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Abstract

Existing defenses against adversarial examples such as adversarial training typi-
cally assume that the adversary will conform to a specific or known threat model,
such as ℓp perturbations within a fixed budget. In this paper, we focus on the
scenario where there is a mismatch in the threat model assumed by the defense
during training, and the actual capabilities of the adversary at test time. We ask the
question: if the learner trains against a specific “source" threat model, when can
we expect robustness to generalize to a stronger unknown “target" threat model
during test-time? Our key contribution is to formally define the problem of learning
and generalization with an unforeseen adversary, which helps us reason about the
increase in adversarial risk from the conventional perspective of a known adversary.
Applying our framework, we derive a generalization bound which relates the gen-
eralization gap between source and target threat models to variation of the feature
extractor, which measures the expected maximum difference between extracted fea-
tures across a given threat model. Based on our generalization bound, we propose
variation regularization (VR) which reduces variation of the feature extractor across
the source threat model during training. We empirically demonstrate that using
VR can lead to improved generalization to unforeseen attacks during test-time, and
combining VR with perceptual adversarial training (Laidlaw et al., 2021) achieves
state-of-the-art robustness on unforeseen attacks. Our code is publicly available at
https://github.com/inspire-group/variation-regularization.

1 Introduction

Neural networks have impressive performance on a variety of datasets (LeCun et al., 1998; He
et al., 2015; Krizhevsky et al., 2017; Everingham et al., 2010) but can be fooled by imperceptible
perturbations known as adversarial examples (Szegedy et al., 2014). The conventional paradigm to
mitigate this threat often assumes that the adversary generates these examples using some known
threat model, primarily ℓp balls of specific radius (Cohen et al., 2019; Zhang et al., 2020b; Madry
et al., 2018), and evaluates the performance of defenses based on this assumption. This assumption,
however, is unrealistic in practice. In general, the learner does not know exactly what perturbations
the adversary will apply during test-time.

To bridge the gap between the setting of robustness studied in current adversarial ML research and
robustness in practice, we study the problem of learning with an unforeseen adversary. In this
problem, the learner has access to adversarial examples from a proxy “source" threat model but wants
to be robust against a more difficult “target" threat model used by the adversary during test-time. We
ask the following questions:

1. When can we expect robustness on the source threat model to generalize to the true unknown
target threat model used by the adversary?

2. How can we design a learning algorithm that reduces the drop in robustness from source
threat model to target threat model?
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To address the first question, we introduce unforeseen adversarial generalizability which provides a
framework for reasoning about what types of learning algorithms produce models that generalize
well to unforeseen attacks. Based on this framework, we derive a generalization bound which relates
the difference in adversarial risk across source and target threat models to a quantity we call variation:
the expected maximum difference between extracted features across a given threat model.

Our bound addresses the second question; it suggests that learning algorithms that bias towards
models with small variation across the source threat model exhibit smaller drop in robustness to
particular unforeseen attacks. Thus, we propose variation regularization (VR) to improve robustness
to unforeseen attacks. We then empirically demonstrate that when combined with adversarial training,
VR improves generalization to unforeseen attacks during test-time across multiple datasets and
architectures. Our contributions are as follows:

We formally define the problem of learning with an unforeseen adversary with respect to
adversarial risk. We make the case that one way of learning with an unforeseen adversary is to
ensure that the gap between the empirical adversarial risk measured on the source adversary and the
expected adversarial risk on the target adversary remains small. To this end, we define unforeseen
adversarial generalizability which provides a framework for understanding under what conditions
we would expect small generalization gap.

Under our framework for generalizability, we derive a generalization bound for generalization
across threat models. Our bound relates the generalization gap to a quantity we define as variation,
the expected maximum difference between extracted features across a given threat model. We
demonstrate that under certain conditions, we can decrease this upper bound while only using
information about the source threat model.

Using our bound, we propose a regularization term which we call variation regularization (VR).
We incorporate this regularization term into adversarial training and perceptual adversarial training
(Laidlaw et al., 2021), leading to learning algorithm that we call AT-VR and PAT-VR respectively. We
find that VR can lead to improved robustness on unforeseen attacks across datasets such as CIFAR-10,
CIFAR-100, and ImageNette over adversarial training without VR. Additionally, PAT-VR achieves
state-of-the-art (SOTA) robust accuracy on LPIPS-based attacks, improving over PAT by 21% and
SOTA robust accuracy on a union of ℓ∞, ℓ2, spatially transformed (Xiao et al., 2018), and recolor
attacks (Laidlaw & Feizi, 2019).

2 Related Works

Adversarial examples and defenses Previous studies have shown that neural networks can be fooled
by perturbations known as adversarial examples, which are imperceptible to humans but cause NNs
to predict incorrectly with high confidence (Szegedy et al., 2014). These adversarial examples can be
generated by various threat models including ℓp perturbations, spatial transformations (Xiao et al.,
2018), recoloring (Laidlaw & Feizi, 2019), and broader threat models such as fog and snow distortions
(Kang et al., 2019). While many defenses have been proposed, most defenses provide guarantees for
specific threat models (Cohen et al., 2019; Zhang et al., 2020b; Croce & Hein, 2020a; Yang et al.,
2020; Zhang et al., 2020a) or use knowledge of the threat model during training (Madry et al., 2018;
Zhang et al., 2019; Wu et al., 2020a; Tramèr & Boneh, 2019; Maini et al., 2020). Adversarial training
is a popular defense framework in which a model is trained using adversarial examples generated
by a particular threat model, such as ℓ2 or ℓ∞ attacks (Madry et al., 2018; Zhang et al., 2019; Wu
et al., 2020a). Prior works have also extended adversarial training to defend against unions of attack
types such as unions of ℓp-balls (Maini et al., 2020; Tramèr & Boneh, 2019) and against stronger
adversaries more aligned to human perception (Laidlaw et al., 2021).

Bounds for Learning with Adversarial Examples An interesting body of work studies generaliza-
tion bounds for specific attacks Cullina et al. (2018); Attias et al. (2019); Montasser et al. (2019);
Raghunathan et al. (2019); Chen et al. (2020); Diakonikolas et al. (2019); Yu et al. (2021); Diochnos
et al. (2019). In particular, they study generalization in the setting where the learning algorithm
minimizes the adversarial risk on the training set and hopes to generalize to same adversary during
test-time. Montasser et al. (2021) provide bounds for the problem of generalizing to an unknown
adversary with oracle access to that adversary during training. Our work differs since we study
generalization and provide bounds under the setting in the learner only has access to samples from a
weaker adversary than present at test-time.
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“Unforeseen" attacks and defenses While several prior works have studied “unforeseen" attacks
(Kang et al., 2019; Stutz et al., 2020; Laidlaw et al., 2021; Jin & Rinard, 2020), these works are
empirical works, and the term “unforeseen attack" has not been formally defined. Kang et al. (2019)
first used the term “unforeseen attack" when proposing a set of adversarial threat models including
Snow, Fog, Gabor, and JPEG to evaluate how well defenses can generalize from ℓ∞ and ℓ2 to broader
threat models. Stutz et al. (2020) and Chen et al. (2022) propose adversarial training based techniques
with a mechanism for abstaining on certain inputs to improve generalization from training on ℓ∞ to
stronger attacks including ℓp attacks of larger norm. Other defenses against “unforeseen attacks"
consider them to be attacks that are not used during training, but not necessarily stronger than those
used in training. For instance, Laidlaw et al. (2021) propose using LPIPS (Zhang et al., 2018), a
perceptually aligned image distance metric, to generate adversarial examples during training. They
demonstrate that by training using adversarial examples using this distance metric, they can achieve
robustness against a variety of adversarial threat models including ℓ∞, ℓ2, recoloring, and spatial
transformation. However, the LPIPS attack is the strongest out of all threat models tested and contains
a large portion of those threat models. To resolve these differences in interpretation of “unforeseen
attack", we provide a formal definition of learning with an unforeseen adversary.

Domain Generalization A problem related to generalizing to unforeseen attacks is the problem
of domain generalization under covariate shift. In the domain generalization problem, the learner
has access to multiple training distributions and has the goal of generalizing to an unknown test
distribution. (Albuquerque et al., 2019) demonstrate that when the test distribution lies within a
convex hull of the training distributions, learning is feasible. (Ye et al., 2021) propose a theoretical
framework for domain generalization in which they derive a generalization bound in terms of the
variation of features across training distributions. We focus on the problem of generalizing to
unforeseen adversaries and demonstrate that a generalization bound in terms of variation of features
across the training threat model exists.

3 Adversarial Learning with an Unforeseen Adversary

Notations We use D = (X ,Y) to denote the data distribution and Dm to denote a dataset formed by
m iid samples from D. We use X to denote the support of X . To match learning theory literature,
we will refer to the defense as a learning algorithm A, which takes the adversarial threat model and
training data as inputs and outputs the learned classifier (f̂ = A(S,Dm) where S is the threat model).
We use F to denote the function class thatA is applied over andA(S,Dm) ∈ F . F = G ◦H denotes
a function class where ∀f ∈ F , f = g ◦ h where g ∈ G, h ∈ H.

In this section, we will define what constitutes an unforeseen attack and the learner’s goal in the
presence of unforeseen attacks. We then introduce unforeseen adversarial generalizability which
provides a framework for reasoning about what types of learning algorithms give models that
generalize well to unforeseen adversaries.

3.1 Formulating Learning with an Unforeseen Adversary

To formulate adversarial learning with an unforeseen adversary, we begin by defining threat model
and adversarial risk. We will then use these definitions to explain the goal of the learner in the
presence of an unforeseen adversary.
Definition 3.1 (Threat Model). The threat model is defined by a neighborhood function N(·) : X →
{0, 1}X . For any input x ∈ X , N(x) contains x.
Definition 3.2 (Expected and Empirical Adversarial Risk). We define expected adversarial risk for a
model f with respect to a threat model N as LN (f) = E(x,y)∼D maxx′∈N(x) ℓ(f(x

′), y) where ℓ is
a loss function. In practice, we generally do not have access to the true data distribution D, but have
m iid samples {(xi, yi)}mi=1. We can approximate LN (f) with the empirical adversarial risk defined
as L̂N (f) = 1

m

∑m
i=1 maxx′

i∈N(xi) ℓ(f(x
′
i), yi)

In adversarial learning, the learner’s goal is to find a function f ∈ F that minimizes LT where T
threat model used by the adversary. We call T the target threat model. We call the threat model that
the learner has access to during training the source threat model. We divide the adversarial learning
problem into 2 cases, learning with a foreseen adversary and learning with an unforeseen adversary.
To distinguish between these 2 cases, we first define the subset operation for threat models.
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Definition 3.3 (Threat Model Subset and Superset). We call a threat model S a subset of another
threat model T (and T a superset of S) if S(x) ⊆ T (x) almost everywhere in X . We denote this as
S ⊆ T (or T ⊇ S). If S(x) ⊂ T (x) almost everywhere in X , then we call S a strict subset of T (and
T a strict superset of S) and denote this as S ⊂ T (or T ⊃ S).

Learning with a Foreseen Adversary In learning with a foreseen adversary, the target threat model
T is a subset of the source threat model S (T ⊆ S). The learner has access to S and a dataset Dm of
m iid samples from the data distribution D. The learner would like to use a learning algorithm A for
which f = A(S,Dm) achieves LT (f) < ϵ for some small ϵ > 0. The learner cannot compute LT (f),
but can compute L̂S(f) ≥ L̂T (f). This setting of learning with a foreseen adversary represents when
the adversary is weaker than assumed by the learner and since LS(f) ≥ LT (f), which means that as
long as the learner can achieve LS(f) < ϵ, then they are guaranteed that LT (f) < ϵ.

Learning with an Unforeseen Adversary In learning with an unforeseen adversary, the target threat
model T is a strict superset of the source threat model S (T ⊃ S). In this setting, we call T an
unforeseen adversary. The learner has access to S and a dataset Dm of m iid samples from the
data distribution D. The learner would like to use a learning algorithm A for which f = A(S,Dm)
achieves LT (f) < ϵ for some small ϵ > 0. This setting of learning with an unforeseen adversary
represents when the adversary is strictly stronger than assumed by the learner. Compared to learning
with a foreseen adversary, this problem is more difficult since LS(f) may not be reflective of LT (f).
By construction LT (f) ≥ LS(f), but it is unclear how much larger LT (f) is. When can we guarantee
that LT (f) is close to LS(f)? We will address this question in the Section 3.2 when we define threat
model generalizability and Section 4 when we provide a bound for LT (f)− LS(f).

3.2 Formulating Generalizability with an Unforeseen Adversary

How should we define A that performs well against an unforeseen adversary? One way is to have
f = A(S,Dm) achieves small L̂S(f) (which can be measured by A) while ensuring that L̂S(f) is
close to LT (f). This leads us to the following definition for generalization gap.
Definition 3.4 (Generalization Gap). For threat models S and T , the generalization gap is defined as
LT (f)− L̂S(f). We observe that

LT (f)− L̂S(f) = LT (f)− LS(f)︸ ︷︷ ︸
threat model generalization gap

+ LS(f)− L̂S(f)︸ ︷︷ ︸
sample generalization gap

We note that in the special case of learning with a foreseen adversary, LT (f) − LS(f) ≤ 0, so
LT (f)− L̂S(f) ≤ LS(f)− L̂S(f) and bounding the generalization gap be achieved by bounding the
sample generalization gap, which has been studied by prior works (Attias et al., 2019; Raghunathan
et al., 2019; Chen et al., 2020; Yu et al., 2021).

We would like to ensure that the generalization gap is small with high probability. We can achieve
this by ensuring that both the sample generalization gap and threat model generalization gap are
small. This leads us to define robust sample generalizability and threat model generalizability which
describe conditions necessary for us to expect the respective generalization gaps to be small. We then
combine these generalizability definitions and define unforeseen adversarial generalizability which
describes the conditions necessary for a learning algorithm to be able to generalize to unforeseen
attacks.
Definition 3.5 (Robust Sample Generalizability). A learning algorithm A robustly (ϵ(·), δ)-sample
generalizes across function class F on threat model S where ϵ : N→ R+, if for any distribution D
when running A on m iid samples Dm from D, we have

P[LS(A(S,Dm)) ≤ L̂S(A(S,Dm)) + ϵ(m)] ≥ 1− δ

Definition 3.5 implies that any learning algorithm that (ϵ(·), δ)-robustly sample generalizes across
our chosen hypothesis class F with ϵ(m) << 1, δ << 1, we can achieve small sample generalization
gap with high probability.

We now define generalizability for the threat model generalization gap.
Definition 3.6 (Threat Model Generalizability). Let S be the source threat model used by the
learner. A learning algorithm A (ϵ(·, ·), δ)-robustly generalizes to target threat model T where
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ϵ : T × N → R+ ∪ {∞} and δ ∈ [0, 1] if for any data distribution D and any training dataset Dm

with m iid samples from D, we have:
P[LT (A(S,Dm)) ≤ LS(A(S,Dm)) + ϵ(T,m)] ≥ 1− δ

We note that the Definition 3.6 considers generalization to a given T , which does not fully account for
the unknown nature of T , since from the learner’s perspective, the learner does not know which threat
model it wants LT to be small for. We address this in the following definition where we combine
Definitions 3.5 and 3.6 and define generalizability to unforeseen adversarial attacks.
Definition 3.7 (Unforeseen Adversarial Generalizability). A learning algorithm A on function
class F with source adversary S, (ϵ(·, ·), δ)-robustly generalizes to unforeseen threat models where
ϵ : N ×N→ R+∪{∞} if there exists ϵ1, ϵ2 with ϵ1(m)+ ϵ2(T,m) ≤ ϵ(T,m) such thatA robustly
(ϵ1, δ)-sample generalizes and (ϵ2, δ)-robustly generalizes to any threat model T .

We remark that in Definition 3.7, ϵ is a function of T , which accounts for differences in difficulty
of possible target threat models. Ideally, we would like ϵ(T,m) at sufficiently large m to be small
across a set of reasonable threat models T (ie. imperceptible perturbations) and expect it to be large
(and possibly infinite) for difficult or unreasonable threat models (ie. unbounded perturbations).

4 A Generalization Bound for Unforeseen Attacks

While prior works have proposed bounds on sample generalization gap (Attias et al., 2019; Raghu-
nathan et al., 2019; Chen et al., 2020; Yu et al., 2021), to the best of our knowledge, prior works
have not provided bounds on threat model generalization gap. In this section, we demonstrate that
we can bound the threat model generalization gap in terms of a quantity we define as variation, the
expected maximum difference across features learned by the model across the target threat model. We
then show that with the existence of an expansion function, which relates source variation to target
variation, any learning algorithm which with high probability outputs a model with small source
variation can achieve small threat model generalization gap.

4.1 Relating generalization gap to variation

We now consider function classes of the form F = G ◦ H where ∀g ∈ G, g : Rd → RK is a top level
classifier into K classes and ∀h ∈ H, h : X → Rd is a d-dimensional feature extractor. Since the
top classifier g is fixed for a function f , if h(x̂)i, i ∈ [1...d] fluctuates a lot across the threat model
x̂ ∈ T (x), then the adversary can manipulate this feature to cause misclassification. The relation
between features and robustness has been analyzed by prior works such as (Ilyas et al., 2019; Tsipras
et al., 2019; Tramèr & Boneh, 2019). We now demonstrate that we can bound the threat model
generalization gap in terms of a measure of the fluctuation of h across T , which we call variation.
Definition 4.1 (Variation). The variation of a feature vector h(·) : X → Rd across a threat model N
is given by

V(h,N) = E(x,y)∼D max
x1,x2∈N(x)

||h(x1)− h(x2)||2
Theorem 4.2 (Variation-Based Threat Model Generalization Bound). Let S denote the source threat
model and D denote the data distribution. Let F = G ◦ H where G is a class of Lipschitz classifiers
with Lipschitz constant upper bounded by σG . Let the loss function be ρ-Lipschitz. Consider a
learning algorithm A over F and denote f = A(S,Dm) = g ◦ h. If with probability 1− δ over the
randomness of Dm, V(h, T ) ≤ ϵ(T,m) where ϵ : T × N → R+ ∪ {∞}, then A (ρσGϵ(T,m), δ)-
robustly generalizes from S to T .

Theorem 4.2 shows we can bound the threat model generalization gap between any source S and
unforeseen adversary T in terms of variation across T . With regards to Definition 3.6, Theorem
4.2 suggests that any learning algorithm over F that with high probability outputs models with low
variation on the target threat model can generalize well to that target.

4.2 Relating source and target variation

Since the learning algorithmA cannot use information from T , it is unclear how to define suchA that
achieves small V(h, T ). We address this problem by introducing the notion of an expansion function,
which relates the source variation (which can be computed by the learner) to target variation.
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Definition 4.3 (Expansion Function for Variation (Ye et al., 2021)). A function s : R+ ∪ {0} →
R+ ∪ {0,+∞} is an expansion function relating variation across source threat model S to target
threat model T if the following properties hold:

1. s(·) is monotonically increasing and s(x) ≥ x, ∀x ≥ 0

2. limx→0+ s(x) = s(0) = 0

3. For all h that can be modeled by function class F , s(V(h, S)) ≥ V(h, T )

When an expansion function for variation from S to T exists, then we can bound the threat model
generalization gap in terms of variation on S. This follows from Theorem 4.2 and Definition 4.3.
Corollary 4.4 (Source Variation-Based Threat Model Generalization Bound). Let S denote the
source threat model and D denote the data distribution. Let F = G ◦ H where G is a class of
Lipschitz classifiers with Lipschitz constant upper bounded by σG . Let the loss function be ρ-Lipschitz.
Let T be any unforeseen threat model for which an expansion function s from S to T exists. Consider
a learning algorithm A over F and denote f = A(S,Dm) = g ◦ h. If with probability 1 − δ
over the randomness of Dm, s(V(h, S)) ≤ ϵ(T,m) where ϵ : T × N → R+ ∪ {∞}, then A
(ρσGϵ(T,m), δ)-robustly generalizes from S to T .

Corollary 4.4 allows us to relate generalization across threat models of a model f = g◦h to s(V(h, S))
instead of V(h, T ). While this expression is still dependent on the target threat model T (since s is
dependent on T ), we can reduce s(V(h, S)) without knowledge of T due to the monotonicity of the
expansion function. Thus, provided that an expansion function exists, we can use techniques such as
regularization in order to ensure that our learning algorithm actively chooses models with low source
variation. This result leads to the question: when does the expansion function exist?

4.3 When does the expansion function exist?

We now demonstrate a few cases in which the expansion function exists or does not exist. We begin
by providing basic examples of source threat models S and target threat models T without constraints
on function class.
Proposition 4.5. When S = T , an expansion function s exists and is given by s(x) = x.
Proposition 4.6. Let S = {x}, and T be a threat model such that S ⊂ T . Then, for all feature
extractors h, we have that V (h, S) = 0 while V (h, T ) can be greater than 0. In this case, no
expansion function exists such that s(V (h, S)) ≥ V (h, T ).

While we did not consider a constrained function class in the previous two settings, the choice of
function class can also impact the existence of an expansion function. For instance, in the setting
of Proposition 4.6, if we constrain F to only use feature extractors with a constant output, then the
expansion function s(x) = x is valid. We now consider the case where our function class F uses
linear feature extractors and derive expansion functions for ℓp adversaries.
Theorem 4.7 (Linear feature extractors with ℓp threat model (p ∈ N∪+∞)). Let inputs x ∈ Rn and
corresponding label y ∈ [1...K]. Consider S(x) = {x̂| ||x̂−x||p ≤ ϵ1} and U(x) = {x̂| ||x̂−x||q ≤
ϵ2} with p, q ∈ N+, p, q > 0. Define target threat model T (x) = S(x) ∪ U(x). Consider a linear
feature extractor with bounded condition number: h ∈ {Wx+ b|W ∈ Rd×n, b ∈ Rd, σmax(W )

σmin(W ) ≤
B <∞}. Then, an expansion function exists and is linear.

Theorem 4.7 demonstrates that in the case of a linear feature extractor a linear expansion function
exists for any data distribution from a source ℓp adversary to a union of ℓp adversaries. This result
suggests that with a function class using linear feature extractors, we can improve generalization to
ℓp balls with larger radii by using a learning algorithm that biases towards models with small V(h, S).
We demonstrate this in Appendix D where we experiment with linear models on Gaussian data. We
also provide visualizations of expansion function for a nonlinear model (ResNet-18) on CIFAR-10 in
Section 5.6.

5 Adversarial Training with Variation Regularization

Our generalization bound from Corollary 4.4 suggests that learning algorithms that bias towards small
source variation can improve generalization to other threat models when an expansion function exists.
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In this section, we propose adversarial training with variation regularization (AT-VR) to improve
generalization to unforeseen adversaries and evaluate the performance of AT-VR on multiple datasets
and model architectures.

5.1 Adversarial training with variation regularization

To integrate variation into AT, we consider the following training objective:

min
f∈F,f=g◦h

1

n

n∑
i=1

[ max
x′∈S(xi)

ℓ(f(x′), yi)︸ ︷︷ ︸
empirical adversarial risk

+λ max
x′,x′′∈S(xi)

||h(x′)− h(x′′)||2︸ ︷︷ ︸
empirical variation

]

where λ ≥ 0 is the regularization strength. For the majority of our experiments in the main text, we
use the objective of PGD-AT (Madry et al., 2018) as the approximate empirical adversarial risk. We
note that this can be replaced with other forms of AT such as TRADES (Zhang et al., 2019). We can
approximate empirical variation by using gradient-based methods. For example, when N(x) is a ℓp
ball around x, we compute the variation term by using PGD to simultaneously optimize over x1 and
x2. We discuss methods for computing variation for other source threat models in Appendix E.10.

5.2 Experimental Setup

We investigate the performance of training neural networks with AT-VR on image data for a variety
of datasets, architectures, source threat models, and target threat models. We also combine VR with
perceptual adversarial training (PAT) (Laidlaw et al., 2021), the current state-of-the-art for unforeseen
robustness, which uses a source threat model based on LPIPS (Zhang et al., 2018) metric.

Datasets We train models on CIFAR-10, CIFAR-100, (Krizhevsky et al., 2009) and ImageNette
(Howard). ImageNette is a 10-class subset of ImageNet (Deng et al., 2009).

Model architecture On CIFAR-10, we train ResNet-18 (He et al., 2016), WideResNet(WRN)-28-
10 (Zagoruyko & Komodakis, 2016), and VGG-16 (Simonyan & Zisserman, 2015) architectures.
On ImageNette, we train ResNet-18 (He et al., 2016). For PAT-VR, we use ResNet-50. For all
architectures, we consider the feature extractor h to consist of all layers of the NN and the top
level classifier g to be the identity function. We include experiments for when we consider h to be
composed of all layers before the fully connected layers in Appendix F.

Source threat models Across experiments with AT-VR, we consider 2 different source threat models:
ℓ∞ perturbations with radius 8

255 and ℓ2 perturbations with radius 0.5. For PAT-VR, we use LPIPS
computed from an AlexNet model (Krizhevsky et al., 2017) trained on CIFAR-10. We provide
additional details about training procedure in Appendix C. We also provide results for additional
source threat models such as StAdv and Recolor in Appendix E.10.

Target threat models We evaluate AT-VR on a variety of target threat models including, ℓp
adversaries (ℓ∞, ℓ2, and ℓ1 adversaries), spatially transformed adversary (StAdv) (Xiao et al., 2018),
and Recolor adversary (Laidlaw & Feizi, 2019). For StAdv and Recolor threat models, we use the
original bounds from (Xiao et al., 2018) and (Laidlaw & Feizi, 2019) respectively. For all other threat
models, we specify the bound (ϵ) within the figures in this section. We also provide evaluations on
additional adversaries including Wasserstein, JPEG, elastic, and LPIPS-based attacks in Appendix
E.7 for CIFAR-10 ResNet-18 models.

Baselines We remark that we are studying the setting where the learner has already chosen a source
threat model and during testing the model is evaluated on a strictly larger unknown target. Because
of this, for AT-VR experiments, we use standard PGD-AT (Madry et al., 2018) (AT-VR with λ = 0)
as a baseline. For PAT-VR experiments, we use PAT (PAT-VR with λ = 0) as a baseline. We note
that VR can be combined with other training techniques such as TRADES (Zhang et al., 2019) and
provide results in Appendix E.9.

5.3 Performance of AT-VR across different imperceptible target threat models

We first investigate the impact of AT-VR on robust accuracy across different target threat models that
are strictly larger than the source threat model used for training. To enforce this, we evaluate robust
accuracy on a target threat model that is the union of the source with a different threat model. For
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Union with Source
Dataset Architecture Source λ Clean Source ℓ∞ ℓ2 StAdv Re- Union

acc acc ϵ = 12
255

ϵ = 1 color all
CIFAR-10 ResNet-18 ℓ2 0 88.49 66.65 6.44 34.72 0.76 66.52 0.33
CIFAR-10 ResNet-18 ℓ2 1 85.21 67.38 13.43 40.74 34.40 67.30 11.77
CIFAR-10 ResNet-18 ℓ∞ 0 82.83 47.47 28.09 24.94 4.38 47.47 2.48
CIFAR-10 ResNet-18 ℓ∞ 0.5 72.91 48.84 33.69 24.38 18.62 48.84 12.59
CIFAR-10 WRN-28-10 ℓ∞ 0 85.93 49.86 28.73 20.89 2.28 49.86 1.10
CIFAR-10 WRN-28-10 ℓ∞ 0.7 72.73 49.94 35.11 22.30 25.33 49.94 14.72
CIFAR-10 VGG-16 ℓ∞ 0 79.67 44.36 26.14 30.82 7.31 44.36 4.35
CIFAR-10 VGG-16 ℓ∞ 0.1 77.80 45.42 28.41 32.08 10.57 45.42 6.83
ImageNette ResNet-18 ℓ2 0 88.94 84.99 0.00 79.08 1.27 72.15 0.00
ImageNette ResNet-18 ℓ2 1 85.22 83.08 9.53 80.43 18.04 75.26 6.80
ImageNette ResNet-18 ℓ∞ 0 80.56 49.63 32.38 49.63 34.27 49.63 25.68
ImageNette ResNet-18 ℓ∞ 0.1 78.01 50.80 35.57 50.80 42.37 50.80 31.82
CIFAR-100 ResNet-18 ℓ2 0 60.92 36.01 3.98 16.90 1.80 34.87 0.40
CIFAR-100 ResNet-18 ℓ2 0.75 51.53 38.26 11.47 25.65 5.12 36.96 3.11
CIFAR-100 ResNet-18 ℓ∞ 0 54.94 22.74 12.61 14.40 3.99 22.71 2.42
CIFAR-100 ResNet-18 ℓ∞ 0.2 48.97 25.04 16.48 15.82 4.96 24.95 3.48

Table 1: Robust accuracy of various models trained at different strengths of VR applied on logits on
various threat models. λ = 0 represents the baseline (standard AT). The “source acc" column reports
the accuracy on the source attack (ℓ∞, ϵ = 8

255 or ℓ2, ϵ = 0.5). For each individual threat model, we
evaluate accuracy on a union with the source threat model. The union all column reports the accuracy
on the union across all listed threat models.

ℓ∞ and ℓ2 attacks, we measure accuracy using AutoAttack (Croce & Hein, 2020a), which reports
the lowest robust accuracy out of 4 different attacks: APGD-CE, APGD-T, FAB-T, and Square. For
ℓ∞ and ℓ2 threat models, we use radius ϵ = 12

255 and ϵ = 1 for evaluating unforeseen robustness.
We report clean accuracy, source accuracy (robust accuracy on the source threat model), and robust
accuracy across various targets in Table 1. We present results with additional strengths of VR in
Appendix E.5.

AT-VR improves robust accuracy on broader target threat models. We find that overall across
datasets, architecture, and source threat model, using AT-VR improves robust accuracy on unforeseen
targets but trades off clean accuracy. For instance, we find that on CIFAR-10, our ResNet-18 model
using VR improves robustness on the union of all attacks from 2.48% to 12.59% for ℓ∞ source and
from 0.33% to 11.77% for ℓ2. The largest improvement we observe is a 33.64% increase in robust
accuracy for the ResNet-18 CIFAR-10 with ℓ2 source model on the StAdv target.

AT-VR maintains accuracy on the source compared to standard AT, but trades off clean
accuracy. We find that AT-VR is able to maintain similar source accuracy in comparson to standard
PGD AT but consistently trades off clean accuracy. For example, for WRN-28-10 on CIFAR-10, we
find that source accuracy increases slightly with VR (from 49.86% to 49.94%), but clean accuracy
drops from 85.93% to 72.73%. In Appendix E.5, where we provide results on additional values of
regularization strength (λ), we find that increasing λ generally trades off clean accuracy but improves
union accuracy. We hypothesize that this tradeoff occurs because VR enforces the decision boundary
to be smooth, which may prevent the model from fitting certain inputs well.

5.4 State-of-the-art performance with PAT-VR

We now combine variation regularization with PAT. We present results in Table 2.

Source λ Clean ℓ∞ ℓ2 StAdv Re- Union PPGD LPA
ϵ acc ϵ = 8

255
ϵ = 1 color

0.5 0 86.6 38.8 44.3 5.8 60.8 2.1 16.2 2.2
0.5 0.05 86.9 34.9 40.6 9.4 64.6 3.7 21.9 2.2
0.5 0.1 85.1 31.4 37.1 44.9 80.5 24.9 48.7 29.7
1 1 0 71.6 28.7 33.3 64.5 67.5 27.8 26.6 9.8
1 0.05 72.1 29.5 34.8 59.6 69.7 28.2 56.7 18.5
1 0.1 72.5 29.4 35.1 61.8 70.7 28.8 56.9 30.8

Table 2: Robust accuracy of ResNet-50 models trained using AlexNet-based PAT-VR with ϵ = 0.5
and ϵ = 1. λ = 0 corresponds to standard PAT. The union column reports the accuracy obtained on
the union of ℓ∞, ℓ2, StAdv, and Recolor adversaries. The PPGD and LPA columns report robust
accuracy under AlexNet-based PPGD and LPA attacks with ϵ = 0.5.
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PAT-VR achieves state-of-the-art robust accuracy on AlexNet-based LPIPS attacks (PPGD
and LPA). Laidlaw et al. (2021) observed that LPA attacks are the strongest perceptual attacks, and
that standard AlexNet-based PAT with source ϵ = 1 can only achieve 9.8% robust accuracy on LPA
attacks with ϵ = 0.5. In comparison, we find that applying variation regularization can significantly
improve over performance on LPIPS attacks. In fact, using variation regularization strength λ = 0.1
while training with ϵ = 0.5 can achieve 29.7% robust accuracy on LPA, while training with λ = 0.1
and ϵ = 1 improves LPA accuracy to 30.8%.

PAT-VR achieves state-of-the-art union accuracy across ℓ∞, ℓ2, StAdv, and Recolor attacks. We
observe that as regularization strength λ increases, union accuracy also increases. For source ϵ = 0.5,
we find that union accuracy increases from 2.1% without variation regularization to 24.9% with
variation regularization at λ = 0.1. For source ϵ = 1, we observe a 1% increase in union accuracy
from λ = 0 to λ = 0.1. However, this comes at a trade-off with accuracy on specific threat models.
For example, when training with ϵ = 0.5, we find that variation regularization at λ = 0.1 trades off
accuracy on ℓ∞ and ℓ2 sources (7.4% and 7.2% drop in robust accuracy respectively), but improves
robust accuracy on StAdv attacks from 5.8% to 44.9%. Meanwhile, for ϵ = 1, we find that at λ = 0.1,
variation regularization trades off accuracy on StAdv to improve accuracy across ℓ∞, ℓ2, and Recolor
threat models.

Unlike AT-VR, PAT-VR maintains clean accuracy in comparison to PAT. We find that PAT-VR
generally does not trade off additional clean accuracy in comparison to PAT. In some cases (at source
ϵ = 1), increasing variation regularization strength can even improve clean accuracy.

5.5 Influence of AT-VR on threat model generalization gap across perturbation size

0.04 0.06 0.08

Target ε

0

2

4

L
T
−
L̂
S

Target `∞

0.5 1.0 1.5 2.0

Target ε

0

2

4

L
T
−
L̂
S

Target `2

5 10 15 20

Target ε

0

1

2

3

L
T
−
L̂
S

Target `1

λ = 0 λ = 0.05 λ = 0.1 λ = 0.3 λ = 0.5

Figure 1: Threat model generalization gap of ResNet-18 models on CIFAR-10 trained using AT-VR
at regularization strength λ measured on target ℓp, p = {∞, 2, 1} adversarial examples with radius
ϵ. The generalization gap is measured with respect to cross entropy loss. All models are trained
with source ℓ∞ perturbations of radius 8

255 . We find that increasing VR strength decreases the
generalization gap across ϵ.

In Section 5.3, we observed that AT-VR improves robust accuracy on a variety of unforeseen target
threat models at the cost of clean accuracy. This suggests that AT-VR makes the change in adversarial
loss on more difficult threat models increase more gradually. In this section, we experimentally
verify this by plotting the gap between source and target losses (measured via cross entropy) across
different perturbation strengths ϵ for ℓp threat models (p ∈ {∞, 2, 1}) for ResNet-18 models trained
on CIFAR-10. We present results for models using AT-VR with ℓ∞ source attacks in Figure 1. For
these experiments, we generate adversarial examples using APGD from AutoAttack (Croce & Hein,
2020b). We also provide corresponding plots for ℓ2 source attacks in Appendix E.4.

We find that AT-VR consistently reduces the gap between source and target losses on ℓp attacks
across different target perturbation strengths ϵ. We observe that this gap decreases as regularization
increases across target threat models. This suggests that VR can reduce the generalization gap across
threat models, making the loss measured on the source threat model better reflect the loss measured
on the target threat model, which matches our results from Corollary 4.4.

5.6 Visualizing the expansion function

The effectiveness of AT-VR suggests that an expansion function exists between across the different
imperceptible threat models tested. In this section, we visualize the expansion function between ℓ∞

1Values taken from Laidlaw et al. (2021)
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and ℓ2 source and target pairs for ResNet-18 models on CIFAR-10. We train a total of 15 ResNet-18
models using PGD-AT with and without VR on ℓ2 and ℓ∞ source threat models. We evaluate variation
on models saved every 10 epochs during training along with the model saved at epoch with best
performance, leading to variation computation on a total of 315 models for each source threat model.
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Figure 2: Plots of minimum linear expansion func-
tion s shown in blue computed on 315 adversarially
trained ResNet-18 models. Each grey point repre-
sents variation measured on the source and target
pair. Variation is computed on the logits. The two
columns represent the source adversary (ℓ∞ and
ℓ2 respectively). The two rows represent the target
adversary (ℓ∞ and ℓ2 respectively).

We consider 4 cases: (1) ℓ∞ source with ϵ =
8

255 to ℓ∞ target with ϵ = 16
255 , (2) ℓ∞ source

with ϵ = 8
255 to a target consisting of the union

of the source with an ℓ2 threat model with ra-
dius 0.5, (3) ℓ2 source with ϵ = 0.5 to a target
consisting of the union of the source with an ℓ∞
threat model with ϵ = 8

255 , and (4) ℓ2 source
with ϵ = 0.5 to ℓ2 target with ϵ = 1. In cases
(2) and (3), since the target is the union of ℓp
balls, we approximate the variation of the union
by taking the maximum variation across both ℓp
balls. We plot the measured source vs target vari-
ation along with the minimum linear expansion
function s in Figure 2.

We find that in all cases the distribution of source
vs target variation is sublinear, and we can upper
bound this distribution with a linear expansion
function with relatively small slope. Recall our
finding in Theorem 4.7 that for linear models
there exists a linear expansion function across ℓp
norms. We hypothesize that this property also
appears for ResNet-18 models because neural networks are piecewise linear.

6 Discussion, Limitations, and Conclusion

We highlight a limitation in adversarial ML research: the lack of understanding of how robustness
degrades when a mismatch in source and target threat models occurs. Our work takes steps toward
addressing this problem by formulating the problem of learning with an unforeseen adversary and
providing a framework for reasoning about generalization under this setting. With this framework,
we derive a bound for threat model generalization gap in terms of variation and use this bound to
design an algorithm, adversarial training with variation regularization (AT-VR). We highlight several
limitations of our theoretical results: (1) the bounds provided can be quite loose and may not be
good predictors of unforeseen loss, (2) while we show that an expansion function between ℓp balls
exists for linear models, it is unclear if that is the case for neural networks. Additionally, we highlight
several limitations of AT-VR: (1) its success depends on the existence of an expansion function, (2)
VR trades off additional clean accuracy and increases computational complexity of training. Further
research on improving source threat models and the accuracy and efficiency of adversarial training
algorithms can improve the performance of AT-VR. Finally, we note that in some applications, such as
defending against website fingerprinting (Rahman et al., 2020) and bypassing facial recognition based
surveillance (Shan et al., 2020), adversarial examples are used for good, so improving robustness
against adversarial examples may consequently hurt these applications.

Acknowledgments and Disclosure of Funding

We would like to thank Tianle Cai, Peter Ramadge, and Vincent Poor for their feedback on this work.
This work was supported in part by the National Science Foundation under grants CNS-1553437 and
CNS-1704105, the ARL’s Army Artificial Intelligence Innovation Institute (A2I2), the Office of Naval
Research Young Investigator Award, the Army Research Office Young Investigator Prize, Schmidt
DataX award, and Princeton E-ffiliates Award. This material is also based upon work supported by
the National Science Foundation Graduate Research Fellowship under Grant No. DGE-2039656.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National Science Foundation.

10



References
Albuquerque, I., Monteiro, J., Darvishi, M., Falk, T. H., and Mitliagkas, I. Generalizing to unseen

domains via distribution matching. arXiv preprint arXiv:1911.00804, 2019.

Attias, I., Kontorovich, A., and Mansour, Y. Improved generalization bounds for robust learning. In
Algorithmic Learning Theory, pp. 162–183. PMLR, 2019.

Carlini, N. and Wagner, D. Towards evaluating the robustness of neural networks. In 2017 ieee
symposium on security and privacy (sp), pp. 39–57. IEEE, 2017.

Chen, J., Raghuram, J., Choi, J., Wu, X., Liang, Y., and Jha, S. Revisiting adversarial robustness of
classifiers with a reject option. In The AAAI-22 Workshop on Adversarial Machine Learning and
Beyond, 2022. URL https://openreview.net/forum?id=UiF3RTES7pU.

Chen, L., Min, Y., Zhang, M., and Karbasi, A. More data can expand the generalization gap between
adversarially robust and standard models. In International Conference on Machine Learning, pp.
1670–1680. PMLR, 2020.

Cohen, J. M., Rosenfeld, E., and Kolter, J. Z. Certified adversarial robustness via randomized
smoothing. In Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pp. 1310–1320. PMLR, 2019. URL
http://proceedings.mlr.press/v97/cohen19c.html.

Croce, F. and Hein, M. Provable robustness against all adversarial $l_p$-perturbations for $p\geq 1$.
In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020a. URL https://openreview.net/forum?id=rklk_
ySYPB.

Croce, F. and Hein, M. Reliable evaluation of adversarial robustness with an ensemble of diverse
parameter-free attacks. In International conference on machine learning, pp. 2206–2216. PMLR,
2020b.

Cullina, D., Bhagoji, A. N., and Mittal, P. Pac-learning in the presence of evasion adversaries. arXiv
preprint arXiv:1806.01471, 2018.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255.
Ieee, 2009.

Diakonikolas, I., Kane, D. M., and Manurangsi, P. Nearly tight bounds for robust proper learning of
halfspaces with a margin. arXiv preprint arXiv:1908.11335, 2019.

Diochnos, D. I., Mahloujifar, S., and Mahmoody, M. Lower bounds for adversarially robust pac
learning. arXiv preprint arXiv:1906.05815, 2019.

Everingham, M., Gool, L. V., Williams, C. K. I., Winn, J. M., and Zisserman, A. The pascal
visual object classes (VOC) challenge. Int. J. Comput. Vis., 88(2):303–338, 2010. doi: 10.1007/
s11263-009-0275-4. URL https://doi.org/10.1007/s11263-009-0275-4.

Glorot, X. and Bengio, Y. Understanding the difficulty of training deep feedforward neural networks.
In Teh, Y. W. and Titterington, D. M. (eds.), Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia, Italy,
May 13-15, 2010, volume 9 of JMLR Proceedings, pp. 249–256. JMLR.org, 2010. URL http:
//proceedings.mlr.press/v9/glorot10a.html.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In 2015 IEEE International Conference on Computer
Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pp. 1026–1034. IEEE Computer Society,
2015. doi: 10.1109/ICCV.2015.123. URL https://doi.org/10.1109/ICCV.2015.123.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

11

https://openreview.net/forum?id=UiF3RTES7pU
http://proceedings.mlr.press/v97/cohen19c.html
https://openreview.net/forum?id=rklk_ySYPB
https://openreview.net/forum?id=rklk_ySYPB
https://doi.org/10.1007/s11263-009-0275-4
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.1109/ICCV.2015.123


Howard, J. Imagenette. URL https://github.com/fastai/imagenette/.

Ilyas, A., Santurkar, S., Engstrom, L., Tran, B., and Madry, A. Adversarial examples are not bugs,
they are features. Advances in neural information processing systems, 32, 2019.

Jin, C. and Rinard, M. Manifold regularization for locally stable deep neural networks. arXiv preprint
arXiv:2003.04286, 2020.

Kang, D., Sun, Y., Hendrycks, D., Brown, T., and Steinhardt, J. Testing robustness against unforeseen
adversaries. arXiv preprint arXiv:1908.08016, 2019.

Kannan, H., Kurakin, A., and Goodfellow, I. Adversarial logit pairing. arXiv preprint
arXiv:1803.06373, 2018.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers of features from tiny images. 2009.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep convolutional
neural networks. Commun. ACM, 60(6):84–90, 2017. doi: 10.1145/3065386. URL http:
//doi.acm.org/10.1145/3065386.

Laidlaw, C. and Feizi, S. Functional adversarial attacks. In Wallach, H. M., Larochelle,
H., Beygelzimer, A., d’Alché-Buc, F., Fox, E. B., and Garnett, R. (eds.), Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pp. 10408–10418, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
6e923226e43cd6fac7cfe1e13ad000ac-Abstract.html.

Laidlaw, C., Singla, S., and Feizi, S. Perceptual adversarial robustness: Defense against unseen threat
models. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=
dFwBosAcJkN.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. Towards deep learning models
resistant to adversarial attacks. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018. URL https://openreview.net/forum?id=rJzIBfZAb.

Maini, P., Wong, E., and Kolter, J. Z. Adversarial robustness against the union of multiple perturbation
models. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pp.
6640–6650. PMLR, 2020. URL http://proceedings.mlr.press/v119/maini20a.html.

Montasser, O., Hanneke, S., and Srebro, N. Vc classes are adversarially robustly learnable, but only
improperly. In Conference on Learning Theory, pp. 2512–2530. PMLR, 2019.

Montasser, O., Hanneke, S., and Srebro, N. Adversarially robust learning with unknown perturbation
sets. In Belkin, M. and Kpotufe, S. (eds.), Conference on Learning Theory, COLT 2021, 15-19
August 2021, Boulder, Colorado, USA, volume 134 of Proceedings of Machine Learning Research,
pp. 3452–3482. PMLR, 2021. URL http://proceedings.mlr.press/v134/montasser21a.
html.

Raghunathan, A., Xie, S. M., Yang, F., Duchi, J. C., and Liang, P. Adversarial training can hurt
generalization. arXiv preprint arXiv:1906.06032, 2019.

Rahman, M. S., Imani, M., Mathews, N., and Wright, M. Mockingbird: Defending against deep-
learning-based website fingerprinting attacks with adversarial traces. IEEE Transactions on
Information Forensics and Security, 16:1594–1609, 2020.

Shan, S., Wenger, E., Zhang, J., Li, H., Zheng, H., and Zhao, B. Y. Fawkes: Protecting privacy against
unauthorized deep learning models. In 29th USENIX Security Symposium (USENIX Security 20),
pp. 1589–1604, 2020.

12

https://github.com/fastai/imagenette/
http://doi.acm.org/10.1145/3065386
http://doi.acm.org/10.1145/3065386
https://proceedings.neurips.cc/paper/2019/hash/6e923226e43cd6fac7cfe1e13ad000ac-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/6e923226e43cd6fac7cfe1e13ad000ac-Abstract.html
https://openreview.net/forum?id=dFwBosAcJkN
https://openreview.net/forum?id=dFwBosAcJkN
https://openreview.net/forum?id=rJzIBfZAb
http://proceedings.mlr.press/v119/maini20a.html
http://proceedings.mlr.press/v134/montasser21a.html
http://proceedings.mlr.press/v134/montasser21a.html


Simonyan, K. and Zisserman, A. Very deep convolutional networks for large-scale image recognition.
In Bengio, Y. and LeCun, Y. (eds.), 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1409.1556.

Stutz, D., Hein, M., and Schiele, B. Confidence-calibrated adversarial training: Generalizing to unseen
attacks. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pp.
9155–9166. PMLR, 2020. URL http://proceedings.mlr.press/v119/stutz20a.html.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. J., and Fergus, R.
Intriguing properties of neural networks. In Bengio, Y. and LeCun, Y. (eds.), 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings, 2014. URL http://arxiv.org/abs/1312.6199.

Tramèr, F. and Boneh, D. Adversarial training and robustness for multiple perturbations. In
Conference on Neural Information Processing Systems (NeurIPS), 2019. URL https://arxiv.
org/abs/1904.13000.

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., and Madry, A. Robustness may be at odds with
accuracy. In International Conference on Learning Representations, number 2019, 2019.

Wu, D., Xia, S., and Wang, Y. Adversarial weight perturbation helps robust generalization. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020a. URL https://proceedings.
neurips.cc/paper/2020/hash/1ef91c212e30e14bf125e9374262401f-Abstract.html.

Wu, K., Wang, A., and Yu, Y. Stronger and faster wasserstein adversarial attacks. In International
Conference on Machine Learning, pp. 10377–10387. PMLR, 2020b.

Xiao, C., Zhu, J., Li, B., He, W., Liu, M., and Song, D. Spatially transformed adversarial examples.
In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. URL https:
//openreview.net/forum?id=HyydRMZC-.

Yang, G., Duan, T., Hu, J. E., Salman, H., Razenshteyn, I., and Li, J. Randomized smoothing of all
shapes and sizes. In International Conference on Machine Learning, pp. 10693–10705. PMLR,
2020.

Ye, H., Xie, C., Cai, T., Li, R., Li, Z., and Wang, L. Towards a theoretical framework of out-of-
distribution generalization. CoRR, abs/2106.04496, 2021. URL https://arxiv.org/abs/2106.
04496.

Yu, Y., Yang, Z., Dobriban, E., Steinhardt, J., and Ma, Y. Understanding generalization in adversarial
training via the bias-variance decomposition. arXiv preprint arXiv:2103.09947, 2021.

Zagoruyko, S. and Komodakis, N. Wide residual networks. In Wilson, R. C., Hancock, E. R., and
Smith, W. A. P. (eds.), Proceedings of the British Machine Vision Conference 2016, BMVC 2016,
York, UK, September 19-22, 2016. BMVA Press, 2016. URL http://www.bmva.org/bmvc/
2016/papers/paper087/index.html.

Zhang, D., Ye, M., Gong, C., Zhu, Z., and Liu, Q. Black-box certification with randomized smoothing:
A functional optimization based framework. Advances in Neural Information Processing Systems,
33:2316–2326, 2020a.

Zhang, H., Yu, Y., Jiao, J., Xing, E. P., Ghaoui, L. E., and Jordan, M. I. Theoretically principled trade-
off between robustness and accuracy. In Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceedings
of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of Machine Learning Research, pp. 7472–7482.
PMLR, 2019. URL http://proceedings.mlr.press/v97/zhang19p.html.

13

http://arxiv.org/abs/1409.1556
http://proceedings.mlr.press/v119/stutz20a.html
http://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1904.13000
https://arxiv.org/abs/1904.13000
https://proceedings.neurips.cc/paper/2020/hash/1ef91c212e30e14bf125e9374262401f-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1ef91c212e30e14bf125e9374262401f-Abstract.html
https://openreview.net/forum?id=HyydRMZC-
https://openreview.net/forum?id=HyydRMZC-
https://arxiv.org/abs/2106.04496
https://arxiv.org/abs/2106.04496
http://www.bmva.org/bmvc/2016/papers/paper087/index.html
http://www.bmva.org/bmvc/2016/papers/paper087/index.html
http://proceedings.mlr.press/v97/zhang19p.html


Zhang, H., Chen, H., Xiao, C., Gowal, S., Stanforth, R., Li, B., Boning, D. S., and Hsieh, C. Towards
stable and efficient training of verifiably robust neural networks. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020b. URL https://openreview.net/forum?id=Skxuk1rFwB.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang, O. The unreasonable effective-
ness of deep features as a perceptual metric. In 2018 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pp. 586–
595. Computer Vision Foundation / IEEE Computer Society, 2018. doi: 10.1109/CVPR.2018.
00068. URL http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_The_
Unreasonable_Effectiveness_CVPR_2018_paper.html.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 6 for a discussion of

limitations.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 6. In some applications, such as evading website fingerprinting, adversarial
examples are helpful so improving defenses against them reduces their benefit in these
applications.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] All assumptions

are specified in the theorem statements (See Theorem 4.2 and Theorem 4.7)
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix B.1,

B.2, B.3
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] We provide our
code in the supplemental material

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix C for training details

(c) Did you report error bars (e.g., with respect to the random seed after running ex-
periments multiple times)? [Yes] We provide error bars for ResNet-18 models on
CIFAR-10 with ℓ∞ source in Appendix E.1, but not on other experiments because of
the high computational cost of adversarial training.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix C

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We use publicly

available datasets such as CIFAR-10, CIFAR-100, and ImageNette as well as existing
network architectures. These are cited in Section 5.2

(b) Did you mention the license of the assets? [Yes] See Section 5.2
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

14

https://openreview.net/forum?id=Skxuk1rFwB
http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_The_Unreasonable_Effectiveness_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_The_Unreasonable_Effectiveness_CVPR_2018_paper.html


(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15


