
(a) Uniform dataset (b) Normal dataset (c) Uniform and Normal dataset

(d) Clustered dataset (e) Fractional Brownian Motion (f) Brownian motion

Figure 10: 2D illustrations of the synthetic datasets.

A Synthetic data

Note on synthetic datasets We generated synthetic datasets of different types to measure the
ability of F3M to deal with dense or sparse data. Dense datasets were generated as independent
samples with either uniform or normal distributions. Clustered datasets were generated by sampling
cluster centers from a normal distribution, and then recursively sampling sub-cluster centers from
a normal distribution with reduced standard deviation and centered at each cluster center, until the
desired number of points is attained. Fractional Brownian Motion and Brownian Motion samples
were generated as samplings of Fractional Brownian Motion paths with respective Hurst index 0.75
and 0.5. Figure 10 shows samples of each dataset type in the 2D case.

B Note on maximal variance on an interval

Proposition 4. Consider a random variable X ∈ R with finite variance with m = infX and
M = supX . Then Var(X) ≤ (M−m)2

4 .

Proof. Define a function g by g(t) = E
[
(X − t)2

]
. Computing the derivative g′, and solving

g′(t) = −2E[X] + 2t = 0 yields that g achieves its minimum at t = E[X] (note that g′′ > 0).
Now, consider the value of the function g at the special point t = M+m

2 . It must be the case that
Var[X] = g(E[X]) ≤ g

(
M+m

2

)
. Evaluating yields the expression

g

(
M +m

2

)
=

E

[(
X − M +m

2

)2
]
=

1

4
E
[
((X −m) + (X −M))2

]
Since X −m ≥ 0 and X −M ≤ 0, we have

((X −m) + (X −M))2 ≤ ((X −m)− (X −M))2 = (M −m)2

implying that
1

4
E
[
((X −m) + (X −M))2

]
≤

1

4
E
[
((X −m)− (X −M))2

]
=

(M −m)2

4

14

Hence

Var[X] ≤ (M −m)2

4

C Details on barycentric Lagrange interpolation

The barycentric lagrange interpolation is written as

Li(t) =
wi

t−si∑r
i=0

wi

t−si

, wi =
1∏r

j=0,j ̸=i (si − sj)
, i = 0, . . . , n

where wi are known as the barycentric weights. In case of singularities, i.e. when t = sj , we set
Li(sj) = δij . In particular, [7] proposes Chebyshev nodes of the second kind si = cos θi, θi =
iπ
r , i = 0, . . . , r. This choice of nodes combined with the scale invariance property of the

barycentric form makes the calculation of wi particularly easy

wi = (−1)iδi, δi =

{
1/2, i = 0 or i = r
1, i = 1, . . . , r − 1

and reduces the complexity of calculating wi from O(r2) to O(r). The Lagrange interpolation

polynomial can then be expressed as pr(t) =
∑r

i=0

wi
t−si∑r

i=0
wi

t−si

fi.

D Smooth field proof

Proposition. Consider x,y ∈ X ⊂ Rd such that d(x,y) := ∥x−y∥2

2γ2 = 1
2γ2

∑d
i (x

(i)−y(i))2 ≤ η <

1 for all x,y. When interpolating k(x,y) = exp (−d(x,y)) using bivariate Lagrange interpolation
Lr(x,y) := LT

X ·K · (LY · b) with degree r = 2p, for any p ∈ N>0 there exist nodes sx, sy for
Lr(x,y) such that the pointwise interpolation error is bounded by O(ηp+1).

Proof. Note that k(x,y) is analytic in d(x,y) with Taylor expansion given by Tpe
−d(x,y) = 1 −

d(x,y)+ ...+O
(
d(x,y)p+1

)
. With d(x,y) ≤ η, it follows that |Tpk(x,y)− k(x,y)| ≤ O(ηp+1).

Using triangle inequality, we have |Lr(x,y) − k(x,y)| ≤ |Tpk(x,y) − k(x,y)| + |Tpk(x,y) −
Lr(x,y)| ≤ ηp+1+|Tpk(x,y)−Lr(x,y)|. We note that Lr(x,y) contains all the terms of the Taylor
expansion, and we can thus choose the nodes sx, sy of Lr(x,y) such that |Tpk(x,y)−Lr(x,y)| = 0
as long as r = 2p, meaning the polynomial orders are matched.

Note that the same proof strategy can be applied to any kernel k that admits a Taylor expansion.

E Complexity

Proposition. A far-field interaction between two boxes containing nx and ny points respectively has
time complexity O(n), where n = max(nx, ny).

Proof. Far-field interactions are calculated as

v ≈ LT
X ·︸︷︷︸

O(nx·rX)

(K·︸︷︷︸
O(rX ·rY)

(LY · b)︸ ︷︷ ︸
O(ny·rY)

). (3)

As rX , rY are independent of nx, ny, the complexity becomes O(n). Further see [3] for alternative
proof.

Proposition. Given n data points in dimension D, the maximum number of divisions Treemax divisions
is given by

Treemax divisions = log2D (n). (4)

15

Proof. To see this, simply solve for

n

2D·Treemax divisions
= 1 =⇒ Treemax divisions = log2D (n).

Further see [3] for alternative proof.

Theorem. Given a KMVM with edge E (dependent on data X ,Y), lengthscale γ, effective variance
limit η, n data points and data dimension D, F3M has time complexity O(n · log2

(
D·E2

γ2·4·η

)
), which

can be taken as O(n · log2
(

C
η

)
) where C ∝ D·E2

γ2 .

Proof. Recall that near-field interactions can be smoothly interpolated when D · E2

γ2·4·2tree_depth ≤ η.

Then all interactions will be interpolated when tree_depth ≥ log2

(
D·E2

γ2·4·η

)
, which implies we can

take Treemax divisions = log2

(
D·E2

γ2·4·η

)
. Hence the complexity is O(n · log2

(
D·E2

γ2·4·η

)
).

Theorem. The number of interactions Mi against tree depth i of FFM and F3M grows as
O
(
Mi−12

2·D −mfar
i

)
and

O
(
Mi−12

2·D − (mempty
i)2 −mfar

i −msmooth
i −msmall

i

)
respectively. Here M−1 = 1

22D
and mfar

0 = msmooth
0 = msmall

0 = mempty
0 = 0 and

mfar
i ,msmooth

i ,msmall
i ,mempty

i denotes the number of far-field, smooth field, small field interactions and
the number of empty boxes respectively at depth i > 0. Note that for i > 0, these are dependent on
data.

Proof. We prove through induction that the recursion holds for F3M. We start with the base case
M0 = 1, since at depth i = 0, we only have one box and hence only one interaction. M0 =
M−12

2·D − (mempty
0)2 − mfar

0 − msmooth
0 − msmall

0 = 1. Clearly at depth 0, there can not be any
empty boxes or possible approximations. For the induction step, Mi = Mi−12

2·D − (mempty
i)2 −

mfar
i − msmooth

i − msmall
i . To get Mi+1, each box at depth i is first divided into 2D, hence the

number of interactions grows by 22·D. At depth i+ 1, we can further remove (mempty
i+1)2 interactions

between empty boxes and further compute mfar
i+1 + msmooth

i+1 + msmall
i+1 interactions. Then Mi+1 =

(Mi−12
2·D − (mempty

i)2 −mfar
i −msmooth

i −msmall
i)22·D − (mempty

i+1)2 −mfar
i+1 −msmooth

i+1 −msmall
i+1 =

Mi2
2·D − (mempty

i+1)2 −mfar
i+1 −msmooth

i+1 −msmall
i+1 . Thus the base case and induction step holds which

completes our proof. This proof also covers FFM, since FFM can be as a special case for F3M
without removing empty boxes, smooth field and small field computation.

F Algorithm summary

We present a summary of the algorithm presented in FFM in Algorithm 1 and the modifications F3M
does in boldface.

16

Algorithm 1: FFM (F3M)
Input: Datasets X,Y,b, kernel k, average points threshold ζ
Result: v = k(X,Y) · b
Initialize treecodes τx = T (X), τy = T (Y)
Initialize near-field interactions as Inear = {0, 0}
Initialize output v = 0
while | I |> 0 and MaximumBoxSize(τx) > ζ and MaximumBoxSize(τy) > ζ do

Divide τx, τy
Calculate interactions left I := f(Inear)
Partition I to {Inear, Ifar,Ismooth}
Throw away interactions that are too far from eachother
Compute far-field interactions v += FarFieldCompute(τx, τy, Ifar)
Compute smooth field interactions v += FarFieldCompute(τx, τy, Ismooth) ;

end
Compute remaining near-field interactions v += NearFieldCompute(τx, τy, Inear)

Instead of comparing the average box size to ζ we compare the maximum box size. When points are
non-uniformly distributed, taking the maximum ensures that we don’t compute near-field interactions
on boxes with many points, since it will be inefficient.

G Scalability Analysis

We conduct a scalability analysis over NGPU = 1, 2, 4, 8. We parallelize the KMVM product
by considering the k(X,X)-case and divide the work onto multiple GPUs by partitioning each
subproduct of the KMVM (see for Figure 11 an example when NGPU = 8). We take X to be Uniform
and 3 dimensional. We present results in Figure 12.

GPU:1 GPU:2 GPU:3 ...

G
P
U
:1

G
P
U
:5

G
P
U
:2

G
P
U
:3

...

GPU:5

Figure 11: Partitioning a KMVM product into 8 jobs

17

Figure 12: Since the V100 cards we use have very high throughput, we only get a performance boost
when n = 109.

We also use nvprof to analyze the % of peak throughput of the V100 cards F3M can utilize. We
run nvprof for 3 dimensional uniform data for n = 106, 107, 108, 109. We present our results in
Figure 13.

Figure 13: We used the flop_sp_efficiency metric in nvprof to generate the plot. One GPU was used for
this experiment.

H Impact of η and r on performance

The performance of F3M is tuned by choosing η and r to trade speed against accuracy. In Figure 14
we plot how different choices of η and r impacts computation time for F3M on 3D data.

18

Figure 14: We see that larger η, more aggressive smoothness criteria and smaller number of interpolation
nodes r improve speed.

I Implementation overview

We provide a skiss of how data is stored and used for F3M in Figure 15.

CPU

nr of
non-

empty
boxes

(sorted)

(sorted)

(sorted)

(sorted)

GPU

GPU memory view

...

Reorder

into boxes

Box 1

Box 2

Box 3

0

1

2

3

4

...

2 3 ...

...

...

...

Box 2 2

...

Box 1 1

Box 3 3

2. Calculating

Here the procedure is almost
the same as the near field
case. Data needs no
grouping and is loaded
directly instead.

Reorder

into boxes

Box 1

Box 2

Box 3

0

1

2

3

4

... ...

Far field computations
1. Calculating

3. Calculating

Here, data is grouped and the
summed veritcally using atomic
Add, since summing horizontally
often utilizes less threads as we
often only have a few y-boxes
with a fix number of chebyshev
nodes.

Data is first grouped and loaded onto threadblocks. Chebyshev
nodes centered on the centers of x-boxes can then be loaded onto
shared memory for its corresponding box and then be calculated
directly.

1
1

Reorder

into boxes

...

Box 1 Box 2 Box 3

Reorder

into boxes

Box 1

Box 2

Box 3

0

1

2

3

4

Near field/Small field
computations

The interactions are computed by rearranging the data to be grouped according to their
box belonging. We then select blockSize as the nearest multiple of 32 greater than the
smallest box size. Each x-box is then loaded onto threadblocks (a data point is stored in
the registry), while the y-boxes and b are loaded onto shared memory for faster
computations. Note that no summation is done when there is no interaction between x
and y.

Figure 15: Skiss of how data is stored and used on GPU.

We provide an illustration on near field computations are carried out for F3M in Figure 16.

19

1
1

Reorder

into boxes

...

Reorder

into boxes

0

1

2

3

4

Figure 16: Illustration of how near-field interactions are computed in parallel on GPU. First data is reordered
into their corresponding boxes using a permutation vector. Then each box is loaded in parallel into several thread
blocks (indexed by blockIdx.x), wherein the challenge lies to execute this correctly. The computations are
then parallelized across blocks, where only interactions are computed.

20

	Synthetic data
	Note on maximal variance on an interval
	Details on barycentric Lagrange interpolation
	Smooth field proof
	Complexity
	Algorithm summary
	Scalability Analysis
	Impact of and r on performance
	Implementation overview

