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A Discussion of Related Works

Comparison to Ye et al. (2021) Ye et al. (2021) derive a generalization bound for the do-
main generalization problem in terms of variation across features. They define variation as
Vρ(ϕ,D) = maxy∈Y supe,e′∈D ρ(P(ϕ(Xe)|y),P(ϕ(Xe′)|y)) where D is a set of training distri-
butions, ϕ : X → R is a function that maps the input to a 1-D feature, ρ is a symmetric dis-
tance metric for distributions, and Xe denotes inputs from domain e. In comparison, we ad-
dress the problem of learning with an unforeseen adversary and define unforeseen adversarial
generalizability. Our generalization bound using variation is an instantiation of our generaliz-
ability framework. Additionally, we define a different measure of variation for threat models
V(h,N) = E(x,y)∼D maxx1,x2∈N(x) ||h(x1),−h(x2)||2, which allows us to use it as regularization
during training.

16



Comparison to Laidlaw et al. (2021) Laidlaw et al. (2021) proposes training with perturbations of
bounded LPIPS (Zhang et al., 2018) since LPIPS metric is a better approximation of human perceptual
distance than ℓp metrics. In their proposed algorithm, perceptual adversarial training (PAT), they
combine standard adversarial training with adversarial examples generated via their LPIPS bounded
attack method. In terms of terminology introduced in our paper, the Laidlaw et al. (2021) improve
the choice of source threat model while using an existing learning algorithm (adversarial training).
Meanwhile, our work takes the perspective of having a fixed source threat model and improving
the learning algorithm. This allows us to combine our approach with various source threat models
including the attacks used by Laidlaw et al. (2021) in PAT (see Appendix E.10).

Comparison to Stutz et al. (2020) and Chen et al. (2022) Stutz et al. (2020) and Chen et al. (2022)
address the problem of unforeseen attacks by adding a reject option in order to reject adversarial
examples generated with a larger perturbation than used during training. These techniques introduce
a modified adversarial training objective that maximizes accuracy on perturbations within the source
threat model and maximize rejection rate of large perturbations. In comparison, we look at the
problem of improving robustness on larger threat models instead of rejecting adversarial examples
from larger threat models. Our algorithm AT-VR actively tries to find a robust model that minimizes
our generalization bound without abstaining on any inputs.

Comparison to Croce & Hein (2020a) Croce & Hein (2020a) prove that certified robustness against
ℓ1 and ℓ∞ bounded perturbations implies certified robustness against attacks generated with any ℓp
ball. The size of this ℓp certified radius is the radius of the largest ℓp ball that can be contained in
the convex hull of the ℓ1 and ℓ∞ balls for which the model is certifiably robust. In our work, we are
primarily interested in empirical robustness on target threat models that are supersets of the source
threat model used. We demonstrate that by using variation regularization, we can improve robust
performance on unforeseen threat models (including larger ℓp perturbations, StAdv, and Recolor)
even when our learning algorithm optimizes for robust models on a single ℓp ball.

Comparison to other forms of regularization for adversarial robustness Prior works in adversarial
training propose regularization techniques enforcing feature consistency to improve the performance
of adversarial training. For example, TRADES adversarial training(Zhang et al., 2019) uses a regular-
ization term in the objective to reduce trade-off between clean accuracy and robust accuracy compared
with PGD adversarial training. This regularization term takes the form: λmaxx̂∈S(x) ℓ(f(x)f(x̂)).
Our variation regularization differs from TRADES since we regularize ℓ2 distance between extracted
features.

Another regularization is adversarial logit pairing (ALP) (Kannan et al., 2018). This regularization is
also ℓ2 based; in ALP, an adversarial example is first generated via x′ = maxx̂∈S(x) ℓ(f(x̂), y) and the
ℓ2 distance between the logits of this adversarial example and the original image λ||f(x′)−f(x)||2 is
added to the training objective. ALP can be thought of as a technique to make the logits of adversarial
examples close to the logits of clean images. Variation regularization (λmaxx′,x′′∈S(x) ||f(x′) −
f(x′′)||2) differs from ALP since it encourages the logits of any pair of images (not only adversarial
examples) that lie within the source threat model to have similar features and does not use information
about the label of the image.

Jin & Rinard (2020) propose a regularization technique motivated by concepts from manifold
regularization. Their regularization is computed with randomly sampled maximal perturbations
p ∈ {±ϵ}d and applied to standard training. Their regularization includes 2 terms, one which
regularizes the hamming distance between the ReLU masks of the network for x− p and x+ p across
inputs x, and the second which regularizes the squared ℓ2 distance between the network output on
x− p and x+ p (||f(x+ p)− f(x− p)||22). They demonstrate that using both regularization terms
with ϵ ∈ [2, 8] leads to robustness on ℓ∞, ℓ2, and Wasserstein attacks. In comparison, our variation
regularization is motivated from the perspective of generalization across threat models. We use use
smaller values of ϵ in conjunction with adversarial training and regularize worst case ℓ2 distance
between logits of any pair of examples within the source threat model.
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B Proofs of Theorems and Analysis of Bounds

B.1 Proof of Theorem 4.2

Proof. By definition of expected adversarial risk, we have that for any f ∈ F
LT (f)− LS(f) = E(x,y)∼D( max

x1∈T (x)
ℓ(f(x1), y)− max

x2∈S(x)
ℓ(f(x2), y))

≤ E(x,y)∼D max
x1∈T (x),x2∈S(x)

(ℓ(f(x1), y)− ℓ(f(x2), y))

By ρ-Lipschitzness of ℓ

≤ E(x,y)∼D max
x1∈T (x),x2∈S(x)

ρ||f(x1)− f(x2)||2

= ρE(x,y)∼D max
x1∈T (x),x2∈S(x)

||g(h(x1))− g(h(x2))||2
By σG Lipschitzness:

≤ ρσGE(x,y)∼D max
x1∈T (x),x2∈S(x)

||h(x1)− h(x2)||2

Since S ⊆ T :
≤ ρσGE(x,y)∼D max

x1,x2∈T (x)
||h(x1)− h(x2)||2

= ρσGV(h, T )
Note that our learning algorithm A over F outputs a classifier with V(h, T ) ≤ ϵ(T,m) with
probability 1− δ. Combining this with the above bound gives:

P[LT (f)− LS(f) ≤ ρσGϵ(T,m)] ≥ 1− δ

B.2 Impact of choice of source and target

In Theorem 4.2, we demonstrated a bound on threat model generalization gap that does not depend
on source threat model, so this bound does not allow us to understand what types of targets are easier
to generalize given a source threat model. In this section, we will introduce a tighter bound in terms
of Hausdorff distance, which takes both source and target threat model into account.
Definition B.1 (Directed Hausdorff Distance). Let A,B ⊂ X and let d : X ×X → R be a distance
metric. The Hausdorff distance from A to B based on d is given by

Hd(A,B) = max
x1∈A

min
x2∈B

d(x1, x2)

Intuitively what this measures is, if we were to take every point in A and project it to the nearest point
in set B, what is the maximum distance projection? We can then derive a generalization bound in
terms of Hausdorff distance based on feature space distance.
Theorem B.2 (Threat Model Generalization Bound with Hausdorff Distance). Let S denote the
source threat model and D denote the data distribution. Let F = G ◦ H. Let G be a class of
Lipschitz classifiers, where the Lipschitz constant is upper bounded by σG . Let ℓ be a ρ-Lipschitz
loss function with respect to the 2-norm. Then, for any target threat model T with S ⊆ T . Let
dh := ||h(x1)− h(x2)||2 be the distance between feature extracted by the model. Then,

LT (f)− LS(f) ≤ ρσGE(x,y)∼D[Hdh
(T (x), S(x))]

Proof. By definition of expected adversarial risk,

LT (f)− LS(f) = E(x,y)∼D( max
x1∈T (x)

ℓ(f(x1), y)− max
x2∈S(x)

ℓ(f(x2), y))

Note that since we are subtracting the max across S(x), this expression is upper bounded by any
choice of x̂ ∈ S(x). Thus, we can choose x̂ so that ℓ(f(x̂), y) is close to maxx1∈T (x) ℓ(f(x1), y.
This gives us:

≤ E(x,y)∼D( max
x1∈T (x)

min
x̂∈S(x)

ℓ(f(x1), y)− ℓ(f(x̂), y))

18



By ρ-Lipschitzness of ℓ

≤ E(x,y)∼D max
x1∈T (x)

min
x2∈S(x)

ρ||f(x1)− f(x2)||2

= ρE(x,y)∼D max
x1∈T (x)

min
x2∈S(x)

||g(h(x1))− g(h(x2))||2

By σG Lipschitzness:

≤ ρσGE(x,y)∼D max
x1∈T (x)

min
x2∈S(x)

||h(x1)− h(x2)||2

Since S ⊆ T :
≤ ρσGE(x,y)∼D max

x1∈T (x)
min

x2∈S(x)
||h(x1)− h(x2)||2

= ρσGE(x,y)∼D[Hdh
(T (x), S(x))]

We note that this bound is tighter than the variation based bound and goes to 0 when S = T . Since
this bound also depends on both S and T , we can also see that the “difficulty" of a target T with
respect to a chosen source threat model S can be measured through the directed Hausdorff distance
from T (x) to S(x).

B.3 Proof of Theorem 4.7

Lemma B.3 (Variation Upper Bound for ℓp threat model, p ∈ N ∪ +∞). Let inputs x ∈ Rn and
corresponding label y ∈ [1...K]. Let the adversarial constraint be given by T (x) = {x̂| ||x̂− x||p ≤
ϵmax} Let h be a linear feature extractor: h ∈ {Wx + b|W ∈ Rd×n, b ∈ Rd}. Then, variation is
upper bounded by

Vp(h, T ) ≤
{
2ϵmaxn

1
2−

1
pσmax(W ) p ≥ 2

2ϵmaxσmax(W ) p = 1, p = 2

Proof.
V(h, T ) = E(x,y)∼D max

x1,x2∈T (x)
||h(x1)− h(x2)||2

= E(x,y)∼D max
x1,x2∈T (x)

||W (x1 − x2)||2

≤ E(x,y)∼D max
x1,x2∈T (x)

σmax(W )||x1 − x2||2 (1)

Consider the case where p > 2. Then, by Hölder’s inequality:

≤ E(x,y)∼D max
x1,x2∈T (x)

n
1
2−

1
pσmax(W )||x1 − x2||p

≤ 2ϵmaxn
1
2−

1
pσmax(W )

When p = 1 or p = 2, then from 1, we have:

≤ E(x,y)∼D max
x1,x2∈T (x)

σmax(W )||x1 − x2||p

≤ 2ϵmaxσmax(W )

Lemma B.4 (Variation lower bound for ℓp threat model, p ∈ N ∪ +∞). Let inputs x ∈ Rn and
corresponding label y ∈ [1...K]. Let the adversarial constraint be given by T (x) = {x̂| ||x̂− x||p ≤
ϵmax}. Let h be a linear feature extractor: h ∈ {Wx+ b|W ∈ Rd×n, b ∈ Rd}. Then, variation is
lower bounded by

Vp(h, T ) ≥
{
2ϵmaxσmin(W ) p ≥ 2
2ϵmax√

n
σmin(W ) p = 1

where σmin(W ) denotes the smallest singular value of W .
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Proof.
V(h, T ) = E(x,y)∼D max

x1,x2∈T (x)
||W (x1 − x2)||2

≥ σmin(W )E(x,y)∼D max
x1,x2∈T (x)

||x1 − x2||2 (2)

Then, for p ≥ 2:
≥ σmin(W )E(x,y)∼D max

x1,x2∈T (x)
||x1 − x2||p

= 2ϵmaxσmin(W )

For p = 1 from 2, we have:

≥ 1√
n
σmin(W )E(x,y)∼D max

x1,x2∈T (x)
||x1 − x2||1

=
2ϵmax√

n
σmin(W )

Lemma B.5 (ℓp threat models with larger radius, p ∈ N∪+∞). Let inputs x ∈ Rn and corresponding
label y ∈ [1...K]. Let S(x) = {x̂| ||x̂− x||p ≤ ϵ1} and T (x) = {x̂| ||x̂− x||p ≤ ϵ2} where ϵ2 ≥ ϵ1.
Consider a linear feature extractor with bounded condition number: h ∈ {Wx+ b|W ∈ Rd×n, b ∈
Rd, σmax(W )

σmin(W ) ≤ B <∞}. Then a valid expansion function is given by:

sp(z) =


√
nB ϵ2

ϵ1
z p = 1

B ϵ2
ϵ1
z p = 2

n
1
2−

1
pB ϵ2

ϵ1
z p > 2

Proof. By Lemma B.3 and Lemma B.4, V(h, T ) ≤ s(V(h, S)). Additionally, it is clear that sp
satisfies properties of expansion function.

Lemma B.6 (Variation upper bound for the union of ℓp and ℓq threat models (p, q ∈ N ∪+∞)). Let
inputs x ∈ Rn and corresponding label y ∈ [1...K]. Consider T1(x) = {x̂| ||x̂ − x||p ≤ ϵ1} and
T2(x) = {x̂| ||x̂− x||q ≤ ϵ2}. Define adversarial constraint T = T1 ∪ T2. Let h be a linear feature
extractor: h ∈ {Wx+ b|W ∈ Rd×n, b ∈ Rd}. Let v(p, h, T ) be defined as

v(p, ϵ,W ) =

{
2ϵn

1
2−

1
pσmax(W ) p ≥ 2

2ϵσmax(W ) p = 1, p = 2

where σmax(W ) denotes the largest singular value of W .

Then variation is upper bounded by:

V(p,ϵ1),(q,ϵ2)(h, T ) ≤ max(v(p, ϵ1,W ), v(q, ϵ2,W ))

Proof.
V(h, T ) = E(x,y)∼D max

x1,x2∈T (x)
||W (x1 − x2)||2

≤ E(x,y)∼D max
x1,x2∈T (x)

σmax(W )||x1 − x2||2

Since T = T1 ∪ T2, maxx1,x2∈T (x) ||x1 − x2||2 can be upper bounded by the diameter of the
hypersphere that contains both T1 and T2. We can compute this diameter by taking the max out of
the diameter of the hypersphere containing T1 and the diameter of the hypersphere containing T2.
This was computed in proof of Lemma B.3 to bound the case of a single ℓp norm. Thus,

V(p,ϵ1),(q,ϵ2)(h, T ) ≤ max(v(p, ϵ1,W ), v(q, ϵ2,W ))

where the expression for v follows from the result of Lemma B.3.
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Lemma B.7 (ℓp to union of ℓp and ℓq threat model (p, q ∈ N ∪ +∞) ). Let inputs x ∈ Rn and
corresponding label y ∈ [1...K]. Consider S(x) = {x̂| ||x̂−x||p ≤ ϵ1} and U(x) = {x̂| ||x̂−x||q ≤
ϵ2}. Define target threat model T = S ∪ U . Consider a linear feature extractor with bounded
condition number: h ∈ {Wx+ b|W ∈ Rd×n, b ∈ Rd, σmax(W )

σmin(W ) ≤ B <∞}. Then a valid expansion
function is given by:

sp,q(z) =



√
nBmax(ϵ2,ϵ1)

ϵ1
p = 1, q = 2

√
nBmax(n

1
2
− 1

q ϵ2,ϵ1)
ϵ1

p = 1, q > 2

Bmax(ϵ2,ϵ1)
ϵ1

p = 2, q = 1

Bmax(n
1
2
− 1

q ϵ2,ϵ1)
ϵ1

p = 2, q > 2

Bmax(ϵ2,n
1
2
− 1

p ϵ1)
ϵ1

p > 2, q ≤ 2

Bmax(n
1
2
− 1

q ϵ2,n
1
2
− 1

p ϵ1)
ϵ1

p > 2, q > 2

Proof. By Lemma B.6 and Lemma B.4, V(h, T ) ≤ s(V(h, S)). Additionally, it is clear that sp
satisfies properties of expansion function.

Proof of Theorem 4.7. Directly follows from Lemma B.5 and Lemma B.7.

B.4 How well can empirical expansion function predict loss on the target threat model for
neural networks?

Using the empirical expansion function slopes from Figures 2 and 8, we compute the expected cross
entropy loss (with softmax) on the target threat model via Corollary 4.4. We provide the predicted
and true target losses in Table 3 for ℓ∞, ϵ = 8

255 source threat model and 4 for ℓ2, ϵ = 0.5.

Target Source Variation Source Loss Predicted Target loss True Target Loss Gap
ℓ∞, ϵ = 16

255 4.90 0.93 12.85 2.44 10.41
ℓ2, ϵ = 0.5 4.90 0.93 7.86 0.93 6.93

StAdv ϵ = 0.05 4.90 0.93 9.87 5.13 4.74
ℓ∞, ϵ = 16

255 0.98 1.26 3.64 1.76 1.88
ℓ2, ϵ = 0.5 0.98 1.26 2.64 1.27 1.37

StAdv ϵ = 0.05 0.98 1.26 3.05 2.11 0.94
Table 3: Predicted and measured losses on multiple target threat models for ResNet-18 model trained
on CIFAR-10 with ℓ∞, ϵ = 8/255 source threat model.

Target Source Variation Source Loss Predicted Target loss True Target Loss Gap
ℓ∞, ϵ = 8

255 0.78 0.64 18.52 2.65 15.87
ℓ2, ϵ = 1 0.78 0.64 1.91 1.93 0.02

StAdv ϵ = 0.05 0.78 0.64 16.51 12.26 4.25
ℓ∞, ϵ = 8

255 0.20 0.85 5.38 1.77 3.61
ℓ2, ϵ = 1 0.20 0.85 1.16 1.51 0.35

StAdv ϵ = 0.05 0.20 0.85 4.88 2.10 2.78
Table 4: Predicted and measured losses on multiple target threat models for ResNet-18 model trained
on CIFAR-10 with ℓ2, ϵ = 0.5 source threat model.

In general, we find that for models with smaller variation (those trained with variation regularization),
the loss estimate using the slope from the expansion function generally improves. In the case where
the target threat model is Linf, we believe that the large gap between predicted and true loss for the
unregularized model stems from the fact that we model the expansion function with a linear model.
From Figure 2, we can see that at larger values of source variation the linear model for expansion
function becomes an increasingly loose upper-bound. Improving the model for expansion function
(ie. using a log function) may reduce this gap.
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C Additional Experimental Setup Details

Variation Computation Algorithm for AT-VR We provide the algorithm we use to compute
variation regularization for ℓp source adversaries in Algorithm 1.

Algorithm 1: Variation Regularization Computation for ℓp ball
Input :x ∈ X , ℓp radius ϵ, n number of steps, α step size, feature extractor h
Notations :U denotes the uniform distribution of dimension of the input,

∏
ℓp,ϵ

denotes
projection onto ℓp ball of radius ϵ

Output :Variation v ∈ R
1 x1 ←

∏
ℓp,ϵ

(x+ U(−ϵ, ϵ)) ; // randomly initialize x1

2 x2 ←
∏

ℓp,ϵ
(x+ U(−ϵ, ϵ)) ; // randomly initialize x1

3 for i = 1...n do
4 v ← ||h(x1)− h(x2)||2 ; // compute objective
5 x1 ←

∏
ℓp,ϵ

(x1 + α∇x1
v) ; // single step of PGD to optimize x1

6 x2 ←
∏

ℓp,ϵ
(x2 + α∇x2v) ; // single step of PGD to optimize x2

7 end
8 v ← ||h(x1)− h(x2)||2 ; // compute final variation
9 return v

Variation Computation for PAT-VR Laidlaw et al. (2021) propose an algorithm called Fast
Lagrangian Perceptual Attack (Fast-LPA) to generate adversarial examples for training using PAT. We
make a slight modification of the Fast-LPA algorithm, replacing the loss in the original optimization
objective with the variation objective, to obtain Fast Lagrange Perceptual Variation (Fast-LPV). The
explicit algorithm for Fast-LPV is provided in Algorithm 2. We use the variation obtained from
Fast-LPV for training with PAT-VR.

Algorithm 2: Fast Lagrangian Perceptual Variation (Fast-LPV)
Input :feature extractor h(·), LPIPS distance d(·, ·), input x, label y, bound ϵ, number of

steps n
Output :variation v

1 x1 ← x+ 0.01 ∗ N (0.1) ; // randomly initialize x1

2 x2 ← x+ 0.01 ∗ N (0.1) ; // randomly initialize x2

3 for i = 1...n do
4 τ ← 10i/n ; // τ increases exponentially
5 obj ← ||h(x1)− h(x2)||2 − τ(max(0, d(x1, x)− ϵ) + max(0, d(x2, x)− ϵ)) ; // obj

represents optimization objective

6 ∆1 ← ∇x1
[obj]

||∇x1
[obj]||2 ; // compute normalized gradient wrt x1

7 ∆2 ← ∇x2 [obj]

||∇x2
[obj]||2 ; // compute normalized gradient wrt x2

8 η ← ϵ ∗ (0.1)i/n ; // step size η decays exponentially
9 m1 ← d(x1, x1 + 0.1∆1)/0.1 ; // derivative of d in direction of ∆1

10 m2 ← d(x2, x2 + 0.1∆2)/0.1 ; // derivative of d in direction of ∆2

11 x1 ← x1 + (η/m)∆1 ; // take a step of size η in LPIPS distance
12 x2 ← x2 + (η/m)∆2 ; // take a step of size η in LPIPS distance
13 end
14 v ← ||h(x1)− h(x2)||2;
15 return v

Additional Experimental Setup Details for AT-VR We run all training on a NVIDIA A100 GPU.
For all datasets and architectures, we perform PGD adversarial training (Madry et al., 2018) and add
variation regularization to the objective. For all datasets, train with normalized inputs. On ImageNette,
we normalize using ImageNet statistics and resize all images to 224× 224. We train models on seed

22



0 for 200 epochs with SGD with initial learning rate of 0.1 and decrease the learning rate by a factor
of 10 at the 100th and 150th epoch. We use 10-step PGD and train with ℓ∞ perturbations of radius
8

255 and ℓ2 perturbations with radius 0.5. For ℓ∞ perturbations we use step size of α = 2
255 while

for ℓ2 perturbations we use step size of 0.075. We use the same settings for computing the variation
regularization term. For all models, we evaluate performance at the epoch which achieves the highest
robust accuracy on the test set.

Additional Experimental Setup Details for PAT-VR We build off the official code repository for
PAT and train ResNet-50 models on CIFAR-10 with AlexNet-based LPIPS threat model with bound
ϵ = 0.5 and ϵ = 1. For computing AlexNet-based LPIPS we use the CIFAR-10 AlexNet pretrained
model provided in the PAT official code repository. We train all models for 100 epochs and evaluate
the model saved at the final epoch of training. To match evaluation technique as Laidlaw et al. (2021),
we evaluate with ℓ∞ attacks, ℓ2 attacks, StAdv, and Recolor with perturbation bounds 8

255 , 1, 0.05,
0.06 respectively. Additionally, we present accuracy measured using AlexNet-based PPGD and LPA
attacks (Laidlaw et al., 2021) with ϵ = 0.5.

D Experiments for linear models on Gaussian data

In Section 4.3, we demonstrated that for a linear feature extractor, the expansion function exists, so
decreasing variation across an ℓp source adversarial constraint should improve generalization to other
ℓp constraints. We now verify this experimentally by training a linear model for binary classification
on isotropic Gaussian data.

D.1 Experimental Setup

Data generation We sample data from 2 isotropic Gaussians with covariance σ2In where In
denotes the n × n identity matrix. For class 0, we sample from a Gaussian with mean θ0 =
(0.25, 0, 0, ..., 0)T , and for class 1, we sample from a Gaussian with mean θ1 = (0.75, 0, 0, ..., 0)T

and clip all samples to range [0, 1] to simulate image data. We sample 1000 points per class. We vary
σ ∈ {0.125, 0.25} and n ∈ {25, 100}. Since our generalization bound considers only threat model
generalization gap and not sample generalization gap, we evaluate the models using the same data
samples as used during training for the bulk of our experiments, but we provide results on a separate
test set for one setting in Appendix D.5.

Model architecture We train a model consisting of a linear feature extractor and linear top level
classifier: f = g ◦ h where h(x) = Wx + b1 where W ∈ Rn×d, b1 ∈ Rd and g(x) = Ax + b2
where A ∈ Rd×2, b2 ∈ R2. For our experiments, we use d ∈ {5, 25}.

Source Threat Models Across experiments we use 2 different source threat models: ℓ∞ perturba-
tions with radius 0.01 and ℓ2 perturbations with radius 0.01.

Training Details We perform AT-VR with adversarial examples generated using APGD (Croce &
Hein, 2020b) for 200 epochs. We train models using SGD with learning rate of 0.1 and momentum
of 0.9. We use cross entropy loss during both training and evaluation. For variation regularization,
we use 10 steps for optimization and use step size ϵ/9 where ϵ is the radius of the ℓp ball used during
training/evaluation.

D.2 Visualizing the expansion function for Gaussian data

In Section 4.3, we demonstrated that with a linear feature extractor, for any dataset there exists a linear
expansion function. We now visualize the true expansion function for Gaussian data with a linear
function class across 4 different combinations of input dimension n, Gaussian standard deviation σ,
and feature dimension d. We set our source threat model to be ℓp, p ∈ {∞, 2} with perturbation size
of 0.01. We set our target threat model to be ℓp, p ∈ {∞, 2} perturbation size of 0.05 and compute
source variation and target variation of 100 randomly sampled h. We sample parameters of h from a
standard normal distribution. We plot the linear expansion function with minimum slope in Figure 3.
We find that across all settings we can find a linear expansion function that is a good fit. Additionally,
we find that the slope of this linear expansion function stays consistent across changes in σ and d.
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We find that input dimension n can influence the expansion function which matches; for example,
the slope of the expansion function for source ℓ2 to target ℓ∞ increases from ∼ 21 to 39.09. This
matches our results in Lemma B.5 and Lemma B.7 where our computed expansion function depends
on n.
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Figure 3: Plots of minimum linear expansion function s shown in blue computed on 100 randomly
initialized linear feature extractors across 4 different combinations of input dimension n, Gaussian
standard deviation σ, and feature dimension d. Each grey point represents the variation of a single
model measured across the source and target. Columns represent the source threat model (ℓ∞ and ℓ2
with ϵ = 0.01) while rows represent the target threat model (ℓ∞ and ℓ2 with ϵ = 0.05).

D.3 Generalization curves

We plot the threat model generalization curves for varied settings of input dimension n, feature
extractor output dimension d, and Gaussian standard deviation σ in Figure 4. We find that across
all settings, applying variation regularization leads to smaller generalization gap across values of ℓp
radius ϵ.

D.4 Accuracies over regularization strength

We plot the accuracies corresponding to the n = 25, σ = 0.125 and d = 5 setting in Figure 4 in
Figure 5. We note that while Figure 4 demonstrated that regularization improves decreases the size of
the generalization gap, there is trade-off in accuracy which can be seen at small of ϵ. However, we
find that generally variation regularization improves robust accuracy on unforeseen threat models.

D.5 Evaluations on a separate test set

We now plot generalization gap for the n = 25, σ = 0.125 and d = 5 setting with cross entropy loss
on the target threat model measured on a separate test set of 2000 samples in Figure 6. We find that
the trends we observed on the train set are consistent with those observed when evaluating on the
train set shown in Figure 4.

E Additional Results for Logit Level AT-VR

In this section, we present additional results for AT-VR when considering the logits to be the output
of the feature extractor h.
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Figure 4: Threat model generalization gap of linear models on Gaussian data trained with varied
variation regularization strength λ measured on adversarial examples of generated by target ℓp, p =
{∞, 2} perturbations with radius ϵ at varied input dimension n, feature extractor output dimension d
and standard deviation σ. The generalization gap is measured with respect to cross entropy loss. All
models are trained with source ℓp, p = {∞, 2} radius of 0.01.

E.1 Results on Additional Seeds

In Table 5 we present the mean and standard deviations for robust accuracy of CIFAR-10 ResNet-18
models over 3 trials seeded at 0, 1, and 2. We find that the improvement observed through variation
regularization on unforeseen target threat models is significant for both ℓ2 and ℓ∞ attacks for ResNet-
18 CIFAR-10 models; for bolded accuracies on target threat modes (with the exception of ℓ∞ source
to ℓ2 target which we did not report as an improvement in the main text) we find that the range of
the error bars do not overlap with the results for standard adversarial training (λ = 0). Additionally,
we find that the trade-off with clean accuracy observed when using variation regularization is also
significant.

E.2 Expansion function on random features

In Section 5.6, we plotted the expansion function across models trained with adversarial training at
various levels of variation regularization. We now visualize the expansion function for random feature
extractors to investigate to what extent the learning algorithm influences expansion function. We plot
the source and target variations (corresponding to the same setup as in Section 5.6) of 300 randomly
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Figure 5: Accuracies of linear models on Gaussian data trained with at varied variation regularization
strength λ measured on adversarial examples of radius ϵ. All models are trained with radius 0.01.
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Figure 6: Cross entropy loss of linear models on Gaussian data trained with regularization strength
λ measured on adversarial examples of radius ϵ. Cross entropy loss is measured with respect to a
separate test set. All models are trained with source ℓp radius of 0.01.

initialized feature extractors of ResNet-18 on CIFAR-10 in Figure 7. For random initialization, we use
Xavier normal initialization (Glorot & Bengio, 2010) for weights and standard normal initialization
for biases.
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Figure 7: Plots of minimum linear expansion function s shown in blue computed on 300 randomly
initialized ResNet-18 models. Each grey point represents the variation measured on the source and
target attack. Variation is computed on the logits. The two columns represent the source adversary
(ℓ∞ and ℓ2 respectively). The two rows represent the target adversary (ℓ∞ and ℓ2 respectively).

We find that with randomly initialized models, we can also find a linear expansion function with
small slope. In comparison to expansion functions from adversarially trained models (Figure 7),
we find that using randomly initialized models leads to minimum linear expansion function s with
smaller slope for ℓ∞ target threat model. This suggests that learning algorithm can have an impact on
expansion function.

E.3 Expansion function between ℓp and StAdv threat model

While we have shown that an expansion function with small slope exists between ℓ2 and ℓ∞ threat
models, it is unclear whether this also holds for non-ℓp threat models. However, we do observe from
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Union with Source
Dataset Source λ Clean Source ℓ∞ ℓ2 StAdv Re- Union

acc acc ϵ = 12
255

ϵ = 1 color all

CIFAR-10 ℓ2 0 88.29 ± 0.51 67.15 ± 0.45 6.77 ± 0.31 35.40 ± 0.65 1.21 ± 0.46 66.99 ± 0.43 0.52 ± 0.25
CIFAR-10 ℓ2 0.25 87.39 ± 0.36 68.75 ± 0.08 11.56 ± 0.57 39.57 ± 1.08 10.31 ± 0.41 68.60 ± 0.10 5.93 ± 0.38
CIFAR-10 ℓ2 0.5 86.07 ± 0.50 68.78 ± 0.17 13.13 ± 1.33 41.52 ± 1.19 18.71 ± 2.79 68.59 ± 0.12 8.70 ± 0.50
CIFAR-10 ℓ2 0.75 84.54 ± 0.61 67.97 ± 0.15 14.61 ± 0.59 42.13 ± 0.59 23.24 ± 0.94 67.83 ± 0.12 10.69 ± 0.15
CIFAR-10 ℓ2 1 84.71 ± 1.32 67.39 ± 0.29 13.62 ± 0.81 41.14 ± 1.56 33.70 ± 5.27 67.29 ± 0.31 11.58 ± 0.37

CIFAR-10 ℓ∞ 0 83.01 ± 0.29 47.44 ± 0.08 27.79 ± 0.44 24.67 ± 0.70 4.17 ± 0.26 47.44 ± 0.08 2.16 ± 0.28
CIFAR-10 ℓ∞ 0.05 82.70 ± 0.56 48.38 ± 0.39 29.55 ± 0.43 25.25 ± 0.97 4.87 ± 0.66 48.38± 0.39 2.61 ± 0.43
CIFAR-10 ℓ∞ 0.1 81.79 ± 0.29 48.65 ± 0.25 29.89 ± 0.53 24.99 ± 0.73 6.33 ± 0.83 48.65 ± 0.25 3.47 ± 0.50
CIFAR-10 ℓ∞ 0.3 78.87 ± 0.72 49.16 ± 0.12 31.89 ± 0.13 24.95 ± 0.26 12.96 ± 0.81 49.16 ± 0.12 8.53 ± 0.70
CIFAR-10 ℓ∞ 0.5 74.24 ± 2.04 48.62 ± 0.20 33.07 ± 1.09 24.59 ± 1.32 19.91 ± 1.12 48.62 ± 0.20 13.35 ± 0.83

Table 5: Mean and standard deviation across 3 trials for robust accuracy of various models trained
at different strengths of variation regularization applied on logits on various threat models. λ = 0
corresponds to standard adversarial training. Models are trained with either source threat model ℓ∞
with radius 8

255 or ℓ2 with radius 0.5. The “source acc" column reports the accuracy on the source
attack. For each individual threat model, we evaluate accuracy on a union with the source threat
model. The union all column reports the accuracy obtained on the union across all listed threat
models.

Table 1 that AT-VR with ℓ2 and ℓ∞ sources leads to significant improvements in robust accuracy on
StAdv, which is a non-ℓp threat model, suggesting that an expansion function between these threat
models exists. Using the same models for generating Figure 2, we plot the expansion function from
ℓ∞ and ℓ2 sources to StAdv (ϵ = 0.05) in Figure 8. We observe that for both source threat models a
linear expansion function exists to StAdv.
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Figure 8: Expansion function from ℓ∞, ϵ = 8/255 and ℓ2, ϵ = 0.5 source threat models to StAdv
(ϵ = 0.05) target threat model computed over 315 adversarially trained ResNet-18 models. The linear
expansion function with minimum slope is plotted in blue.

We now visualize the expansion function from StAdv (ϵ = 0.03) source to ℓ∞ (ϵ = 8/255), ℓ2
(ϵ = 0.5), and StAdv (ϵ = 0.05) target threat models. We present plots in Figure 9. Unlike our plots
of expansion function for ℓ2 and ℓ∞ source threat models, we find that for StAdv a linear expansion
function is not a tight upper bound on the true trend in source vs target variation. A better model for
expansion function would be piecewise linear function with 2 slopes, one for variation values near 0
and one for larger variation values since the slopes at points where source variation is closer to 0 is
much larger than the slopes computed at points further from 0.
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Figure 9: Expansion function from StAdv (ϵ = 0.03) source threat model to ℓ∞ (ϵ = 8/255), ℓ2
(ϵ = 0.5), and StAdv (ϵ = 0.05) target threat models. Expansion function is computed using 60
ResNet-18 models adversarially trained on CIFAR-10 with adversarial examples generated via StAdv
(ϵ = 0.03). The linear expansion function with minimum slope is plotted in blue.
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Figure 10: Robust accuracy on the CIFAR-10 test set of ResNet-18 models trained using AT-
VR at varied regularization strength λ measured on adversarial examples of generated by target
ℓp, p = {∞, 2, 1} perturbations with radius ϵ. The generalization gap is measured with respect to
cross entropy loss. Variation regularization is applied on the logits. All models are trained with
source ℓ∞ perturbations of radius 8

255 .

E.4 Additional Results with ℓp Target Threat Models

In Figure 1 of the main text, we plotted the unforeseen generalization gap and robust accuracies for
ResNet-18 models trained on CIFAR-10 with AT-VR at various perturbation size ϵ with ℓ∞ source.
We plot the robust accuracy across ℓp threat models for the models trained with standard adversarial
training (λ = 0) and with highest variation regularization strength used (λ = 0.5) in Figure 10. We
find that at large values of ℓp perturbation size, the model using variation regularization achieves
higher robust accuracy than the model trained using standard adversarial training. This improvement
is most clear for ℓ∞ targets.

We provide corresponding plots of unforeseen generalization gap and robust accuracy on CIFAR-10
on ℓp target threat models for an ℓ2 source in Figure 11. Similar to trends with ℓ∞ source threat model,
we find that increasing the strength of variation regularization decreases the unforeseen generalization
gap. We find that with an ℓ2 source threat model, the robust accuracy for the model trained with
variation regularization also has consistently higher accuracy across target ℓp threat models compared
to the model trained with standard adversarial training (λ = 0).

0.04 0.06 0.08

Target ε

5

10

15

L
T
−
L̂
S

Target `∞

0.5 1.0 1.5 2.0

Target ε

0

2

4

6

L
T
−
L̂
S

Target `2

5 10 15 20

Target ε

0

1

2

3

L
T
−
L̂
S

Target `1

λ = 0 λ = 0.25 λ = 0.5 λ = 0.75 λ = 1

0.04 0.06 0.08

Target ε

0

20

A
cc

ur
ac

y
(%

)

Target `∞

0.5 1.0 1.5 2.0

Target ε

0

20

40

60

A
cc

ur
ac

y
(%

)

Target `2

5 10 15 20

Target ε

0

20

40

60

A
cc

ur
ac

y
(%

)

Target `1

λ = 0 λ = 1

Figure 11: Top row: Generalization gap of on the CIFAR-10 test set for ResNet-18 models trained
using AT-VR at varied regularization strength λ measured on adversarial examples of generated by
target ℓp, p = {∞, 2, 1} perturbations with radius ϵ. Variation regularization is applied on the logits.
The generalization gap is measured with respect to cross entropy loss. All models are trained with
source ℓ2 perturbations of radius 0.5. Bottom row: Corresponding robust accuracy of λ = 0 and
λ = 1 models displayed in top row.
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E.5 Additional strengths of variation regularization

In Table 6 we present additional results for models trained at AT-VR at different strengths λ of varia-
tion regularization. Overall, we find that models using variation regularization improve robustness on
unforeseen attacks. Generally, we find that union accuracies are also larger with higher strengths of
variation regularization.

Union with Source
Dataset Architecture Source λ Clean Source ℓ∞ ℓ2 StAdv Re- Union

acc acc ϵ = 12
255

ϵ = 1 color all
CIFAR-10 ResNet-18 ℓ2 0 88.49 66.65 6.44 34.72 0.76 66.52 0.33
CIFAR-10 ResNet-18 ℓ2 0.25 87.49 68.66 11.59 39.06 10.78 68.52 6.11
CIFAR-10 ResNet-18 ℓ2 0.5 85.75 68.93 13.42 41.90 20.13 68.66 9.25
CIFAR-10 ResNet-18 ℓ2 0.75 84.78 67.86 14.27 41.68 23.45 67.75 10.58
CIFAR-10 ResNet-18 ℓ2 1 85.21 67.38 13.43 40.74 34.40 67.30 11.77
CIFAR-10 ResNet-18 ℓ∞ 0 82.83 47.47 28.09 24.94 4.38 47.47 2.48
CIFAR-10 ResNet-18 ℓ∞ 0.05 83.34 48.04 29.28 24.34 4.32 48.04 2.29
CIFAR-10 ResNet-18 ℓ∞ 0.1 81.94 48.64 29.50 24.15 6.01 48.64 3.13
CIFAR-10 ResNet-18 ℓ∞ 0.3 79.36 49.28 31.94 25.08 12.75 49.28 8.28
CIFAR-10 ResNet-18 ℓ∞ 0.5 72.91 48.84 33.69 24.38 18.62 48.84 12.59
CIFAR-10 WRN-28-10 ℓ∞ 0 85.93 49.86 28.73 20.89 2.28 49.86 1.10
CIFAR-10 WRN-28-10 ℓ∞ 0.1 84.82 50.42 30.10 20.85 5.54 50.42 3.42
CIFAR-10 WRN-28-10 ℓ∞ 0.3 83.47 51.19 31.71 20.01 15.00 51.19 9.81
CIFAR-10 WRN-28-10 ℓ∞ 0.5 80.43 51.16 33.18 20.76 21.05 51.16 12.06
CIFAR-10 WRN-28-10 ℓ∞ 0.7 72.73 49.94 35.11 22.30 25.33 49.94 14.72
CIFAR-10 VGG-16 ℓ∞ 0 79.67 44.36 26.14 30.82 7.31 44.36 4.35
CIFAR-10 VGG-16 ℓ∞ 0.01 78.12 45.13 27.22 33.34 8.09 45.13 5.24
CIFAR-10 VGG-16 ℓ∞ 0.05 79.24 44.73 27.07 30.99 7.94 44.73 4.65
CIFAR-10 VGG-16 ℓ∞ 0.1 77.80 45.42 28.41 32.08 10.57 45.42 6.83
CIFAR-10 VGG-16 ℓ∞ 0.15 76.19 44.65 27.44 29.65 11.99 44.65 7.48
ImageNette ResNet-18 ℓ2 0 88.94 84.99 0.00 79.08 1.27 72.15 0.00
ImageNette ResNet-18 ℓ2 0.25 86.83 84.28 1.58 80.66 8.38 74.17 0.94
ImageNette ResNet-18 ℓ2 0.5 86.80 84.00 4.25 80.23 12.82 74.17 2.88
ImageNette ResNet-18 ℓ2 0.75 85.83 83.92 5.81 80.94 15.57 74.73 4.28
ImageNette ResNet-18 ℓ2 1 85.22 83.08 9.53 80.43 18.04 75.26 6.80
ImageNette ResNet-18 ℓ∞ 0 80.56 49.63 32.38 49.63 34.27 49.63 25.68
ImageNette ResNet-18 ℓ∞ 0.05 79.64 50.50 33.27 50.50 39.01 50.50 28.48
ImageNette ResNet-18 ℓ∞ 0.1 78.01 50.80 35.57 50.80 42.37 50.80 31.82
ImageNette ResNet-18 ℓ∞ 0.15 75.62 49.94 36.15 49.94 43.26 49.94 33.22
ImageNette ResNet-18 ℓ∞ 0.2 73.50 49.17 36.28 49.15 44.00 49.17 34.22
CIFAR-100 ResNet-18 ℓ2 0 60.92 36.01 3.98 16.90 1.80 34.87 0.40
CIFAR-100 ResNet-18 ℓ2 0.25 56.20 38.26 7.85 23.43 2.88 36.63 1.34
CIFAR-100 ResNet-18 ℓ2 0.5 54.23 38.51 9.70 24.33 4.03 36.87 2.29
CIFAR-100 ResNet-18 ℓ2 0.75 51.53 38.26 11.47 25.65 5.12 36.96 3.11
CIFAR-100 ResNet-18 ℓ2 1 50.85 37.00 10.53 24.89 5.09 35.82 3.05
CIFAR-100 ResNet-18 ℓ∞ 0 54.94 22.74 12.61 14.40 3.99 22.71 2.42
CIFAR-100 ResNet-18 ℓ∞ 0.05 53.59 24.24 14.05 14.93 4.26 24.19 2.65
CIFAR-100 ResNet-18 ℓ∞ 0.1 52.32 24.78 15.09 15.57 4.25 24.74 2.91
CIFAR-100 ResNet-18 ℓ∞ 0.2 48.97 25.04 16.48 15.82 4.96 24.95 3.48
CIFAR-100 ResNet-18 ℓ∞ 0.3 46.39 24.82 16.45 14.54 5.04 24.75 3.07

Table 6: Robust accuracy of various models trained at different strengths of variation regularization
applied on logits on various threat models. Models are trained with either source threat model ℓ∞
with radius 8

255 or ℓ2 with radius 0.5. The “source acc" column reports the accuracy on the source
attack. For each individual threat model, we evaluate accuracy on a union with the source threat
model. The union all column reports the accuracy obtained on the union across all listed threat
models.

E.6 Full AutoAttack results on CIFAR-10

In Table 7, we report the full AutoAttack evaluation of the ResNet-18 models trained on CIFAR-10
with AT-VR with highest regularization strength displayed in in Table 13. We find that robust accuracy
is consistent across attack types, suggesting that variation regularization is not obfuscating gradients.
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Source ℓ∞ ℓ2
(ϵ = 12

255
) (ϵ = 1)

ℓ∞ source
λ = 0.5

APGD-CE 51.56 37.84 30.56
APGD-T 48.84 33.72 24.93
FAB-T 48.84 33.69 24.38
Square 48.84 33.69 24.38

ℓ2 source
λ = 1

APGD-CE 68.00 18.23 44.16
APGD-T 67.39 14.73 41.67
FAB-T 67.38 13.43 40.74
Square 67.38 13.43 40.74

Table 7: Full AutoAttack evaluations for the ResNet-18 models trained with AT-VR with variation
regularization strength on ℓ∞ (ϵ = 8

255 ) and ℓ2 (ϵ = 0.5) source adversaries.

E.7 Evaluations on other adversaries

In Table 8, we present additional evaluations for ResNet-18 CIFAR-10 models on additional adver-
saries including Wasserstein adversarial attacks, JPEG attacks, elastic attacks, and perceptual attacks.
For Wasserstein adversarial attacks, we use PGD with dual projection (Wu et al., 2020b). We use ℓ∞
JPEG, ℓ1 JPEG and elastic attacks from (Kang et al., 2019) and AlexNet LPIPS-based attacks (PPGD
and LPA) from (Laidlaw et al., 2021) with perturbation size ϵ specified in Table 8. Overall, we find
that using variation regularization with ℓp sources also improves performance on these additional
adversaries. This suggests that an expansion function exists between variation on ℓp sources to more
complicated threat models, including more perceptually-aligned threat models such as the bounded
AlexNet LPIPS distance used by PPGD and LPA attacks.

Union with Source
Source λ Clean Source Wasserstein ℓ∞ JPEG ℓ1 JPEG Elastic PPGD LPA

acc acc ϵ = 0.007 ϵ = 0.01 ϵ = 0.125 ϵ = 64 ϵ = 0.25 ϵ = 0.5 ϵ = 0.5
ℓ2 0 88.49 66.65 45.80 31.75 48.73 6.42 13.49 3.65 0.49
ℓ2 1 85.21 67.38 48.32 47.58 56.99 21.75 25.67 24.21 4.12
ℓ∞ 0 82.83 47.47 26.03 16.62 34.45 2.32 25.23 2.44 0.28
ℓ∞ 0.5 72.91 48.84 29.50 20.89 36.63 7.25 29.62 4.96 2.18

Table 8: Robust accuracy of ResNet-18 models on CIFAR-10 evaluated on additional adversaries
including Wasserstein adversaries (Wu et al., 2020b), JPEG compression adversaries and elastic
adversary (Kang et al., 2019), and AlexNet LPIPS perceptual adversaries (Laidlaw et al., 2021).
Perturbation size ϵ is specified for each threat model. Accuracies on each target adversary reported
are given with a union computed on the source.

E.8 Comparison to training with all attacks

In this section, we compare to the MAX adversarial training approach from Tramèr & Boneh (2019)
which trains directly on all target threat models of interest. Since MAX training uses information
about the target threat model for training while our approach does not, the union accuracies achieved
via MAX training should be viewed as an upper bound on performance. For models using MAX
training, we train for a total of 100 epochs and evaluate performance on the model saved at the final
epoch. We compare robust accuracies for MAX training to robust accuracies of models trained with
variation regularization from Table 1. For fair comparison, we report robust accuracies of models
trained with variation regularization measured through evaluating on the target threat model (instead
of the union of target with source threat model as in Table 1. We provide results in Table 9. We
note that in general, training with the union of all attacks achieves more balanced accuracies across
threat models. The only exception is with WRN-28-10 for which MAX training achieves lower union
accuracy and StAdv accuracy; however, this may be due to using only 100 epochs of training.

E.9 Combining variation regularization with TRADES

In the main paper, we provided experiments with variation regularization combined with PGD
adversarial training (Madry et al., 2018) on ℓ∞ and ℓ2 source threat models. We note that variation
regularization is not exclusive to PGD adversarial training and can be applied in conjunction with other
adversarial training based techniques including TRADES (Zhang et al., 2019). We present results
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Dataset Architecture Source λ Clean ℓ∞ ℓ2 StAdv Re- Union
acc ϵ = 12

255
ϵ = 1 color all

CIFAR-10 ResNet-18 MAX 0 77.81 41.76 36.74 38.90 63.99 27.23
CIFAR-10 ResNet-18 ℓ2 1 85.21 13.39 40.79 32.15 60.07 11.27
CIFAR-10 ResNet-18 ℓ∞ 0.5 72.91 33.66 24.34 16.09 47.38 10.58
CIFAR-10 WRN-28-10 MAX 0 80.98 29.78 38.25 9.83 57.60 4.98
CIFAR-10 WRN-28-10 ℓ∞ 0.7 72.73 35.08 22.35 23.15 49.01 13.26
CIFAR-10 VGG-16 MAX 0 67.26 29.00 41.48 42.98 59.11 26.12
CIFAR-10 VGG-16 ℓ∞ 0.1 77.80 28.38 32.08 11.96 62.24 5.38
ImageNette ResNet-18 MAX 0 69.32 38.57 64.36 57.04 59.34 37.25
ImageNette ResNet-18 ℓ2 1 85.22 9.50 80.43 16.25 44.99 5.83
ImageNette ResNet-18 ℓ∞ 0.1 78.01 35.54 72.94 51.75 64.15 31.03
CIFAR-100 ResNet-18 MAX 0 52.06 13.29 19.35 8.01 26.42 5.04
CIFAR-100 ResNet-18 ℓ2 0.75 51.53 11.46 25.64 4.17 18.98 2.26
CIFAR-100 ResNet-18 ℓ∞ 0.2 48.97 16.51 15.81 4.70 24.01 2.59

Table 9: Robust accuracy of various models trained at different strengths of VR applied on logits on
various threat models. Source of MAX represents the accuracies obtained by directly training on all
target threat models. The union all column reports the accuracy on the union across all listed threat
models.

for TRADES-VR with TRADES hyperparameter β = 6.0 in Table 10. Interestingly, we find that
compared to PGD adversarial training results in Table 1, TRADES generally has better performance
on larger ℓ∞ and ℓ2 threat models (on par with AT-VR with PGD). We find that across architectures
and datasets applying variation regularization over TRADES adversarial training generally improves
robustness on unforeseen ℓ∞ and StAdv threat models, but trades off clean accuracy, source accuracy,
and unforeseen ℓ2 target accuracy. Despite this trade-off, we find that TRADES-VR consistently
improves on the accuracy across the union of all threat models in comparison to standard TRADES.

Union with Source
Dataset Architecture Source λ Clean Source ℓ∞ ℓ2 StAdv Re- Union

acc acc ϵ = 12
255

ϵ = 1 color all
CIFAR-10 ResNet-18 ℓ2 0 86.79 68.99 13.13 43.58 1.89 68.85 1.00
CIFAR-10 ResNet-18 ℓ2 2 79.81 64.84 16.04 42.46 42.05 64.76 14.67
CIFAR-10 ResNet-18 ℓ∞ 0 82.67 49.15 31.00 28.04 5.32 49.15 3.64
CIFAR-10 ResNet-18 ℓ∞ 0.5 79.11 48.98 32.08 26.54 16.21 48.98 11.78
CIFAR-10 WRN-28-10 ℓ∞ 0 84.73 52.09 32.74 24.68 4.54 52.09 2.98
CIFAR-10 WRN-28-10 ℓ∞ 1 75.99 50.09 33.96 21.76 25.09 50.09 15.08
ImageNette ResNet-18 ℓ2 0 88.66 85.55 0.08 80.71 1.94 72.74 0.03
ImageNette ResNet-18 ℓ2 2 83.80 82.27 14.37 80.10 27.08 75.03 11.75
ImageNette ResNet-18 ℓ∞ 0 78.32 50.62 35.54 50.62 44.03 50.62 33.32
ImageNette ResNet-18 ℓ∞ 0.2 73.83 48.79 36.15 48.79 44.97 48.79 34.62
CIFAR-100 ResNet-18 ℓ2 0 58.71 37.79 6.73 21.40 2.72 36.74 1.21
CIFAR-100 ResNet-18 ℓ2 1 53.44 37.71 10.09 24.55 4.05 36.59 2.40
CIFAR-100 ResNet-18 ℓ∞ 0 53.80 23.02 13.77 15.21 4.94 22.99 3.33
CIFAR-100 ResNet-18 ℓ∞ 0.5 51.16 24.39 15.93 14.33 4.87 24.34 3.40

Table 10: Robust accuracy of various models trained with TRADES-VR at different strengths of
variation regularization applied on logits on various threat models. Models are trained with either
source threat model ℓ∞ with radius 8

255 or ℓ2 with radius 0.5. The “source acc" column reports the
accuracy on the source attack. For each individual threat model, we evaluate accuracy on a union
with the source threat model. The union all column reports the accuracy obtained on the union across
all listed threat models.

E.10 Combining variation regularization with other sources

To demonstrate that variation regularization can be applied with source threat models outside of ℓp
balls, we evaluate the performance of AT-VR with other sources including StAdv and Recolor.

E.10.1 Computing variation with StAdv and Recolor sources

In StAdv (Xiao et al., 2018), adversarial examples are generated by optimizing for a per pixel flow
field f , where fi corresponds to the displacement vector of the ith pixel of the image. This flow field
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Union with Source
Source λ Clean Source ℓ∞ ℓ2 StAdv Re- Union

acc acc ϵ = 4
255

ϵ = 0.5 color all
StAdv 0 86.94 54.04 3.57 5.63 12.62 3.27 0.96
StAdv 0.5 83.88 60.11 3.29 5.66 24.64 8.60 2.39
StAdv 1 81.24 62.78 5.83 9.97 31.09 13.10 4.44

Recolor 0 94.88 39.11 5.38 3.07 0.00 21.75 0.00
Recolor 0.5 94.18 71.36 25.39 19.22 0.06 64.39 0.03
Recolor 1 94.13 72.92 26.81 20.03 0.20 66.02 0.17

Table 11: Robust accuracy of ResNet-18 models trained using AT-VR with StAdv and Recolor source
threat models with variation regularization applied on logits on various threat models. During training
we use 0.03 and 0.04 as the perturbation bounds for StAdv and Recolor respectively. During testing
we use 0.05 for StAdv and 0.06 for Recolor. The “source acc" column reports the accuracy on the
source attack. For each individual threat model, we evaluate accuracy on a union with the source
threat model. The union all column reports the accuracy obtained on the union across all listed threat
models.

is obtained by solving:
argmin

f
ℓadv(x, f) + τℓflow(f) (3)

where ℓadv is the CW objective (Carlini & Wagner, 2017) and ℓflow is a regularization term minimizing
spatial transformation distance to ensure that the perturbation is imperceptible. τ controls the strength
of this regularization.

We adapt this objective to compute variation, replacing ℓadv with the variation objective. Rather than
solving for a single flow field, we solve

V(h,StAdvτ ) = max
f1,f2
||h(f1(x))− h(f2(x))||2 − τ(ℓflow(f1) + ℓflow(f2))

Here f1(x) and f2(x) denote the perturbed input after applying f1 and f2 respectively and h denotes
our feature extractor. The second term ensures that both f1 and f2 have small spatial transformation
distance. We solve the optimization problem using PGD.

In Recolor attacks (Laidlaw & Feizi, 2019), the objective function takes the same form as Equation 3
where f is now a color perturbation function. We optimize for adversarial examples for Recolor in
the same way as for StAdv, but incorporate an additional clipping step to ensure that perturbations of
each color are within the specified bounds.

E.10.2 Experimental setup details for StAdv and Recolor sources

We train ResNet-18 models using AT-VR with StAdv and Recolor sources. For these models, we
train with source perturbation bound of 0.03 for StAdv and 0.04 for Recolor attacks. We use 10
iterations for both StAdv and Recolor during training. We train for a maximum of 100 epochs and
evaluate on the model saved at epoch achieving the highest source accuracy. For evaluation, we use
StAdv perturbation bound of 0.05 and Recolor perturbation bound of 0.06 and use 100 iterations to
generate adversarial examples for both attacks. Additionally, we evaluate on ℓ∞ and ℓ2 attacks with
radius 4

255 and 0.5 respectively using AutoAttack.

E.10.3 Experimental Results for StAdv and Recolor sources

We report results in Table 11. Similar to trends observed with ℓp sources, we find that using variation
regularization improves unforeseen robustness when using StAdv and Recolor sources. For example,
with StAdv source, using variation regularization with λ = 1 increases robust accuracy on unforeseen
ℓ2 attacks from 3.57% to 5.83%, and with Recolor source, using variation regularization with λ = 1
increases robust accuracy on unforeseen ℓ2 attacks from 3.07% to 20.03%. The largest increase is for
attacks of the same perturbation type but larger radius; for example, for StAdv source (ϵ = 0.03) on
unforeseen StAdv target (ϵ = 0.05), the robust accuracy increases from 12.62% to 31.09%. Similarily,
for Recolor source (ϵ = 0.04) on unforeseen Recolor target (ϵ = 0.06), the robust accuracy increases
from 21.75% to 66.02%. Interestingly, we also find that using variation regularization with StAdv and
Recolor sources leads to a significant increase in source accuracy as well. For StAdv, source accuracy
increases from 54.04% without variation regularization to 62.78% with variation regularization at
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λ = 1. For Recolor source, this increase is even larger; source accuracy increases from 39.11%
without variation regularization to 72.92% with variation regularization.

Further inspecting the source accuracy of the models trained Recolor source, we find that without
variation regularization, the model overfits to the 10-iteration attack used during training. When
evaluated with 10-iteration Recolor, the standard adversarial training (λ = 0) model achieves 86.62%
robust accuracy, but when 100 iterations of the attack is used during testing, the model’s accuracy
drops to 39.11%. Interestingly, variation regularization helps prevent adversarial training from
overfitting to the 10-iteration attack, causing the resulting source accuracy on the models with
variation regularization to be significantly higher.

E.11 Computational complexity of AT-VR

One limitation of AT-VR is that it can be 3x as expensive compared to adversarial training. This
is because the computation for variation also requires gradient based optimization. We note that
this computational expense occurs when we use the same number of iterations of PGD for variation
computation as standard adversarial training. In this section, we study whether we can use fewer
iterations of PGD for generating the adversarial example and computing variation. We present our
results for training ResNet-18 on CIFAR-10 with source threat model ℓ2, ϵ = 0.5 using AT-VR
and standard AT (λ = 0) in Table 12. We find that even with a single iteration, AT-VR is able to
significantly improve union accuracy over standard AT. For ℓ∞ adversarial training, we find that a

Union with Source
λ PGD Clean Source ℓ∞ ℓ2 StAdv Recolor Union all

iters acc acc (ϵ = 12
255 ) (ϵ = 1)

0 1 89.00 66.53 5.54 31.55 0.26 33.43 0.05
0 3 88.72 67.58 7.07 35.47 0.55 36.41 0.18
0 10 88.49 66.65 6.44 34.72 0.76 66.52 0.33
1 1 86.88 67.00 11.52 37.24 38.34 64.44 10.09

Table 12: Robust accuracy of ResNet-18 models trained on CIFAR-10 using AT-VR with a single
PGD iteration (λ = 1, PGD iters=1) in comparison to standard adversarial training (λ = 0) with
various numbers of PGD iterations.

single iteration of training does not work well due to the poor performance of adversarial training
with FGSM.

F Additional Results for Feature Level AT-VR

In the main paper, we provide results for AT-VR with variation regularization applied at the layer of
the logits. In terms of our theory, this would correspond to considering the identity function to be the
top level classifier. In this section, we consider the top level classifier to be all fully connected layers
at the end of the NN architectures used and evaluate variation regularization applied at the input into
the fully connected classifier.

F.1 Expansion function for variation on features

In Figure 12, we plot the minimum linear expansion function computed on 315 adversarially trained
feature extractors (analogous to Figure 2 in the main text). Additionally, we plot the minimum linear
expansion function on 300 randomly initialized feature extractors. For random initialization, we use
Xavier normal initialization (Glorot & Bengio, 2010) for weights and standard normal initialization
for biases. We find that we can find a linear expansion function with small slope across ℓ∞ and ℓ2
source and target pairs. In comparison to expansion function for variation computed at the logits, we
find that the slope of the expansion function s found is similar.

F.2 Additional results with ℓp target threat models

We present the unforeseen generalization gap for ResNet-18 models on CIFAR-10 trained with source
ℓ∞ threat model with radius 8

255 at various strengths of variation regularization and the corresponding

33



A) B)

Figure 12: Plots of minimum linear expansion function s shown in blue computed on A) 315
adversarially trained feature extractors and B) 300 randomly initialized feature extractors. Each grey
point represents the variation measured on the source and target attack. The two columns represent
the source adversary (ℓ∞ and ℓ2 respectively). The two rows represent the target adversary (ℓ∞ and
ℓ2 respectively).

robust accuracy of the model trained with standard AT (λ = 0) and highest variation regularization
(λ = 2) in Figure 13. We find at large values of unforeseen ϵ, the model trained with variation
regularization achieve both smaller unforeseen generalization gap and higher robust accuracy.
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Figure 13: Top row: Unforeseen generalization gap of on the CIFAR-10 test set for ResNet-18
models trained using AT-VR at varied regularization strength λ measured on adversarial examples of
generated by target ℓp, p = {∞, 2, 1} perturbations with radius ϵ. The generalization gap is measured
with respect to cross entropy loss. All models are trained with source ℓ∞ perturbations of radius 8

255 .
Bottom row: Corresponding robust accuracy of λ = 0 and λ = 2 models displayed in top row.

We repeat experiments with ResNet-18 models on CIFAR-10 trained with source ℓ2 threat model
with radius of 0.5. We report the measured unforeseen generalization gap to ℓ∞, ℓ2, and ℓ1 target
threat models at different radii (measured via cross entropy loss on adversarial examples generated
with APGD) along with corresponding robust accuracy of the no regularization and maximum
regularization strength models in Figure 14. We find that trends observed when the source threat
model was ℓ∞ are consistent with the trends for ℓ2 source threat model: increasing the strength of
variation regularization decreases the size of the unforeseen generalization gap and increases robust
accuracy across various ℓp target threat models.
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Figure 14: Top row: Unforeseen generalization gap of on the CIFAR-10 test set for ResNet-18
models trained using AT-VR at varied regularization strength λ measured on adversarial examples of
generated by target ℓp, p = {∞, 2, 1} perturbations with radius ϵ. The generalization gap is measured
with respect to cross entropy loss. All models are trained with source ℓ2 perturbations of radius 0.5.
Bottom row: Corresponding robust accuracy of λ = 0 and λ = 5 models displayed in top row.

F.3 Robust accuracies with feature level AT-VR

We repeat experiments corresponding to Table 1 in the main paper for models trained with feature
level AT-VR in Table 13. We observe similar trends with variation regularization applied at the
features instead of logits: variation regularization improves unforeseen accuracy and generally
improves source accuracy, but trades off performance on clean images.
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Union with Source
Dataset Architecture Source λ Clean Source ℓ∞ ℓ2 StAdv Recolor Union all

acc acc (ϵ = 12
255

) (ϵ = 1)
CIFAR-10 ResNet-18 ℓ2 0 88.49 66.65 6.44 34.72 0.76 66.52 0.33
CIFAR-10 ResNet-18 ℓ2 2.0 86.87 68.24 12.66 41.05 10.01 68.06 6.16
CIFAR-10 ResNet-18 ℓ2 5.0 84.75 66.93 13.29 40.71 29.20 66.84 10.83
CIFAR-10 ResNet-18 ℓ∞ 0 82.83 47.47 28.09 24.94 4.38 47.47 2.48
CIFAR-10 ResNet-18 ℓ∞ 1.0 79.72 49.43 32.57 26.64 11.38 49.43 7.09
CIFAR-10 ResNet-18 ℓ∞ 2.0 75.58 48.35 32.19 26.89 16.56 48.35 11.44
CIFAR-10 WRN-28-10 ℓ∞ 0 85.93 49.86 28.73 20.89 2.28 49.86 1.10
CIFAR-10 WRN-28-10 ℓ∞ 0.5 85.86 50.13 30.04 21.62 5.36 50.13 4.14
CIFAR-10 WRN-28-10 ℓ∞ 1 84.27 51.01 31.47 22.86 9.71 51.01 7.59
CIFAR-10 VGG-16 ℓ∞ 0 79.67 44.36 26.14 30.82 7.31 44.36 4.35
CIFAR-10 VGG-16 ℓ∞ 0.01 76.38 44.87 27.35 32.59 9.14 44.87 5.69
CIFAR-10 VGG-16 ℓ∞ 0.05 72.27 42.14 26.80 32.41 12.18 42.14 8.02
ImageNette ResNet-18 ℓ2 0 88.94 84.99 0.00 79.08 1.27 72.15 0.00
ImageNette ResNet-18 ℓ2 1.0 86.29 83.62 2.55 80.20 8.66 73.25 1.45
ImageNette ResNet-18 ℓ2 5.0 83.06 80.89 10.11 78.60 22.98 74.22 7.75
ImageNette ResNet-18 ℓ∞ 0 80.56 49.63 32.38 49.63 34.27 49.63 25.68
ImageNette ResNet-18 ℓ∞ 0.05 79.06 50.47 34.06 50.47 37.40 50.47 28.89
ImageNette ResNet-18 ℓ∞ 0.1 78.09 50.01 34.11 50.01 38.32 50.01 29.30
CIFAR-100 ResNet-18 ℓ2 0 60.92 36.01 3.98 16.90 1.80 34.87 0.40
CIFAR-100 ResNet-18 ℓ2 1 56.37 38.66 8.65 23.41 4.81 37.52 2.10
CIFAR-100 ResNet-18 ℓ2 2 52.73 36.15 8.76 22.33 7.46 35.28 3.14
CIFAR-100 ResNet-18 ℓ∞ 0 54.94 22.74 12.61 14.40 3.99 22.71 2.42
CIFAR-100 ResNet-18 ℓ∞ 0.1 54.21 23.52 13.61 15.10 4.10 23.48 2.54
CIFAR-100 ResNet-18 ℓ∞ 0.5 49.29 24.66 16.02 15.62 5.74 24.58 3.70
Table 13: Robust accuracy of various models trained at different strengths of variation regularization
on various threat models. Models are trained with either source threat model ℓ∞ with radius 8

255
or ℓ2 with radius 0.5. The “source acc" column reports the accuracy on the source attack. For each
individual threat model, we evaluate accuracy on a union with the source threat model. The union all
column reports the accuracy obtained on the union across all listed threat models.
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