)] 2

which is independent of p, depending on the sample alone and can thus be estimated to arbitrary
accuracy using samples generated from ¢. The lemmas below show how one can use a distinguisher
to reduce log-loss on the same training sample, and how to use a distribution with a lower log-loss to
distinguish the two distributions.

Lemma 1. Let a > 0 and suppose f : X — [0, 1] has training advantage &(f) > a. Then, the
probability distribution ' (z) = q(z)e~%' @) /Z,, where Z, = 3" q(x)e~ (), has lower log-loss:

L(¢;S) < L(g; S) — a®/2.

Before we give the proof, we note that if f is computed by a neural network and g is computed
as a neural network with a softmax at the top layer, i.e., g(z) = (9@ /5™ (:9(2)) where
g : X — R%is some neural network, then ¢’ is naturally represented as the combined neural network
with softmax ¢/ () oc e{(*:=®):(9(2)./(@))) in d 4- 1 dimensions.

This means that if we can distinguish S from g, then we can simply reduce log-loss by down-weighting
suspicious samples that satisfy the distinguisher f(z). The difference between this statement and
Observation 1 is analogous to the difference between boosting and logistic regression [16]. In logistic
regression, one typically fixes the set of features in advance, whereas in boosting this is not possible
if there are infinitely many possible classifiers.

Conversely, we next show that if ¢’ has a lower log-loss than g on the training samples, then we can
distinguish ¢ from these samples.

Lemma 2. For any constant C > 1 and distributions q, q' such that %q(w) < ¢ (z) < Cq(x) for
all x € X, the distinguisher f : X — [0, 1] defined by,

1 Cq(z)
= 1
f(@) 2log C 8 q(z)’
has a training advantage of, . .
. L(q) — L(¢)
> 4/ AT
a(f) 2 2log C

Importantly, due to the logarithmic dependence on C, the above lemma is meaningful even if ¢ and
q' are exponentially far apart so long as they have the same support.

Lemma | implies a reduction between the problem of distinguishing with nontrivial advantage to
non-trivially reducing log-loss for log-linear families. Note that iteratively applying the reduction
requires repeated computation of the normalization terms over X, and computing such partition
functions is an area of active research—where it is known how to do it efficiently for some classes and
not for others. The next section gives an efficient reduction for (unidirectional) sequential models.

6 Efficient Reduction for Sequential Models

This section gives an efficient reduction from distinguishing to MLE for sequential models. This
requires showing how one can efficiently compute the normalization terms (partition function) on
a token-by-token basis for black-box sequential (e.g., language or auto-regressive) models. The



key insight for efficiency is that, rather than distinguishing entire sequences from p and g, one
distinguishes the conditional next-token predictions. In particular, rather than generating entire
sequences from ¢, one can generate next-token predictions on all sequence prefixes in the training
data.

Clearly, evaluating a neural network over all sequences is infeasible. However, in many applications
such as NLP, the inputs are sequential z = (x1, ..., x,), where every token z; is taken from a large
discrete vocabulary. In such cases, the combinatorial nature of the data makes density estimation
intractable unless the likelihood computation is broken into small sequential steps by representing the
overall probability as the Pr(z) = [[; Pr(z;|z1,z2,... 1) .

In this section we show how a natural extension of the framework described above allows us to
achieve an efficient reduction for this common type of sequential model. To do so, we define a simple
generalization of the training advantage criterion (2), which now relies on a step-wise distinguisher g
operating on variable-length sequences. Formally, we consider a language of N-length sequences® of
tokens taken from a vocabulary V), and distinguisher functions g : U;V:1 VI — [0, 1], i.e., functions
which can take subsequences of any size as input. Given a sample S of sequences, we say that g has
generalized training advantage given by

. . 1.
ﬁ(g) :6(9’87(]) = ZEGCNS[Ewr\/q(~|w0,...,ajj,1)g(l‘07"'axj—law) _g(anvxj)} 3
=1

N

J
where, by convention, 2o = {J, so that ¢(xg, w) = g(w). This criterion can be interpreted as follows.
For every length j € {1,2,..., N}, g is tasked with distinguishing a subsequence consisting of the
first j tokens in a frue sequence sampled from S from another j-length sequence in which the last
element is replaced by a randomly selected token from the alternate distribution q.

Lemma 3. Let b > 0 and suppose g : Ujvzl V7 — [0,1] has generalized training advantage

B(g) > b. We define a distribution q' through its conditional probabilities as:
q/(Ij | Tiy.n- ,Ij_l) = q(LEj | L1y 7l‘j_l)eibg(zl""’xj)/zq/ (1'1, e ,.Z‘j_l)

where now Zg (1, ..., xj-1) = > 5 q(&; | 21, ,xj—1)e 9@ Ti-1%3) Then g’ incurs lower
log-loss than q:
L(¢';S) < L(¢; S) — Nv?/2.

The proof is deferred to Appendix C.

Next, we use Lemma 3 repeatedly to derive a simple algorithm that, given access to non-trivial weak
distinguishers, returns a distribution that is nearly indistinguishable (by that class) from the true
distribution p. Formally, let G = {g | g : UjV:1 V7 — [0, 1]} be a class of distinguishers. We assume
access to an oracle Oy : Q — G which for any ¢ € Q returns a distinguisher g. In practice, such as in
typical GAN training setting, one could think of this oracle as being approximated by the subroutine
that trains the discriminator. We say that ¢ is e-indistinguishable by oracle Oy if its output g has

advantage (g, S, q) < e. We do not need to assume that O is optimal in any sense.

Algorithm 1: Boosted weak distinguishers.

Input: Initial model ¢g, corpus S, distinguisher oracle O4, advantage threshold e.
t<0
while True do
gt < Qd(%)
by < B(9¢,S,q1)
if b, < €, Output: g,
Compute g1 (z) £ g (z)e b9t @) /37 o qi(x)eb9(*) on entire corpus S
t—1t+1
end

3Padding can be used to handle sequences of variable length.



Theorem 1. Let qq be a language model and let € > 0. Algorithm I returns a distribution q* which
is e-indistinguishable from S by oracle Og. It runs in O(E%Lo(% + nTy(m + n))) time, where

Lo = L(qo; S) is the log-loss of qo, Ty is the runtime of oracle Og4, Ty is the complexity of evaluating
any distinguisher g on a single input, n = |V| is the vocabulary size, N is the sequence length and
m = |S| is the number of training sequences.

Thus, Algorithm 1 combined with Theorem 1 and Lemma 3 yields a polynomial-time reduction from
distinguishing distributions to maximum likelihood estimation for sequential models.

7 An empirical validation of the reductions

We provide empirical validation of Lemma 3. We train a pair of text generator and discriminator
using a publicly available implementation* of SeqGAN [63]. The generator is pretrained by negative
log-likelihood (NLL) minimization. During the adversarial phase of training, the generator is trained
using policy gradient. After training, we compute the discriminators’ generalized training advantage
(Equation 2), using finite-sample empirical approximations), and then create a new generator whose
next-word logit predictions are modified according to Lemma 3. We compare the NLL of the original
and ’boosted’ generators across training epochs, and compare the difference between these to the
theoretical lower bound of Lemma 3.

The results, shown in Figure 1 in the Supplement, correspond to the default SeqGAN settings in
terms of network capacities and language configuration (maximum sequence length=20, vocabulary
size=5000). These results show that the *boosting’ underpinning Lemma 3 does indeed improve
likelihood (reduces NLL) as stated, and that the empirical difference is indeed lower-bounded by the
gap predicted by theory.

8 Discussion and conclusions

In this work, we have argued that minimizing log-loss (i.e., KL-divergence) and minimizing statistical
distinguishability are tightly related goals. Specifically, if the families of distinguishers and probability
distributions are of similar power, then one can use a distinguisher to reduce log-loss. This is the case,
e.g., for n-gram language models (and other sequential tasks), for which perplexity (a measure of
likelihood) is easy to compute, naturally meaningful, and allows for efficient sampling. Indeed, for a
long time, minimizing log-loss has been the objective with which most state-of-the-art models have
been trained. For such models, Lemma | implies that if one can distinguish the model from samples
by a neural network then one can construct a larger neural network with lower log-loss. Hence, one
may prefer to simply train a larger model in the first place for some applications.

Text vs. images. Note that we often can compute conditional likelihoods more efficiently for text data
compared to images. The sequential nature of text data allows us to compute the normalization terms
(and thus the partition function) on a token-by-token basis, thereby enabling us to distinguish the
conditional next-token predictions instead of having to distinguish full sentences. Similarly, for low
dimensional images (such as 8x8, or 4x4), conditional predictions are tractable and thus autoregressive
modeling allows for efficient training and sampling. In contrast, MLE based autoregressive models
are typically slow for high dimensional real images. In such settings estimating the partition function
is challenging, so alternative methods such as noise contrastive estimation, score matching, Langevin
dynamics, and MCMC sampling in latent space that exploit connections between GANs and energy
based models have been preferred [38, 13, 64, 15, 9, 51]. We hope this work fosters further research
on the comparative aspects, both pros and cons, of different generative approaches for different NLP
and vision applications.
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