
Appendix

In the appendix, we first provide more background information and introduce some related works.
Then we report the details of experiment setups and additional experiment results on all test environ-
ments. Lastly, we discuss the limitations and future directions of this work.

A Extended background material

Here, we provide a more extensive background review. Specifically, we present more discussions on
offline reinforcement learning and representation learning for reinforcement learning.

A.1 Offline reinforcement learning

Offline reinforcement learning (RL) aims to learn effective control policies purely from fixed pre-
collected datasets. Recent years have seen a surge of different offline RL methods. We crudely
classify some latest works in the following categories.

Policy-regularized offline RL. The majority of the recent proposed offline RL algorithms share
a similar idea – constraining the learned policy to stay close to the behavior policy. For example,
BCQ [18] used a variational auto-encoder (VAE) to generate actions that are similar to samples in the
offline dataset. KL-Control [24] and CDC [11] used KL divergence, BEAR [35] adopted maximum
mean discrepancy (MMD) divergence, FBRC selected Fisher-divergence [31] as a regularizer in the
loss function. On the other hand, BRAC[50] and BRAC+ [56] proposed general frameworks for the
such policy-regularized approaches.

Pessimism-based offline RL. Another line of research focuses on attacking the over-estimation
problem directly by using conservative penalties. CQL [36] proposed a penalty regularizer for out-of-
distribution (OOD) samples, such that we can learn conservative Q-functions that lower-bounds its
true value. In addition, Buckman et al. [5] proposed a general theoretical framework to unify some
existing pessimism-based approaches. Recently, CDC [11] introduced a new regularizer that only
penalizes high-valued samples selected by the actor.

Generalized behavior cloning (BC). Some other works resort to weighted behavior cloning, which
reduces the RL problem to a supervised learning problem [10]. For example, AWR [43] and CRR
[49] used value-weighted regression to filter high-quality samples. BAIL [7] proposed upper-envelope
to select good actions for later imitation learning. Recently, IQL [30] performed weighted behavioral
cloning for policy extraction.

Model-based offline RL. One motivation for using Model-based RL (MBRL) in the offline setting is
to increase the data coverage, where the batch RL agent can learn policies with OOD states [55, 29].
MOPO [55] and MoREL [29] measured the uncertainty of the model’s prediction to formulate an
uncertainty-penalized MDP. COMBO [54] combined CQL with a learned model by penalizing the
samples generated by the learned model. MuZero Unplugged [47] directly used the learned model
for policy and value improvement through planning.

Other types of offline RL. In addition to using uncertainty estimation under the MBRL framework,
some recent model-free batch RL algorithms also adopt the uncertainty to mitigate the over-estimation
error. UWAC [52] used dropout-uncertainty estimation to down-weight OOD samples loss. MSG
[19] used an ensemble of independently-updated Q-functions for uncertainty estimation. Furthermore,
REM [1] showed that standard off-policy RL methods can achieve good performance when the
dataset is large and diverse.

A.2 Representation learning for reinforcement learning

Some recent works introduced different representation metrics as proxies to evaluate the quality of
the learned representations of an RL agent [34, 33, 38, 41]. We provide a more detailed introduction
to the following three metrics that we use in the experiments.

Definition 1 (Feature dot-product). Feature dot-product �(s, a)>�(s0, a0) is the dot-product of two
critic representations, where s0 ⇠ P(·|s, a) and a0 ⇠ ⇡(·|s0) is the next state and next action.

A1

Definition 2 (Effective rank). Effective rank srank�(�) = min
�
k :

Pk
i=1 �i(�)Pd
i=1 �i(�)

� 1 � �

of a

feature matrix � 2 R|S|·|A|⇥d approximates the rank of � [33], where {�i(�)} are the singular
values of � in the decreasing order (�1 � · · · � �d � 0) and � is a threshold parameter, i.e., 0.01.
Definition 3 (Effective dimension). Effective dimension de↵(�) = N maxi=1,··· ,N kP�eik22 of
a feature matrix � 2 R|S|·|A|⇥d measures the sparsity of the column space of � [38], where
N = |S| · |A| and P� is the orthogonal projector onto the column space of �.

DR3 [34] introduced the feature co-adaptation phenomenon where the feature dot-product keeps
increasing during the training of a deep Q-Network. In particular, DR3 provided a theoretical
analysis to show that optimizing TD errors with SGD has an implicit “regularizer” that leads to the
feature co-adaptation phenomenon which usually hurts the performance. Later, some related works
[33, 38, 41] introduced the representation collapse phenomenon, where the rank of the feature space
shrinks during the training step, which limits the learning capacity of an RL agent. In particular,
Kumar et al. [33] pointed out that such representation collapse phenomenon is connected to the
bootstrapping based update, and provided some theoretical explanations in the context of kernel
regression and deep linear networks. On the other hand, Lan et al. [38] provided an informative
bound on the generalization error w.r.t the effective dimension of state representations, and showed
that a smaller effective dimension helps to improve the performance. To mitigate the problem of
representation collapse, InFeR [41] presented a regularization term that forces the trained networks
to regress to a random function of their initial output.

Another closely related work is ACL [53], which empirically investigated a number of representation
auxiliary losses for RL agents. Moreover, Deng et al. [9] also explored the representation bottlenecks
for deep neural networks. A major difference of this work and these related works is that we studied
the detailed behaviors, including representations, value function and policies, of offline RL agents.

B Experiment details

In this section, we present more details about the dataset and the baseline algorithms.

B.1 Experiment setups

In the experiment, we evaluate all baseline agents on the standard D4RL benchmark [14]. In specific,
we use the “-v2” dataset, which contains more metadata and fixes bugs in the “-v0” dataset 1, to
train each baseline agent for 1M steps. In all experiments, we report the average result and standard
deviation over 5 random seeds. We run all experiments on a workstation with GeForce GTX 3090
GPU and an Intel Core i9-12900KF CPU.

B.2 Baseline algorithms

We re-implement each baseline algorithm in JAX [13]. For TD3BC [16], CQL [36] and IQL [30], we
use the default parameter settings as in the original implementations. Moreover, we find the default
parameters in COMBO [54], which is originally trained on the “-v0” dataset, sometimes fail in the
“-v2” dataset. Thus, we additionally tune the conservative parameter � for COMBO using the offline
cross-validation scheme as described in the original paper [54].

For the software, we use the following versions:

• Python 3.9

• Jax 0.3.10

• Gym 0.23.1

• Mujoco 2.1.2

• mujoco-py 2.1.2.14

• d4rl 1.1
1https://github.com/rail-berkeley/d4rl/wiki/Tasks

A2

The running time for 1M steps for each baseline algorithm in the JAX version is usually faster than
the original implementations [30] as summarized in Table 12:

TD3BC CQL COMBO IQL

Running time (min) 15 90 70 20

Table 12: Running time for 1M steps.

C Representation evaluation experiments

In this section, we provide more results of the representation experiments in different environments.
In the experiment, we first train an online TD3 [17] agent for 2M steps to approximate the optimal
policy ⇡⇤(a|s) and optimal value functions Q⇤(s, a) and V ⇤(s). For each probing target, we train a
linear model for 200 epochs using the Adam optimizer with learning rate 3e-4. We adopt an early
stopping strategy with patience of 10 epochs. We report the average result of a 5-fold cross-validation.
The most performant baseline agents in each environment are brown, and the agent with the best
probing experiment result is in bold.

C.1 Representation probing experiment results

In the experiment, the COMBO agent crashed in the walker2d-medium-expert-v2 environment for
one random seed (learned explosive Q(s, a)). In some probing experiments, the crashed COMBO
agent diverges. We report the mean and standard deviation of the MSE loss over 5 random seeds.

From Table 13, Table 14 and Table 15, we can observe that the TD3BC agent usually has good
probing experiment results (with the least probing loss), however, the TD3BC agent only achieves the
best performance in 2 of the 9 environments. These results show that the transition dynamics-based
side information is not that important for offline RL agents in the selected D4RL tasks. Intuitively,
the most performant agent usually has small optimal a⇤ probing loss (Table 16). This indicates that as
long as the actor representation (s) preserves the ability to learn good actions (low optimal action
probing loss), then the offline RL agent holds the potential to achieve good performance. From Table
17 and Table 18, we can find that the probing loss w.r.t. the optimal value functions are usually very
large. Such large probing loss highlights the difficulty to learn accurate value functions in the offline
setting due to the limited data coverage and additional policy/value constraints.

TD3BC CQL COMBO IQL

halfcheetah-med-v2 0.25 (0.05) 0.41 (0.07) 0.88 (0.27) 0.25 (0.02)
halfcheetah-med-rep-v2 0.22 (0.01) 0.40 (0.02) 0.27 (0.02) 0.29 (0.03)
halfcheetah-med-exp-v2 0.22 (0.02) 0.31 (0.05) 0.40 (0.08) 0.23 (0.00)

hopper-med-v2 0.01 (0.00) 0.07 (0.07) 0.05 (0.05) 0.01 (0.00)
hopper-med-rep-v2 0.02 (0.01) 0.02 (0.01) 0.13 (0.09) 0.03 (0.03)
hopper-med-exp-v2 0.01 (0.00) 0.04 (0.02) 0.07 (0.04) 0.01 (0.00)
walker2d-med-v2 0.16 (0.05) 0.20 (0.06) 0.28 (0.24) 0.10 (0.04)

walker2d-med-rep-v2 0.12 (0.03) 0.23 (0.11) 0.11 (0.05) 0.09 (0.02)
walker2d-med-exp-v2 0.16 (0.03) 0.18 (0.06) NaN 0.09 (0.04)

Table 13: Reward probing experiment.

A3

TD3BC CQL COMBO IQL

halfcheetah-med-v2 5.13 (0.29) 9.76 (0.91) 13.05 (1.86) 5.45 (0.46)
halfcheetah-med-rep-v2 4.56 (0.21) 10.86 (0.21) 9.93 (0.65) 6.04 (0.37)
halfcheetah-med-exp-v2 5.65 (0.27) 8.98 (0.39) 11.14 (0.68) 6.10 (0.18)

hopper-med-v2 0.11 (0.01) 0.27 (0.05) 0.24 (0.06) 0.13 (0.03)
hopper-med-rep-v2 0.17 (0.03) 0.28 (0.06) 0.48 (0.13) 0.17 (0.03)
hopper-med-exp-v2 0.11 (0.01) 0.28 (0.04) 0.28 (0.07) 0.13 (0.03)
walker2d-med-v2 5.23 (0.45) 6.44 (1.01) 5.94 (3.08) 4.45 (0.24)

walker2d-med-rep-v2 4.61 (0.19) 6.62 (0.27) 6.29 (0.66) 4.15 (0.30)
walker2d-med-exp-v2 5.22 (0.26) 5.65 (0.12) NaN 4.40 (0.18)

Table 14: Next state probing experiment.

TD3BC CQL COMBO IQL

halfcheetah-med-v2 0.14 (0.01) 0.25 (0.01) 0.15 (0.01) 0.19 (0.01)
halfcheetah-med-rep-v2 0.11 (0.00) 0.27 (0.01) 0.27 (0.01) 0.20 (0.01)
halfcheetah-med-exp-v2 0.14 (0.01) 0.28 (0.01) 0.16 (0.01) 0.20 (0.01)

hopper-med-v2 0.10 (0.01) 0.18 (0.03) 0.09 (0.01) 0.13 (0.00)
hopper-med-rep-v2 0.09 (0.01) 0.21 (0.02) 0.23 (0.09) 0.13 (0.02)
hopper-med-exp-v2 0.10 (0.01) 0.18 (0.02) 0.09 (0.00) 0.12 (0.01)
walker2d-med-v2 0.31 (0.00) 0.37 (0.01) 0.31 (0.01) 0.34 (0.02)

walker2d-med-rep-v2 0.30 (0.01) 0.38 (0.02) 0.31 (0.01) 0.35 (0.01)
walker2d-med-exp-v2 0.31 (0.01) 0.36 (0.01) 6.47 (13.77) 0.34 (0.01)

Table 15: Inverse action probing experiment.

TD3BC CQL COMBO IQL

halfcheetah-med-v2 0.39 (0.00) 0.39 (0.01) 0.37 (0.01) 0.42 (0.01)
halfcheetah-med-rep-v2 0.43 (0.01) 0.46 (0.00) 0.39 (0.00) 0.48 (0.01)
halfcheetah-med-exp-v2 0.38 (0.01) 0.40 (0.01) 0.39 (0.01) 0.44 (0.01)

hopper-med-v2 0.36 (0.03) 0.36 (0.04) 0.32 (0.01) 0.39 (0.04)
hopper-med-rep-v2 0.37 (0.04) 0.36 (0.01) 0.37 (0.04) 0.37 (0.04)
hopper-med-exp-v2 0.37 (0.01) 0.40 (0.08) 0.32 (0.01) 0.37 (0.04)
walker2d-med-v2 0.34 (0.01) 0.36 (0.02) 0.36 (0.01) 0.37 (0.01)

walker2d-med-rep-v2 0.35 (0.01) 0.39 (0.02) 0.33 (0.01) 0.41 (0.01)
walker2d-med-exp-v2 0.34 (0.02) 0.35 (0.02) 4.05 (8.27) 0.37 (0.02)

Table 16: Optimal action probing experiment.

TD3BC CQL COMBO IQL

halfcheetah-med-v2 4.44 (0.31) 5.22 (0.61) 6.20 (1.13) 4.30 (0.45)
halfcheetah-med-rep-v2 5.22 (0.67) 7.65 (0.85) 3.94 (0.12) 5.16 (0.35)
halfcheetah-med-exp-v2 4.16 (0.18) 4.40 (0.21) 5.59 (1.01) 4.58 (0.20)

hopper-med-v2 1.15 (0.24) 1.49 (0.60) 1.55 (0.41) 1.21 (0.20)
hopper-med-rep-v2 0.75 (0.29) 1.10 (0.13) 0.56 (0.15) 1.25 (0.49)
hopper-med-exp-v2 1.00 (0.12) 1.20 (0.47) 1.45 (0.60) 1.43 (0.20)
walker2d-med-v2 1.99 (0.34) 2.38 (0.31) 2.59 (0.72) 2.05 (0.13)

walker2d-med-rep-v2 2.67 (0.96) 3.11 (0.68) 3.21 (0.78) 2.69 (0.53)
walker2d-med-exp-v2 1.71 (0.07) 2.42 (0.26) NaN 2.04 (0.39)

Table 17: Optimal Q⇤(s, a) probing experiment: each number is divided by 1000.

A4

TD3BC CQL COMBO IQL

halfcheetah-med-v2 76.30 (22.05) 123.11 (42.42) 48.73 (35.06) 100.97 (43.36)
halfcheetah-med-rep-v2 109.73 (13.14) 95.85 (7.56) 76.23 (9.11) 153.07 (11.04)
halfcheetah-med-exp-v2 41.72 (13.59) 79.86 (26.85) 23.90 (13.68) 186.22 (20.99)

hopper-med-v2 2.76 (0.52) 5.82 (3.92) 1.10 (0.29) 3.38 (1.22)
hopper-med-rep-v2 1.73 (0.50) 1.93 (0.83) 2.13 (0.43) 2.30 (0.90)
hopper-med-exp-v2 1.78 (0.85) 4.79 (2.32) 1.15 (0.13) 1.90 (0.53)
walker2d-med-v2 3.36 (0.50) 3.33 (0.39) 2.99 (0.44) 4.35 (0.37)

walker2d-med-rep-v2 3.64 (0.12) 4.49 (0.71) 2.27 (0.34) 5.67 (0.25)
walker2d-med-exp-v2 3.98 (0.56) 4.09 (0.31) 4.80 (2.97) 4.27 (0.32)

Table 18: Optimal V ⇤(s) probing experiment: each number is divided by 1000.

C.2 Representation metric experiment results

Before reporting the results for the representation metric experiment, we first give a brief discussion
of the implementation of the effective dimension. As shown in the following code snippet (Algo 1),
the original implementation of the effective dimension 2 uses a hard threshold (1e-5) to approximate
the rank of the feature matrix. However, such a hard threshold is prone to over-estimate the rank
when the norm of the representation is large, as we will see in Table 19 and Table 20. Therefore, we
use a modified implementation which approximate the rank using a relative threshold (effective rank).

Algorithm 1 A comparison of two implementations of effective dimension.

matrix: sample representations (Nxd)
thresh: a threshold to approximate the matrix rank

def calculate_effective_dim1(matrix, thresh=1e-5):
"""The original implementation"""
num_rows, _ = matrix.shape

SVD
u, s, _ = np.linalg.svd(matrix, full_matrices=False, compute_uv=True)

approximate matrix rank using a hard threshold
rank = max(np.sum(s >= thresh), 1)

approximate the effective dimension
u1 = u[:, :rank]
projected_basis = np.matmul(u1, np.transpose(u1))
norms = np.linalg.norm(projected_basis, axis=0, ord=2) ** 2
eff_dim = num_rows * np.max(norms)
return eff_dim

def calculate_effective_dim2(matrix, thresh=0.99):
"""A modified implementation"""
num_rows, _ = matrix.shape

normalize the matrix
normalized_matrix = matrix / np.linalg.norm(matrix, axis=-1, keepdims=True)

SVD
u, s, _ = np.linalg.svd(normalized_matrix, full_matrices=False, compute_uv=True)

approximate matrix rank using a relative threshold (effective rank)
cumsum_s = s.cumsum()
threshold = cumsum_s[-1] * thresh
rank = sum(cumsum_s <= threshold)

approximate the effective dimension
u1 = u[:, :rank]
projected_basis = np.matmul(u1, np.transpose(u1))
norms = np.linalg.norm(projected_basis, axis=0, ord=2) ** 2
eff_dim = num_rows * np.max(norms)
return eff_dim

From Table 19, we can observe that the critic constraint in offline RL will make the feature co-adaption
more severe. TD3BC agent does not use any critic constraint, and the consecutive state-action pairs

2Original implementation of the effective dimension.

A5

are the least similar. On the other hand, the feature co-adaptation phenomenon is particularly severe
when we adds a conservative penalty. Interestingly, such a large feature dot-product does not prevent
the COMBO agent to achieve good performance in some offline RL tasks. In addition, combined
results in Table 19 and Table 20, we can conclude that the increasing feature dot-product is mainly
caused by the representation norm. These results also provide a hint for how the conservative penalty
in CQL or COMBO works. As we can see that the representation norm |�(s, a)| is usually large for a
CQL or COMBO agent, then it learns a lower-bounded Q-values Q✓(s, a) = ✓>�(s, a) by a small
|✓| and (or) dissimilar vector direction of ✓ and �(s, a).

From Table 21 and Table 22, we can observe that the COMBO agent ususally suffers from the
representation collapse problem while its model-free counterpart CQL agent doesn’t. This result
indicates that the usage of a learned dynamics model would sometimes affect the learned critic
representations. We leave a deeper investigation for future work.

TD3BC CQL COMBO IQL

halfcheetah-med-v2 10.34 (0.86) 1036.34 (1179.43) 5115.07 (3688.67) 7.06 (0.31)
halfcheetah-med-rep-v2 4.55 (0.41) 81.10 (9.94) 229.43 (66.82) 7.11 (1.10)
halfcheetah-med-exp-v2 7.98 (0.26) 469.44 (57.80) 750.29 (495.01) 6.67 (0.69)

hopper-med-v2 8.43 (1.40) 56.37 (21.31) 335.85 (301.72) 4.93 (0.31)
hopper-med-rep-v2 3.60 (0.58) 44.93 (9.62) 2048.59 (1415.81) 4.82 (0.58)
hopper-med-exp-v2 6.81 (1.03) 62.69 (3.59) 1031.57 (671.65) 4.86 (0.11)
walker2d-med-v2 5.80 (1.26) 123.04 (61.53) 44.07 (11.08) 8.76 (0.86)

walker2d-med-rep-v2 3.40 (0.34) 93.49 (3.73) 144.16 (61.59) 5.90 (0.36)
walker2d-med-exp-v2 7.01 (0.93) 128.92 (12.80) NaN 7.31 (0.37)

Table 19: Dot-product for �(s, a): each value is divided by 1000.

TD3BC CQL COMBO IQL

halfcheetah-med-v2 0.74 (0.03) 0.85 (0.08) 1.00 (0.00) 0.95 (0.01)
halfcheetah-med-rep-v2 0.62 (0.03) 0.77 (0.02) 0.94 (0.02) 0.86 (0.02)
halfcheetah-med-exp-v2 0.74 (0.01) 0.96 (0.01) 0.96 (0.02) 0.89 (0.01)

hopper-med-v2 0.81 (0.03) 0.99 (0.01) 1.00 (0.00) 1.00 (0.00)
hopper-med-rep-v2 0.65 (0.05) 0.99 (0.00) 1.00 (0.00) 1.00 (0.00)
hopper-med-exp-v2 0.81 (0.04) 0.99 (0.00) 0.99 (0.01) 1.00 (0.00)
walker2d-med-v2 0.72 (0.05) 0.95 (0.02) 0.99 (0.00) 0.97 (0.00)

walker2d-med-rep-v2 0.65 (0.02) 0.97 (0.00) 1.00 (0.00) 0.95 (0.00)
walker2d-med-exp-v2 0.75 (0.03) 0.99 (0.00) 0.99 (0.01) 0.98 (0.00)

Table 20: Cosine similarity for �(s, a).

TD3BC CQL COMBO IQL

halfcheetah-med-v2 131.40 (6.58) 145.00 (9.51) 6.80 (1.48) 144.60 (5.41)
halfcheetah-med-rep-v2 165.40 (0.89) 174.00 (7.52) 84.80 (10.28) 164.40 (3.51)
halfcheetah-med-exp-v2 131.00 (3.61) 129.20 (6.76) 73.60 (10.53) 147.80 (4.15)

hopper-med-v2 47.00 (4.00) 110.40 (9.50) 32.80 (11.10) 56.00 (4.74)
hopper-med-rep-v2 61.80 (4.44) 93.60 (3.05) 32.20 (6.14) 71.80 (4.02)
hopper-med-exp-v2 51.00 (4.74) 110.40 (6.43) 28.00 (9.75) 61.60 (7.99)
walker2d-med-v2 121.60 (5.98) 155.60 (15.60) 142.00 (7.18) 133.60 (1.67)

walker2d-med-rep-v2 168.00 (3.16) 169.60 (5.18) 49.00 (8.51) 162.00 (2.65)
walker2d-med-exp-v2 126.60 (1.67) 151.60 (2.30) 68.20 (37.77) 138.20 (3.63)

Table 21: Effective rank for �(s, a).

A6

TD3BC CQL COMBO IQL

halfcheetah-med-v2 1238.21 (206.54) 1671.35 (266.73) 7506.93 (4914.83) 2853.29 (662.05)
halfcheetah-med-rep-v2 964.80 (74.90) 3041.89 (1472.68) 6121.73 (2351.42) 1331.98 (50.85)
halfcheetah-med-exp-v2 1694.37 (430.47) 2340.58 (549.36) 4009.00 (933.79) 2199.08 (322.87)

hopper-med-v2 2994.54 (792.37) 1991.76 (240.80) 3493.77 (857.89) 3143.34 (524.72)
hopper-med-rep-v2 2853.40 (349.95) 2771.78 (619.28) 1902.39 (347.89) 2627.52 (567.50)
hopper-med-exp-v2 2745.54 (604.30) 2240.43 (926.86) 3906.44 (2240.04) 2672.30 (586.31)
walker2d-med-v2 1854.38 (288.18) 2460.55 (1292.07) 2588.08 (844.80) 1973.46 (396.32)

walker2d-med-rep-v2 1535.55 (82.77) 1558.29 (184.18) 11855.81 (1549.88) 1478.16 (156.08)
walker2d-med-exp-v2 1859.44 (378.47) 2610.34 (1587.02) 1741.50 (989.31) 1914.29 (142.38)

Table 22: Effective dimension for �(s, a).

D Value ranking experiments

Fig 5 illustrates the pipeline of value ranking experiment. Firstly, we use a behavior policy ⇡� to
interact with the environment to collect a set of states {s1, · · · , sN} as the test dataset. In particular,
the behavior policy ⇡� is a mixture of four baseline offline RL agents and a near-optimal online agent.
We use each agent to collect 50K transitions. Secondly, at each state si, we use each baseline agent
to select m = 5 different actions a0 = ⇡(·|si) + ✏, where ✏i is a Gaussian noise with µ = 0 and
� = 0.2. Thirdly, we use each baseline agent to evaluate the Q-values of the collected state-action
pairs. Lastly, we use the online agent to approximate the optimal agent to compute the Spearman’s
rank correlation coefficient (rank IC) and top-N accuracy.

Figure 5: The pipeline of the value ranking experiment.

Since this experiment only utilizes the learned Q-function of each baseline agent, therefore, we
use the experiment result as a proxy to evaluate how accurate the learned Q-values are at ranking
different actions. Moreover, the experiment result is also a useful evidence to show the effectiveness
of different policy evaluation methods.

E Performant policy experiments

E.1 Policy ranking experiment

Fig 6 shows the pipeline of the policy ranking experiment. Similar to the previous value ranking
experiment, we use the online agent to approximate optimal Q⇤(s, a) to rank the actions selected
by each baseline agents. We use the following two metrics to evaluate the goodness of the learned

A7

policy: (1) Average percentage of policy ⇡j that rank the first/last (with largest/smallest Q⇤ value)
across all states 1

|Dpolicy|
P

i {rank(Q⇤(⇡j(si), si)) = 1}. (2) Average mean square error (MSE)
loss of the selected action w.r.t. the optimal action 1

|Dpolicy|
P

t ka⇤i � ⇡j(si)k2.

Figure 6: The pipeline of the policy ranking experiment.

E.2 OOD action experiments

To investigate how often do different offline RL agents take OOD actions, we first use each baseline
agent to interact with the environment to collect 50K transitions. Then we use a probabilistic
ensemble-based dynamics model [8] as in COMBO [54] to estimate the uncertainty [55] of each
state-action pair as �(s, a) = maxi=1,··· ,N kµi

✓(s, a)� 1
N

PN
j=1 µ

j
✓(s, a)k2. In the experiment, we

set the ensemble model number N = 7 as in COMBO. We report the average median and standard
deviation of the uncertainty in the collection samples in Table 8.

F Relaxed in-sample Q-Learning (RIQL)

In RIQL, we attempt to make a minimal modification w.r.t. the IQL algorithm [30]. Since the
motivation of RIQL is to relax the in-sample constraint for the policy improvement step in IQL, we
therefore replace the Advantage Weighted Regression (AWR) loss function with the following:

L⇡(�) = LSAC(�)� �E(s,a)⇠D[log ⇡�(a|s)]

In short, we add a KL-divergence constraint to the SAC [22] actor loss. We determine the parameter
� = {0.1, 0.25, 0.5, 1.0, 1.5} using the offline cross-validation scheme as described in COMBO [54].
For the policy evaluation step, we follow the original expectile regression-based method to update the
two value functions Q✓(s, a) and V (s):

LQ(✓) = E(s,a,s0)⇠D
⇥
(r(s, a) + �V (s

0)�Q✓(s, a))
2
⇤

LV () = E(s,a)⇠D[L
⌧
2(Q✓̂(s, a)� V (s))]

where Q✓̂(s, a) is the target Q network, L⌧2(u) = |⌧� (u < 0)|u2 and ⌧ 2 (0, 1) is a hyperparameter.
The pseudocode of RIQL is described in Algo 2. In addition, Fig 7 shows the learning curves of
RIQL where we report the average evaluation return over 5 random seeds and the standard deviation
is in shadow.

A8

Algorithm 2 Relaxed In-sample Q-Learning (RIQL)
Input: offline dataset D.
Initialize parameters , ✓, ✓̂, �.
Policy evaluation with expectile regression:
for each gradient step do
 � �Vr LV ()
✓ ✓ � �Qr✓LQ(✓)

✓̂ (1� ↵)✓̂ + ↵✓
end for
Policy improvement with KL constraint:
for each gradient step do
� �� �⇡r�L⇡(�)

end for

Figure 7: Learning curve of different offline RL agents. We report the average mean and standard
deviation over 5 random seeds.

A9

G Uncertainty-based Sample Selection (USS)

The proposed Uncertainty-based Sample Selection (USS) is a simple trick for model-based offline
RL. Here we present a detailed pipeline to showcase how it can be implemented.

• We first learn a probabilistic ensemble-based dynamics model as in the COMBO using the
offline dataset.

• For every T = 1000 step, we use the offline RL agent to rollout the model to generate 10K
short trajectories (with horizon = 5).

• We then use the generated samples to update the dynamic uncertainty threshold ��
⌘�q

batch(s, a) + (1 � ⌘)��, where ⌘ = 0.1 and �q
batch(s, a) is the median uncertainty of

the sampled transitions. The �� is initialized to be the median uncertainty of the transition
samples in the first rollout. We only add samples with uncertainty lower than �� to the extra
model buffer Dmodel.

• We train the agent using the augmented dataset D [Dmodel where D is the original offline
dataset.

H Limitations and future directions

In this work, we introduced a series of experiment setups to analyze the behaviors of offline reinforce-
ment learning agents. Specifically, we focus on three fundamental aspects of an RL agent – learned
representations, value functions, and policies. From the empirical experiment results, we discover
some bottlenecks of current SOTA offline RL agents. As a case study, we introduced a variant
of IQL agent, called RIQL, which uses a relaxed policy improvement method and achieves better
performance. A major limitation of our work is that we need to use an online agent to approximate
the optimal agent, which might be unavailable in many problems. In this work, we empirically show
that some performant offline RL agents learned low-quality representations. Therefore, an interesting
future direction is to investigate the effectiveness of the latest representation learning methods in
offline RL. Another future direction is to extend the proposed experiment setups to the online setting.

A10

