
A Baseline Algorithm for Private Isotonic Regression

We provide a baseline algorithm for private isotonic regression by a direct application of the expo-
nential mechanism. For simplicity, we start with the case of totally ordered sets and then extend the
algorithm to general posets.

Totally ordered sets. Consider a discretized range of T :=
{
0, 1

T ,
2
T , . . . , 1

}
. We have that for

f̃ := argminf∈F([m],T) L(f ;D) and f∗ := argminf∈F([m],[0,1]) L(f ;D), it holds that L(f̃ ;D) ≤
L(f∗;D)+ 1

T . Also, it is a simple combinatorial fact that |F([m], T)| =
(
m+T
T

)
≤ (m+T)T , which

bounds the number of monotone functions with this discretization. Thus, the ε-DP exponential
mechanism over the set of all monotone functions in F([m], T), with the score function L(f ;D) of
sensitivity at most L/n, returns f : [m]→ T such that

L(f ;D) ≤ L(f̃ ;D) +O
(

LT log(m+T)
εn

)
≤ L(f∗;D) +O

(
LT log(m+T)

εn + L
T

)
.

Setting T =
√

εn
logm , gives an excess empirical error of O

(
L
√

log(m)
εn

)
(when m ≥ n).

General posets. By Lemma 16, we have that X can be partitioned into w := width(X) many
chains H1, . . . ,Hw. Let hi := |Hi|. Since any monotone function over X has to be monotone over
each of the chains, we have that

|F(X , T)| ≤
w∏
i=1

|F(Hi, T)| ≤
(

|X |
w + T

)wT

≤ (|X |+ T)wT .

Thus, by a similar argument as above, the ε-DP exponential mechanism over the set of all monotone
functions in F(X , T), with score function L(f ;D) returns f : X → T such that

L(f ;D) ≤ L(f∗;D) +O
(
L · wT log(|X |+T)

nε + L
T

)
.

Choosing T =
√

εn
w log |X | , gives an excess empirical error of O

(
L
√

w log |X |
εn

)
(when |X | ≥ n).

B Lower Bound on Privatizing Vectors with Large Alphabet: Proof of
Lemma 9

Below we prove Lemma 9. The proof below is a slight extension of that of Lemma 8 in [32].

Proof of Lemma 9. For every i ∈ [m], σ ∈ [D], let z(i,σ) denote (z1, . . . , zi−1, σ, zi+1, . . . , zm).
Let ε′ = ln(D/2), δ′ = 0.25. We have

Ez∼[D]m [∥M(z)− z∥0]

=
∑
i∈[m]

Pr
z∼[D]m

[M(z)i ̸= zi]

= m−
∑
i∈[m]

Pr
z∼[D]m

[M(z)i = zi]

= m−
∑
i∈[m]

1

Dm+1

∑
z∈[D]m

 ∑
σ∈[D]

Pr[M(z(i,σ)) = σ]


(From (ε′, δ′)-DP ofM) ≥ m−

∑
i∈[m]

1

Dm+1

∑
z∈[D]m

 ∑
σ∈[D]

(
eε

′
· Pr[M(z(i,1)) = σ] + δ′

)
≥ m−

∑
i∈[m]

1

Dm+1

∑
z∈[D]m

(
eε

′
+Dδ′

)
=

(
1− eε

′
/D − δ′

)
m

= 0.25m.

15

C Algorithms for Isotonic Regression with Additional Constraints

In this section, we elaborate on the constrained variants of the isotonic regression problem over
totally ordered sets, by designing a meta-algorithm that can be instantiated to get algorithms for
each of the cases discussed in Section 3.3.

Recall that Algorithm 1 proceeded in T rounds where in round t the algorithm starts with a partition
of [m] into 2t intervals, and then partitions each interval into two using the exponential mechanism.
At a high-level, our meta-algorithm is similar, except that, it maintains a set of pairwise disjoint
structured intervals of [m], that is, each interval has an additional structure which imposes con-
straints on the function that can be returned on the said interval; moreover, the function is fixed
outside the union of the said intervals. This idea is described in Algorithm 2, stated using the fol-
lowing abstractions, which will be instantiated to derive algorithms for each constrained variant.

• A set of all structured intervals of [m] denoted as S, and an initial structured interval S0,0 ∈ S .
A structured interval S will consist of an interval domain denoted PS ⊆ [m], an interval range
denoted RS ⊆ [0, 1], and potentially additional other constraints that the function should satisfy.
We use |RS | to denote the length of RS . In order to make the number of structured intervals
bounded, we will consider a discretized range where the endpoints of interval RS lie in H :=
{0, 1/H, 2/H, . . . , 1} for some discretization parameter H .

• A partition method Φ : S 7→ {(Sleft, Sright, g)} that defines a set of all “valid partitions” of a
structured interval S into two structured intervals Sleft and Sright and a function g : PS∖(PSleft∪
PSright) → RS . It is required that PS ∖ (PSleft ∪ PSright) be an interval. If the algorithm makes
a choice of (Sleft, Sright, g), then the final function returned by the algorithm is required to be
equal to g on PS ∖ (PSleft ∪ PSright).

• For all S ∈ S, we abuse notation to let F(S) denote the set of all monotone functions mapping
PS to RS , while respecting the additional conditions enforced by the structure in S.

We instantiate this notion of structured intervals in the following ways to derive algorithms for the
constrained variants of isotonic regression mentioned earlier:

• (Vanilla) Isotonic Regression (recovers Algorithm 1): S is simply the set of all interval domains,
and all (discretized) interval ranges and the partition method simply partitions into two sub-
intervals, with the range divided into two equal parts.2 Namely,

S := {([i, j], [τ, θ]) : i, j ∈ [m] , τ, θ ∈ H s.t. i ≤ j , τ ≤ θ} ,
S0,0 := ([1,m], [0, 1]) ,

Φ(([i, j], [τ, θ])) :=
{
(([i, ℓ], [τ, τ+θ

2]), ([ℓ+ 1, j], [τ+θ
2 , θ])) : i− 1 ≤ ℓ ≤ j

}
,

F(([i, j], [τ, θ])) := set of monotone functions mapping [i, j] to [τ, θ] .

We skip the description of the function g in the partition method Φ, since the middle sub-interval
is empty. For all the other variants, we skip having to explicitly write the conditions of i, j ∈ [m],
τ, θ ∈ H, i ≤ j, and τ ≤ θ in definition of S, and similarly that F(S) consist of monotone
functions mapping [i, j] to [τ, θ]; we only focus on the main new conditions.

• k-Piecewise Constant: S is the set of all interval domains, all discretized ranges, along with
a parameter (encoding an upper bound on the number of pieces in the final piecewise constant
function). The partition method partitions into two sub-intervals respecting that the number of
pieces and the range divided into two equal parts, namely,

S :=

{
([i, j], [τ, θ], r) :

1 ≤ r ≤ k if i ≤ j,
r = 0 if i > j

}
,

S0,0 := ([1,m], [0, 1], k) ,

Φ(([i, j], [τ, θ], r)) :=

{
(([i, ℓ], [τ, τ+θ

2], r1), ([ℓ+ 1, j], [τ+θ
2 , θ], r2))

s.t. i− 1 ≤ ℓ ≤ j and r1 + r2 = r

}
,

F(([i, j], [τ, θ], r)) := set of r-piecewise constant functions
2We ignore a slight detail that τ+θ

2
need not be in H; this can be fixed e.g., by letting it be

⌊
H · τ+θ

2

⌋
/H ,

but we skip this complicated expression for simplicity. Note that, if we let H = 2T , this distinction does not
make a difference in the algorithm for vanilla isotonic regression.

16

Algorithm 2 Meta algorithm for variants of DP Isotonic Regression for Totally Ordered Sets.

Input: X = [m], dataset D = {(x1, y1), . . . , (xn, yn)}, DP parameter ε.
Output: Monotone function f : [m]→ [0, 1] satisfying additional desired condition.

T ← ⌈log(εn)⌉
ε′ ← ε/T
S0,0 : initial structured interval {Any structured interval S consists of an
interval domain PS and an interval range RS , and potentially other conditions on the function.}
for t = 0, . . . , T − 1 do

for i = 0, . . . , 2t − 1 do
▷ Di,t ←

{
(xj , yj) | j ∈ [n], xj ∈ PSi,t

}
▷ Choose (Sleft

i,t , Sright
i,t , gi,t) ∈ Φ(Si,t), using ε′-DP exponential mechanism with scoring

function

scorei,t(S
left, Sright, g) := min

f1∈F(Sleft)
Labs
RS

(f1;D
left
i,t)

+ min
f2∈F(Sright)

Labs
RS

(f2;D
right
i,t)

+ Labs
RS

(g;Dmid
i,t)

{Notation: Dleft
i,t := {(x, y) ∈ Di,t | x ∈ PSleft}, Dright

i,t is defined similarly and
Dmid

i,t :=
{
(x, y) ∈ Di,t | x ∈ PSi,t ∖ (PSleft ∪ PSright)

}
.}

{Note: scorei,t(Sleft, Sright, g) has sensitivity at most L · |RS |.}

▷ S2i,t+1 ← Sleft
i,t and S2i+1,t+1 ← Sright

i,t .

Let f : [m] → [0, 1] be choosing f |PSi,T−1
∈ F(Si,T−1) arbitrarily for all i ∈ [2T], and f(x) =

gi,t(x) for all x ∈ PSi,t ∖ (PS2i,t ∪ PS2i+1,t) for all i, t.
return f

• k-Piecewise Linear: S is the set of all interval domains, all discretized ranges, along with a pa-
rameter (encoding an upper bound on the number of pieces in the final piecewise linear function),
and two Boolean values (⊤/⊥), one encoding whether the function must achieve the minimum
possible value at the start of the interval, and other encoding whether it must achieve the max-
imum possible value at the end of the interval. The partition method partitions into two sub-
intervals respecting that the number of pieces, by choosing a middle sub-interval that ensures that
each range is at most half as large as the earlier one, namely,

S :=

{
([i, j], [τ, θ], r, b1, b2) :

1 ≤ r ≤ k if i ≤ j,
r = 0 if i > j,
b1, b2 ∈ {⊤,⊥}

}
,

S0,0 := ([1,m], [0, 1], k,⊥,⊥) ,

Φ(([i, j], [τ, θ], r, b1, b2)) :=



 Sleft = ([i, ℓ1], [τ, ω1], r1, b1,⊤),
Sright = ([ℓ2, j], [ω2, θ], r2,⊤, b2)

g(x) = ω1 + (x− ℓ1) · (ω2 − ω1)/(ℓ2 − ℓ1)


s.t. i− 1 ≤ ℓ1 < ℓ2 ≤ j + 1 , ω1 ≤ τ+θ

2 ≤ ω2 ,
and r1 + r2 = r − 1

 ,

F(([i, j], [τ, θ], r, b1, b2)) := set of r-piecewise linear functions f
s.t. f(i) = τ if b1 = ⊤ and f(j) = θ if b2 = ⊤.

In other words, Φ(([i, j], [τ, θ], r, b1, b2)) considers the three sub-intervals [i, ℓ1], [ℓ1, ℓ2] and
[ℓ2, j], and fits an affine function g in the middle sub-interval [ℓ1, ℓ2] such that g(ℓ1) = ω1 and
g(ℓ2) = ω2 and ensures that the function f returned on sub-intervals [i, ℓ1] and [ℓ2, j] satisfies
f(ℓ1) = ω1 and f(ℓ2) = ω2.

• Lipschitz Regression: Given any Lipschitz constant Lf , S is the set of all interval domains, all
discretized ranges, along with two Boolean values (⊤/⊥), one encoding whether the function

17

must achieve the minimum possible value at the start of the interval, and other encoding whether it
must achieve the maximum possible value at the end of the interval. The partition method chooses
sub-intervals by choosing ℓ and function values f(ℓ) and f(ℓ+1) such that f(ℓ+1)−f(ℓ) ≤ Lf

(thereby respecting the Lipschitz condition), and moreover f(ℓ) ≤ τ+θ
2 and f(ℓ+ 1) ≥ τ+θ

2 .

S := {([i, j], [τ, θ], b1, b2) : b1, b2 ∈ {⊤,⊥}} ,
S0,0 := ([1,m], [0, 1],⊥,⊥) ,

Φ(([i, j], [τ, θ], b1, b2)) :=


(

Sleft = ([i, ℓ], [τ, ω1], b1,⊤),
Sright = ([ℓ+ 1, j], [ω2, θ],⊤, b2)

)
s.t. i− 1 ≤ ℓ ≤ j , ω1 ≤ τ+θ

2 ≤ ω2 ,
ω2 − ω1 ≤ Lf

 ,

F(([i, j], [τ, θ], b1, b2)) := set of Lf -Lipschitz linear functions f
s.t. f(i) = τ if b1 = ⊤ and f(j) = θ if b2 = ⊤.

• Convex/Concave: We only describe the convex case; the concave case follows similarly. Note that
a function f is convex over the discrete domain [m] if and only if f(x+1)+ f(x− 1) > 2 · f(x)
holds for all x. Let S be the set of all interval domains, all discretized ranges, along with the
following additional parameters
– a lower bound L on the (discrete) derivative of f ,
– an upper bound U on the (discrete) derivative of f ,
– a Boolean value encoding whether the function must achieve the minimum possible value at

the start of the interval,
– another Boolean value encoding whether the function must achieve the maximum possible

value at the end of the interval.
The partition method chooses sub-intervals by choosing ℓ and function values f(ℓ) and f(ℓ+ 1)
such that L ≤ f(ℓ+1)− f(ℓ) ≤ U , f(ℓ) ≤ τ+θ

2 and f(ℓ+1) ≥ τ+θ
2 and enforcing that the left

sub-interval has derivatives at most f(ℓ + 1) − f(ℓ) and the right sub-interval has derivatives at
least f(ℓ+ 1)− f(ℓ).

S := {([i, j], [τ, θ], L, U, b1, b2) : L ≤ U, b1, b2 ∈ {⊤,⊥}} ,
S0,0 := ([1,m], [0, 1],−∞,+∞,⊥,⊥) ,

Φ(([i, j], [τ, θ], L, U, b1, b2)) :=


(

Sleft = ([i, ℓ], [τ, ω1], L, ω2 − ω1, b1,⊤),
Sright = ([ℓ+ 1, j], [ω2, θ], ω2 − ω1, U,⊤, b2)

)
s.t. i− 1 ≤ ℓ ≤ j , ω1 ≤ τ+θ

2 ≤ ω2 ,
L ≤ ω2 − ω1 ≤ U

 ,

F(([i, j], [τ, θ], L, U)) := set of convex functions f
s.t. for all ℓ ∈ [i, j) it holds that L ≤ f(ℓ+ 1)− f(ℓ) ≤ U ,
and f(i) = τ if b1 = ⊤ and f(j) = θ if b2 = ⊤.

Privacy Analysis. Follows similarly as done for Algorithm 1.

Utility Analysis. Since |RSi,t | ≤ 2−t in each of the cases, it follows that the sensitivity of the
scoring function is at most L/2t. The rest of the proof follows similarly, with the only change being
that the number of candidates in the exponential mechanism is given as |Φ(Si,t)|, which in the case
of vanilla isotonic regression was simply |Pi,t|. We now bound this for each of the cases, which
shows that log |Φ(Si,t)| is at most O(log(mn)). In particular,

• k-Piecewise Constant: |Φ(S)| ≤ O(mk).
• k-Piecewise Linear: |Φ(S)| ≤ O(m2H2k).
• Lf -Lipschitz: |Φ(S)| ≤ O(mH2).
• Convex/Concave: |Φ(S)| ≤ O(mH)

Finally, there is an additional error due to discretization. To account for the discretization error,
we argue below for appropriately selected values of H that, for any optimal function f∗, there
exists f ∈ F(S0,0) such that |f∗(x) − f(x)| ≤ 1/n. This indeed immediately implies that the
discretization error is at most O(1).

18

• k-Piecewise Linear: We may select H = n. In this case, for every endpoint ℓ, we let f(ℓ) =
H ·⌈f∗(ℓ)/H⌉ and interpolate the intermediate points accordingly. It is simple to see that f∗(x)−
f(x) ≤ 1/n as desired.

• Lf -Lipschitz and Convex/Concave: Let H = mn. Here we discretize the (discrete) derivative of
f . Specifically, let f(1) = ⌊H ·f∗(1)⌊/H and let f(ℓ+1)−f(ℓ) = ⌊H ·(f∗(ℓ+1)−f∗(ℓ))⌋/H
for all ℓ = 2, . . . ,m. Once again, it is simple to see that f, f∗ differ by at most 1/n at each point.

In summary, in all cases, we have |Φ(S)| ≤ (nm)O(1) resulting in the same asymptotic error as in
the unconstrained case.

Runtime Analysis. It is easy to see that each score value can be computed (via dynamic pro-
gramming) in time poly(n) · poly(H). Thus, the entire algorithm can be implemented in time that
poly(n) · poly(H) · logm ≤ (nm)O(1) as claimed.3

D Missing Proofs from Section 4

For a set S ⊆ X , its lower closure and upper closure are defined as S≤ := {x ∈ X | ∃s ∈ S, x ≤ s}
and S≥ := {x ∈ X | ∃s ∈ S, x ≥ s}, respectively. Similarly, the strict lower closure and strict
upper closure are defined as S< := {x ∈ X | ∃s ∈ S, x < s} and S> := {x ∈ X | ∃s ∈ S, x > s}.
When S = ∅, we use the convention that S≤ = S< = ∅ and S≥ = S> = X .

D.1 Proof of Theorem 1

We note that, in the proof below, we also consider the empty set to be an anti-chain.

Proof of Theorem 1. We use the notations of ℓ[τ,θ] and Labs
[τ,θ] as defined in the proof of Theorem 3.

Any monotone function f : X → [0, 1] corresponds to an antichain A in X such that f(a) ≥ 1/2
for all a ∈ A> and f(a) ≤ 1/2 for all a ∈ A≤. Our algorithm works by first choosing this antichain
A in a DP manner using the exponential mechanism. The choice of A partitions the poset into two
parts A> and A≤ and the algorithm recurses on these two parts to find functions f> : A> → [1/2, 1]
and f≤ : A≤ → [0, 1/2], which are put together to obtain the final function.

In particular, the algorithm proceeds in T stages, where in stage t, the algorithm starts with a partition
of X into 2t parts {Pi,t | i ∈ [2t]}, and the algorithm eventually outputs a monotone function f such
that f(x) ∈ [i/2t, (i + 1)/2t] for all x ∈ Pi,t. This partition is further refined for stage t + 1 by
choosing an antichain Ai,t in Pi,t and partitioning Pi,t into Pi,t ∩ A>

i,t and Pi,t ∩ A≤
i,t. In the final

stage, the function f is chosen to be the constant i/2T−1 over Pi,T−1. A complete description is
presented in Algorithm 3.

Before proceeding to prove the algorithm’s privacy and utility guarantees, we note that the out-
put f is indeed monotone because for every x′ < x that gets separated when we partition Pi,t to
P2i,t+1, P2i+1,t+1, we must have x′ ∈ P2i,t+1 and x ∈ P2i+1,t+1.

Privacy Analysis. Similar to the proof of Theorem 3, it follows that each inner subroutine for each
t is ε′-DP, and thus the entire mechanism is ε-DP by basic composition of DP (Lemma 6).

Utility Analysis. Since the sensitivity of scorei,t(·) is at most L/2t, we have from Lemma 7, that
for all t ∈ {0, . . . , T − 1} and i ∈ [2t],

E
[
scorei,t(Ai,t)− min

A∈Ai,t

scorei,t(A)

]
≤ O

(
L · log |Ai,t|

ε′ · 2t

)
≤ O

(
L · width(X) · log |X |

ε′ · 2t

)
.

(4)

To facilitate the subsequent steps of the proof, let us introduce additional notation. Let hi,t denote
argminh∈F(Pi,t,[i/2t,(i+1)/2t]) Labs(h;Di,t) (with ties broken arbitrarily). Then, let Ãi,t denote the

3In the main body, we erroneously claimed that the running time was (n logm)O(1), instead of (nm)O(1).

19

Algorithm 3 DP Isotonic Regression for General Posets

Input: Poset X , dataset D = {(x1, y1), . . . , (xn, yn)}, DP parameter ε.
Output: Monotone function f : X → [0, 1].

T ← ⌈log(εn)⌉ and ε′ ← ε/T .
P0,0 ← X
for t = 0, . . . , T − 1 do

for i = 0, . . . , 2t − 1 do

▷ Di,t ← {(xj , yj) | j ∈ [n], xj ∈ Pi,t} (set of all input points whose x belongs to Pi,t)
▷Ai,t ← set of all antichains in Pi,t.

For each antichain A ∈ Ai,t, we abuse notation to use
•Di,t ∩A≤ to denote{(x, y) ∈ Di,t | x ∈ A≤}, and
•Di,t ∩A> to denote {(x, y) ∈ Di,t | x ∈ A>}.

▷ Choose antichain Ai,t ∈ Ai,t using the exponential mechanism with the scoring function

scorei,t(A) = min
f1∈F(Pi,t∩A≤,[i

2t
, i+0.5

2t
])
Labs
[i
2t

, i+1

2t
]
(f1;Di,t ∩A≤)

+ min
f2∈F(Pi,t∩A>,[i+0.5

2t
, i+1

2t
])
Labs
[i
2t

, i+1

2t
]
(f2;Di,t ∩A>),

{scorei,t(A) has sensitivity at most L/2t.}

▷ P2i,t+1 ← Pi,t ∩A≤
i,t and P2i+1,t+1 ← Pi,t ∩A>

i,t.

Let f : X → [0, 1] be given by f(x) = i/2T−1 for all x ∈ Pi,T−1 and all i ∈ [2t].
return f

set of all maximal elements of h−1
i,t ([i/2

t, (i+ 1/2)/2t]). Under this notation, we have that

scorei,t(Ai,t)− min
A∈Ai,t

scorei,t(A)

≥ scorei,t(Ai,t)− scorei,t(Ãi,t) (5)

=
(
Labs
[i/2t,(i+1)/2t](h2i,t+1;D2i,t+1) + Labs

[i/2t,(i+1)/2t](h2i+1,t+1;D2i+1,t+1)
)

− Labs
[i/2t,(i+1)/2t](hi,t;Di,t)

= Labs(h2i,t+1;D2i,t+1) + Labs(h2i+1,t+1;D2i+1,t+1)− Labs(hi,t;Di,t). (6)

Finally, notice that

Labs(f ;Di,T−1)− Labs(hi,T−1;Di,T−1) ≤
L

2T−1
· |Di,T−1| = O

(
|Di,T−1|

εn

)
. (7)

With all the ingredients ready, we may now bound the expected (unnormalized) excess risk. We
have that
Labs(f ;D) =

∑
i∈[2T−1]

Labs(f ;Di,T−1)

(7)
≤

∑
i∈[2T−1]

(
O

(
|Di,T−1|

εn

)
+ Labs(hi,T−1;Di,T−1)

)
= O(1/ε) +

∑
i∈[2T−1]

Labs(hi,T−1;Di,T−1)

= O(1/ε) + Labs(h0,0;D0,0)

+
∑

t∈[T−1]

∑
i∈[2t−1]

(
Labs(h2i,t;D2i,t) + Labs(h2i+1,t;D2i+1,t)− Labs(hi,t−1;Di,t−1)

)
.

20

Taking the expectation on both sides and using (4) and (6) yields

E[Labs(f ;D)] ≤ O(1/ε) + Labs(h0,0;D0,0) +
∑

t∈[T−1]

∑
i∈[2t−1]

O

(
L · width(X) · log |X |

ε′ · 2t

)

= O(1/ε) + Labs(f∗;D) +
∑

t∈[T−1]

O

(
L · width(X) · log |X |

ε′

)

= O(1/ε) + Labs(f∗;D) + O

(
T · L · width(X) · log |X |

ε′

)
= O(1/ε) + Labs(f∗;D) + O

(
T 2 · L · width(X) · log |X |

ε

)
= Labs(f∗;D) + O

(
L · width(X) · log |X | · (1 + log2(εn))

ε

)
.

Dividing both sides by n yields the desired claim.

21

