A Pruned Architecture

1.0 10
c 08 0.8
S
G
c
£ o
Eos 206
c T
(9]
]
204 100% FLOPs 0.4 100% FLOPs
—— 50% FLOPs —— 50% FLOPs
—— 40% FLOPs —— 40% FLOPs
0.2 30% FLOPs 0.2 \ 30% FLOPs
01 2 3 4 5 6 7 8 9 10 11 01 2 3 4 5 6 7 8 9 1011
Layer Layer
(a) Layer-wise hidden dimensions of the pruned (b) Layer-wise head numbers of the pruned model
model under different FLOPs targets. under different FLOPs targets.

Here we analyze the parameter distribution of the pruned model from DeiT-Base. Figure 1a shows
the reserved hidden dimension for each layer under different FLOPs targets, e.g. 50% ~ 30%. All
layers have the same hidden dimension of 3072 in the original DeiT. After pruning, we observe that
the majority of the remaining parameters concentrate on the middle layers, while the lower layers
require fewer parameters. We hypothesize that this occurs because the middle layers incorporate
more global information than the lower layers and attempt to build more complex representations.
Similarly, the results in Figure 1b show the reserved head number of MSA for each layer. We observe
that more heads have remained in deeper layers. As work [1] mentions that in the first few layers,
the heads tend to focus on local patterns while deeper layers attend to larger patterns. More heads in
deeper layers help capture more complex patterns.

The above analysis can offer some insights for the community to design more efficient ViTs. As the
uniform parameter distribution in the original DeiT contains a high degree of redundancy, it may not
fully unleash the modeling capacity and representation flexibility of the model. We can construct
more efficient ViT using the discovered guidelines. For example, we can keep a smaller hidden
dimension ratio in lower layers instead of the same ratio in current ViTs.

B Knowledge Distillation

We consider the uncompressed model as a teacher for knowledge distillation. Let o be the softmax
function, z¢'* and 29*** the logits of the cls token and distillation token in student model respectively,
ztcls and z,@i“t are the logits of teacher model, Lk the Kullback-Leibler divergence loss, 7 the
temperature for the softmax. The teacher distillation loss is:

Las =7 % (Lrr(o (/)0 (5 /1)) + Lrep (0 (255 1), 0 (=8 /7)), (1)

Experiments We use the same training recipe as DeiT [2] unless otherwise mentioned. Specifically,
the temperature 7 is set to 0.05, the drop path rate is 0, and the learning rate warm-up is removed.
Then we fine-tune the pruned model with an initial learning rate of 0.0003 x b‘“g% for 300
epochs. We observe that applying only teacher distillation loss as a training objective achieves better
performance than that of combining distillation loss and ground-truth loss, which is also observed in
miniViT [3]. We guess this is due to the limited learning capacity of the tiny model. Compared to the

ground-truth label, the more detailed knowledge from a teacher is easier for the tiny model to learn.

C Latency Measurement

Experiment Setting Following [4], we measure the latency on an NVIDIA V100 GPU with a batch
size of 256 images, using PyTorch on CUDA 10.1. To eliminate the impact of data loading, the time
for data I/O is excluded. To reduce the impact of GPU warm-up, we conduct 100 forward passes.
Then the median of the 1000 forward passes of the model during inference is reported. The setting is
shared across original models and compressed models.

Operator-level Speedup Furthermore, we break down the latency of baseline DeiT-Base and 70%
FLOPs pruned model into operator levels. Table 1 shows the results. After pruning, the FLOPs remain
30% and the ideal speedup is 3.3x. As for the actual GPU latency speedup, it can be observed that the
matmul achieves an almost ideal 3.04x speedup. However, LN, Softmax, and other memory-related
operations can only reach 1.77x due to that these operations could not be reflected by FLOPs and are
not linear w.r.t. FLOPs reduction. The above analysis shows that pruning can achieve ideal matmul
operations speedup on GPUs (matmul computation is reflected by FLOPs). These are also observed
in other ViT pruning works [5, 6].

Table 1: Operator-level run time speedup of compressed DeiT on Nvidia V100.

Operators Matmul. LN GELU Softmax Other memory-related ops Total

DeiT Base latency(ms) 125(38.9%) 18.0(5.6%) 17.8(5.5%) 10.3(3.2%) 151.5(46.9%) 323(100%)

70% FLOPs Pruned(ms) 41.3(26.2%) 11.7(7.4%) 10.8(6.8%) 6.0(3.8%) 87.8(55.7%) 101(100%)

Speedup 3.04x 1.54x 1.65x 1.72x 1.73x 2.05x
References

[1] Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. On the relationship between
self-attention and convolutional layers. arXiv preprint arXiv:1911.03584, 2019.

[2] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
ICML, pages 10347-10357, 2021.

[3] Jinnian Zhang, Houwen Peng, Kan Wu, Mengchen Liu, Bin Xiao, Jianlong Fu, and
Lu Yuan. Minivit: Compressing vision transformers with weight multiplexing. arXiv preprint
arXiv:2204.07154, 2022.

[4] Huanrui Yang, Hongxu Yin, Pavlo Molchanov, Hai Li, and Jan Kautz. Nvit: Vision transformer
compression and parameter redistribution. arXiv preprint arXiv:2110.04869, 2021.

[5] Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, and Zhangyang Wang. Chasing
sparsity in vision transformers: An end-to-end exploration. In NeurIPS, pages 19974—19988,
2021.

[6] Hongxu Yin, Arash Vahdat, Jose Alvarez, Arun Mallya, Jan Kautz, and Pavlo Molchanov. Adavit:
Adaptive tokens for efficient vision transformer. arXiv preprint arXiv:2112.07658, 2021.

	Pruned Architecture
	Knowledge Distillation
	Latency Measurement

