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Abstract

In this paper, we consider the problem of differentially private (DP) algorithms
for isotonic regression. For the most general problem of isotonic regression over
a partially ordered set (poset) X and for any Lipschitz loss function, we obtain
a pure-DP algorithm that, given n input points, has an expected excess empirical
risk of roughly width(X ) · log |X |/n, where width(X ) is the width of the poset.
In contrast, we also obtain a near-matching lower bound of roughly (width(X ) +
log |X |)/n, that holds even for approximate-DP algorithms. Moreover, we show
that the above bounds are essentially the best that can be obtained without utilizing
any further structure of the poset. In the special case of a totally ordered set and for
ℓ1 and ℓ22 losses, our algorithm can be implemented in near-linear running time;
we also provide extensions of this algorithm to the problem of private isotonic
regression with additional structural constraints on the output function.

1 Introduction

Isotonic regression is a basic primitive in statistics and machine learning, which has been studied
at least since the 1950s [4, 9]; see also the textbooks on the topic [5, 38]. It has seen applications
in numerous fields including medicine [31, 39] where the expression of an antigen is modeled as a
monotone function of the DNA index and WBC count, and education [19], where isotonic regression
was used to predict college GPA using high school GPA and standardized test scores. Isotonic re-
gression is also arguably the most common non-parametric method for calibrating machine learning
models [51], including modern neural networks [23].

In this paper, we study isotonic regression with a differential privacy (DP) constraint on the output
model. DP [17, 16] is a highly popular notion of privacy for algorithms and machine learning
primitives, and has seen increased adoption due to its powerful guarantees and properties [37, 43].
Despite the plethora of work on DP statistics and machine learning (see Section 5 for related work),
ours is, to the best of our knowledge, the first to study DP isotonic regression.

In fact, we consider the most general version of the isotonic regression problem. We first set up
some notation to describe our results. Let (X ,≤) be any partially ordered set (poset). A function
f : X → [0, 1] is monotone if and only if f(x) ≤ f(x′) for all x ≤ x′. For brevity, we use F(X ,Y)
to denote the set of all monotone functions from X to Y; throughout, we consider Y ⊆ [0, 1].

Let [n] denote {1, . . . , n}. Given an input dataset D = {(x1, y1), . . . , (xn, yn)} ∈ (X × [0, 1])n,
let the empirical risk of a function f : X → [0, 1] be L(f ;D) := 1

n

∑
i∈[n] ℓ(f(xi), yi), where

ℓ : [0, 1]× [0, 1]→ R is a loss function.

We study private isotonic regression in the basic machine learning framework of empirical risk
minimization. Specifically, the goal of the isotonic regression problem, given dataset D =
{(x1, y1), . . . , (xn, yn)} ∈ (X × [0, 1])n, is to find a monotone function f : X → [0, 1] that
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minimizes L(f ;D). The excess empirical risk of a function f is defined as L(f ;D) − L(f∗;D)
where f∗ := argming∈F(X ,Y) L(g;D).

1.1 Our Results

General Posets. Our first contribution is to give nearly tight upper and lower bounds for any poset,
based on its width, as stated below (see Section 4 for a formal definition.)

Theorem 1 (Upper Bound for General Poset). Let X be any finite poset and let ℓ be an L-Lipschitz
loss function. For any ε ∈ (0, 1], there is an ε-DP algorithm for isotonic regression for ℓ with

expected excess empirical risk at most O
(

L·width(X )·log |X |·(1+log2(εn))
εn

)
.

Theorem 2 (Lower Bound for General Poset; Informal). For any ε ∈ (0, 1] and any δ < 0.01·ε/|X |,
any (ε, δ)-DP algorithm for isotonic regression for a “nice” loss function ℓ must have expected

excess empirical risk Ω
(

width(X )+log |X |
εn

)
.

While our upper and lower bounds do not exactly match because of the multiplication-vs-addition of
log |X |, we show in Section 4.3 that there are posets for which each bound in tight. In other words,
this gap cannot be closed for generic posets.

Totally Ordered Sets. The above upper and lower bounds immediately translate to the case of
totally ordered sets, by plugging in width(X ) = 1. More importantly, we give efficient algorithms
in this case, which runs in time Õ(n2 + n log |X |) for general loss function ℓ, and in nearly linear
Õ(n · log |X |) time for the widely-studied ℓ22- and ℓ1-losses1.

Theorem 3. For all finite totally ordered sets X , L-Lipschitz loss functions ℓ, and ε ∈ (0, 1],
there is an ε-DP algorithm for isotonic regression for ℓ with expected excess empirical risk
O
(

L·(log |X |)·(1+log2(εn))
εn

)
. The running time of this algorithm is Õ(n2 + n log |X |) in general

and can be improved to Õ(n log |X |) for ℓ1 and ℓ22 losses.

We are not aware of any prior work on private isotonic regression. A simple baseline algorithm
for this problem would be to use the exponential mechanism over the set of all monotone functions
taking values in a discretized set, to choose one with small loss. We show in Appendix A that this
achieves an excess empirical risk of O(L ·

√
width(X ) · log |X |/εn), which is quadratically worse

than the bound in Theorem 1. Moreover, even in the case of a totally ordered set, it is unclear how
to implement such a mechanism efficiently.

We demonstrate the flexibility of our techniques by showing that it can be extended to variants of
isotonic regression where, in addition to monotonicity, we also require f to satisfy additional prop-
erties. For example, we may want f to be Lf -Lipchitz for some specified Lf > 0. Other constraints
we can handle include k-piecewise constant, k-piecewise linear, convexity, and concavity. For each
of these constraints, we devise an algorithm that yields essentially the same error compared to the
unconstrained case and still runs in polynomial time.

Theorem 4. For all finite totally ordered sets X , L-Lipschitz loss functions ℓ, and ε ∈ (0, 1], there
is an ε-DP algorithm for k-piecewise constant, k-piecewise linear, Lipchitz, convex, or concave
isotonic regression for ℓ with expected excess empirical risk Õ

(
L·(log |X |)

εn

)
. The running time of

this algorithm is (n|X |)O(1).

Organization. We next provide necessary background on DP. In Section 3, we prove our results
for totally ordered sets (including Theorem 3). We then move on to discuss general posets in Sec-
tion 4. Section 5 contains additional related work. Finally, we conclude with some discussion in
Section 6. Due to space constraints, we omit some proofs from the main body; these can be found
in the Appendix.

1Recall that the ℓ22-loss is ℓ22(y, y′) = (y − y′)2 and the ℓ1-loss is ℓ1(y, y′) = |y − y′|.
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2 Background on Differential Privacy

Two datasets D = {((x1, y1), . . . , (xn, yn)} and D′ = {(x′
1, y

′
1), . . . , (x

′
n, y

′
n)} are said to be

neighboring, denoted D ∼ D′, if there is an index i ∈ [n] such that (xj , yj) = (x′
j , y

′
j) for all

j ∈ [n] \ {i}. We recall the formal definition of differential privacy [18, 16]:

Definition 5 (Differential Privacy (DP) [18, 16]). Let ε > 0 and δ ∈ [0, 1]. A randomized algorithm
M : Xn → Y is (ε, δ)-differentially private ((ε, δ)-DP) if, for all D ∼ D′ and all (measurable)
outcomes S ⊆ Y , we have that Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S] + δ.

We denote (ε, 0)-DP as ε-DP (aka pure-DP). The case when δ > 0 is referred to as approximate-DP.

We will use the following composition theorems throughout our proofs.

Lemma 6. (ε, δ)-DP satisfies the following:

• Basic Composition: If mechanismsM1, . . . ,Mt are such thatMi satisfies (εi, δi)-DP, then the
composed mechanism (M1(D), . . . ,Mt(D)) satisfies (

∑
i εi,

∑
i δi)-DP. This holds even under

adaptive composition, where eachMi can depend on the outputs ofM1, . . . ,Mi−1.
• Parallel Composition [33]: If a mechanism M satisfies (ε, δ)-DP, then for any partition of
D = D1 ⊔ · · · ⊔Dt, the composed mechanism given as (M(D1), . . . ,M(Dt)) satisfies (ε, δ)-
DP.

Exponential Mechanism. The exponential mechanism solves the basic task of selection in data
analysis: given a dataset D ∈ Zn and a set A of options, it outputs the (approximately) best option,
where “best” is defined by a scoring function s : A × Zn → R. The ε-DP exponential mecha-
nism [34] is the randomized mechanismM : Zn → A given by

∀ D ∈ Zn, a ∈ A : Pr[M(D) = a] ∝ exp
(
− ε

2∆s
· s(a,D)

)
,

where ∆s := supD∼D′ maxa∈A |s(a,D)− s(a,D′)| is the sensitivity of the scoring function.

Lemma 7 ([34]). ForM being the ε-DP exponential mechanism, it holds for all D ∈ Zn that

E[s(M(D), D)] ≤ mina∈A s(a,D) + 2∆s

ε log |A|.

Lower Bound for Privatizing Vectors. Lower bounds for DP algorithms that can output a binary
vector that is close (say, in the Hamming distance) to the input are well-known.

Lemma 8 (e.g., [32]). Let ε, δ > 0,m ∈ N, let the input domain be {0, 1}m and let two vectors
z, z′ ∈ {0, 1}m be neighbors if and only if ∥z − z′∥0 ≤ 1. Then, for any (ε, δ)-DP algorithm
M : {0, 1}m → {0, 1}m, we have Ez∼{0,1}m [∥M(z)− z∥0] ≥ e−ε ·m · 0.5 · (1− δ).

It is also simple to extend the lower bound for the case where the vector is not binary, as stated
below. We defer the full proof to Appendix B.

Lemma 9. Let D,m be any positive integer such that D ≥ 2, let the input domain be [D]m and let
two vectors z, z′ ∈ [D]m be neighbors if and only if ∥z− z′∥0 ≤ 1. Then, for any (ln(D/2), 0.25)-
DP algorithmM : [D]m → [D]m, we have that Ez∼[D]m [∥M(z)− z∥0] ≥ Ω(m).

Group Differential Privacy. For any neighboring relation ∼, we write ∼k as a neighboring rela-
tion where D ∼k D′ iff there is a sequence D = D0, . . . , Dk′ = D′ for some k′ ≤ k such that
Di−1 ∼ Di for all i ∈ [k′].

Fact 10 (e.g., [41]). Let ε > 0, δ ≥ 0 and k ∈ N. Suppose thatM is an (ε, δ)-DP algorithm for the

neighboring relation ∼. ThenM is
(
kε, ekε−1

eε−1 · δ
)

-DP for the neighboring relation ∼k.

3 DP Isotonic Regression over Total Orders

We first focus on the “one-dimensional” case whereX is totally ordered; for convenience, we assume
that X = [m] where the order is the natural order on integers. We first present an efficient algorithm
for the this case and then a matching lower bound.
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3.1 An Efficient Algorithm

To describe our algorithm, it will be more convenient to use the unnormalized version of the empir-
ical risk, which we define as Labs(f ;D) :=

∑
(x,y)∈D ℓ(f(x), y).

We now provide a high-level overview of our algorithm. Any monotone function f : [m] → [0, 1]
contains a (not necessarily unique) threshold α ∈ {0} ∪ [m] such that f(a) ≥ 1/2 for all a > α and
f(a) ≤ 1/2 for all a ≤ α. Our algorithm works by first choosing this threshold α in a private manner
using the exponential mechanism. The choice of α partitions [m] into [m]>α := {a ∈ [m] | a > α}
and [m]≤α := {a ∈ [m] | a ≤ α}. The algorithm recurses on these two parts to find functions
f> : [m]>α → [1/2, 1] and f≤ : [m]≤α → [0, 1/2], which are then glued to obtain the final
function.

In particular, the algorithm proceeds in T stages, where in stage t, the algorithm starts with a par-
tition of [m] into 2t intervals {Pi,t | i ∈ {0, . . . , 2t − 1}}, and the algorithm eventually outputs a
monotone function f such that f(x) ∈ [i/2t, (i + 1)/2t] for all x ∈ Pi,t. This partition is further
refined for stage t + 1 by choosing a threshold αi,t in Pi,t and partitioning Pi,t into P

>αi,t

i,t and

P
≤αi,t

i,t . In the final stage, the function f is chosen to be the constant i/2T−1 over Pi,T−1. Note that
the algorithm may stop at T = Θε(log n) because the Lipschitzness of ℓ ensures that assigning each
partition to the constant i/2T−1 cannot increase the error by more than L/2T ≤ Oε(L/n).

We already have mentioned above that each αi,t has to be chosen in a private manner. However, if
we let the scoring function directly be the unnormalized empirical risk, then its sensitivity remains
as large as L even at a large stage t. This is undesirable because the error from each run of the
exponential mechanism can be as large as O(L · logm) but there are as many as 2t runs in stage t.
Adding these error terms up would result in a far larger total error than desired.

To circumvent this, we observe that while the sensitivity can still be large, they are mostly “ineffec-
tive” because the function range is now restricted to only an interval of length 1/2t. Indeed, we may
use the following “clipped” version of the loss function which has low sensitivity of L/2t instead.

Definition 11 (Clipped Loss Function). For a range [τ, θ] ⊆ [0, 1], let ℓ[τ,θ] : [τ, θ] × [0, 1] →
R be given as ℓ[τ,θ](ŷ, y) := ℓ(ŷ, y) − miny′∈[τ,θ] ℓ(y

′, y). Similar to above, we also define
Labs
[τ,θ](f ;D) :=

∑
(x,y)∈D ℓ[τ,θ](f(xi), yi).

Observe that range(ℓ[τ,θ]) ⊆ [0, L · (θ − τ)], since ℓ is L-Lipschitz. In other words, the sensitivity
of Labs

[τ,θ](f ;D) is only L · (θ − τ). Algorithm 1 contains a full description.

Proof of Theorem 3. Before proceeding to prove the algorithm’s privacy and utility guarantees, we
note that the output f is indeed monotone since for every x′ < x that gets separated when we
partition Pi,t into P2i,t+1, P2i+1,t+1, we must have x′ ∈ P2i,t+1 and x ∈ P2i+1,t+1.

Privacy Analysis. Since the exponential mechanism is ε′-DP and the dataset is partitioned with
the exponential mechanism being applied only to each partition once, the parallel composition prop-
erty (Lemma 6) implies that the entire subroutine for each t is ε′-DP. Thus, by basic composition
(Lemma 6), it follows that Algorithm 1 is ε-DP (since ε = ε′T ).

Utility Analysis. Since the sensitivity of scorei,t(·) is at most L/2t, we have from Lemma 7, that
for all t ∈ {0, . . . , T − 1} and i ∈ {0, 1, . . . , 2t},

E
[
scorei,t(αi,t)− min

α∈Pi,t

scorei,t(α)

]
≤ O

(
L · log |Pi,t|

ε′ · 2t

)
≤ O

(
L · logm
ε′ · 2t

)
. (1)

Let hi,t denote argminh∈F(Pi,t,[i/2t,(i+1)/2t]) Labs(h;Di,t) (with ties broken arbitrarily). Then, let
α̃i,t denote the largest element in Pi,t such that hi,t(α̃i,t) ≤ (i+1/2)/2t; namely, α̃i,t is the optimal
threshold when restricted to Di,t. Under this notation, we have that

scorei,t(αi,t)− min
α∈Pi,t

scorei,t(α)

≥ scorei,t(αi,t)− scorei,t(α̃i,t)
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Algorithm 1 DP Isotonic Regression for Totally Ordered Sets.

Input: X = [m], dataset D = {(x1, y1), . . . , (xn, yn)}, DP parameter ε.
Output: Monotone function f : [m]→ [0, 1].

T ← ⌈log(εn)⌉
ε′ ← ε/T
P0,0 ← [m]

for t = 0, . . . , T − 1 do
for i = 0, . . . , 2t − 1 do

▷ Di,t ← {(xj , yj) | j ∈ [n], xj ∈ Pi,t} {Set of all input points whose x belongs to Pi,t}
{Notation: Define D≤α

i,t := {(x, y) ∈ Di,t | x ≤ α} and D>α
i,t similarly }

{Notation: Define P≤α
i,t := {x ∈ Pi,t | x ≤ α} and P>α

i,t similarly }
▷ Choose threshold αi,t ∈ {0} ∪ Pi,t, using ε′-DP exponential mechanism with scoring

function

scorei,t(α) := min
f1∈F(P

≤α
i,t ,[ i

2t
, i+0.5

2t
])

Labs
[ i
2t

, i+1

2t
]
(f1;D

≤α
i,t )

+ min
f2∈F(P>α

i,t ,[
(i+0.5)

2t
,
(i+1)

2t
])

Labs
[ i
2t

, i+1

2t
]
(f2;D

>α
i,t )

{Note: scorei,t(α) has sensitivity at most L/2t. }

▷ P2i,t+1 ← P
≤αi,t

i,t and P2i+1,t+1 ← P
>αi,t

i,t .

Let f : [m]→ [0, 1] be given as f(x) = i/2T−1 for all x ∈ Pi,T−1 and all i ∈ [2T ].
return f

=
(
Labs
[i/2t,(i+1)/2t](h2i,t+1;D2i,t+1) + Labs

[i/2t,(i+1)/2t](h2i+1,t+1;D2i+1,t+1)
)

− Labs
[i/2t,(i+1)/2t](hi,t;Di,t)

= Labs(h2i,t+1;D2i,t+1) + Labs(h2i+1,t+1;D2i+1,t+1)− Labs(hi,t;Di,t). (2)

Finally, notice that

Labs(f ;Di,T−1)− Labs(hi,T−1;Di,T−1) ≤ L
2T−1 · |Di,T−1| = O

(
L·|Di,T−1|

εn

)
. (3)

With all the ingredients ready, we may now bound the expected (unnormalized) excess risk:

Labs(f ;D) =
∑

0≤i<2T−1 Labs(f ;Di,T−1)

(3)
≤

∑
0≤i<2T−1

(
O
(

L·|Di,T−1|
εn

)
+ Labs(hi,T−1;Di,T−1)

)
= O(L/ε) +

∑
0≤i<2T−1 Labs(hi,T−1;Di,T−1)

= O(L/ε) + Labs(h0,0;D0,0)

+
∑

t∈[T−1]

0≤i<2t−1

(
Labs(h2i,t;D2i,t) + Labs(h2i+1,t;D2i+1,t)− Labs(hi,t−1;Di,t−1)

)
.

Taking the expectation on both sides and using (1) and (2) yields

E[Labs(f ;D)] ≤ O(L/ε) + Labs(h0,0;D0,0) +
∑

t∈[T−1]

0≤i<2t−1
O
(

L·logm
ε′·2t

)
= O(L/ε) + Labs(f∗;D) + O

(
T 2 · L·logm

ε

)
= Labs(f∗;D) + O

(
L·logm·(1+log2(εn))

ε

)
.

Dividing both sides by n yields the desired claim.
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Running Time. To obtain a bound on the running time for general loss functions, we need to
make a slight modification to the algorithm: we will additionally only restrict the range of f1, f2 to
multiples of 1/2T−1. We remark that this does not affect the utility since anyway we always take
the final output whose values are multiples of 1/2T−1.

Given any dataset D = {(x1, y1), . . . , (xn, yn)} where x1 < · · · < xn, the prefix isotonic re-
gression algorithm is to compute, for each i ∈ [n], the optimal loss in isotonic regression on
(x1, y1), . . . , (xi, yi). Straightforward dynamic programming solves this in O(n · v) time, where
v denote the number of possible values allowed in the function.

Now, for each i, t, we may run the above algorithm with D = Di,t and the allowed values are
all multiples of 1/2T−1 in [ i

2t ,
i+0.5
2t ]; this gives us min

f1∈F(P
≤α
i,t ,[ i

2t
, i+0.5

2t
])
Labs
[ i
2t

, i+1

2t
]
(f1;D

≤α
i,t )

for all α ∈ Pi,t in time O(|Di,t| · 2T−t + |Pi,t|). Analogously, we can also compute
min

f2∈F(P>α
i,t ,[

(i+0.5)

2t
,
(i+1)

2t
])
Labs
[ i
2t

, i+1

2t
]
(f2;D

>α
i,t ) for all α ∈ Pi,t in a similar time. Thus, we can

compute (scorei,t(α))α∈Pi,t
in time O(|Di,t| · 2T−t + |Pi,t|), and then sample accordingly.

We can further speed up the algorithm by observing that the score remains constant for all α ∈
[xi, xi+1). Hence, we may first sample an interval among [0, x1), [x1, x2), . . . , [xn−1, xn), [xn,m)
and then sample αi,t uniformly from that interval. This entire process can be done in O(|Di,t| ·
2T−t + logm) time. In total, the running time of the algorithm is thus

T−1∑
t=0

2t−1∑
i=0

O(|Di,t| · 2T−t + logm) ≤
T−1∑
t=0

O(n2T + 2t · logm) ≤ O(n2 log n+ n logm).

Near-Linear Time Algorithms for ℓ1-, ℓ22-Losses. We now describe faster algorithms for the ℓ1-
and ℓ22-loss functions, thereby proving the last part of Theorem 3. The key observation is that for
convex loss functions, the restricted optimal is simple: we just have to “clip” the optimal function to
be in the range [τ, θ]. Below clip[τ,θ] denotes the function y 7→ min{θ,max{τ, y}}.

Observation 12. Let ℓ be any convex loss function, D any dataset, f∗ ∈ argminf∈F(X ,Y) L(f ;D)

and τ ≤ θ any real numbers such that τ, θ ∈ Y . Define f∗
clipped(x) := clip[τ,θ](f

∗(x)). Then, we
must have f∗

clipped(x) ∈ argminf∈F(X ,Y∩[τ,θ]) L(f ;D).

Proof. Consider any f ∈ F(X ,Y ∩ [τ, θ]). Let X> (resp. X<) denote the set of all x ∈ X such
that f∗(x) > θ (resp. f∗(x) < τ ). Consider the following operations:

• For each x ∈ X>, change f(x) to θ.
• For each x ∈ X<, change f(x) to τ .
• Let f(x) = f∗(x) for all x ∈ X \ (X> ∪ X<).

At the end, we end up with f(x) = f∗
clipped(x). Each of the first two changes does not in-

crease the loss L(f ;D); otherwise, due to convexity, changing f∗(x) to f(x) would have de-
crease the objective function. Finally, the last operation does not decrease the loss; otherwise,
we may replace this section of f∗ with the values in f instead. Thus, we can conclude that
f∗
clipped(x) ∈ argming∈F(X ,Y∩[τ,δ]) L(f ;D).

We will now show how to compute the scores in Algorithm 1 simultaneously for all α (for fixed
i, t) in nearly linear time. To do this, recall the prefix isotonic regression problem from earlier.
For this problem, Stout [42] gave an O(n)-time algorithm for ℓ2-loss and an O(n log n)-time al-
gorithm for ℓ1-loss (both the unrestricted value case). Furthermore, after the ith iteration, the al-
gorithm also keeps a succinct representation Sopt

i of the optimal solution in the form of an array
(i1, v1, ℓ1), . . . , (ik, vk, ℓk), which denotes f(x) = vj for all x ∈ [xij , xij+1

), and ℓj indicates the
loss Labs up until xij+1

, not including.

We can extend the above algorithm to prefix clipped isotonic regression problem, which we define
in the same manner as above except that we restrict the function range to be [τ, θ] for some given
τ < θ. Using Observation 12, it is not hard to extend the above algorithm to work in this case.

Lemma 13. There is an O(n log n)-time algorithm for ℓ22- and ℓ1-prefix clipped isotonic regression.
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Proof. We first precompute cτ (i) =
∑

j≤i ℓ(τ, xj) and cθ(i) =
∑

j≤i ℓ(θ, xj) for all i ∈ [n]. We
then run the aforementioned algorithm from [42]. At each iteration i, use binary search to find the
largest index jτ such that vjτ < τ and the largest index jθ such that vjθ < θ. Observation 12 implies
that the optimal solution of the clipped version is simply the same as the unrestricted version except
that we need to change the function values before xjτ to τ and after xjθ to θ. The loss of this clipped
optimal can be written as ℓjθ −ℓjτ +cτ (jτ )+(cθ(i)−cθ(jθ)), which can be computed in O(1) time
given that we have already precomputed cτ , cθ. The running time of the entire algorithm is thus the
same as that of [42] together with the binary search time; the latter totals to O(n log n).

Our fast algorithm for computing (scorei,t(α))α∈Pi,t
first runs the above algorithm with τ =

i
2t , θ = i+0.5

2t and D = Di,t; this gives us min
f1∈F(P

≤α
i,t ,[ i

2t
, i+0.5

2t
])
Labs
[ i
2t

, i+1

2t
]
(f1;D

≤α
i,t )

for all α ∈ Pi,t in time O(|Di,t| log |Di,t| + |Pi,t|). Analogously, we can also compute
min

f2∈F(P>α
i,t ,[

(i+0.5)

2t
,
(i+1)

2t
])
Labs
[ i
2t

, i+1

2t
]
(f2;D

>α
i,t ) for all α ∈ Pi,t in a similar time. Thus, we

can compute (scorei,t(α))α∈Pi,t in time O(|Di,t| log |Di,t| + |Pi,t|), and sample accordingly.
Using the same observation as the general loss function case, this can be sped up further to
O(|Di,t| log |Di,t|+ logm) time. In total, the running time of the algorithm is thus

T−1∑
t=0

2t−1∑
i=0

O(|Di,t| log |Di,t|+ logm) ≤
T−1∑
t=0

O(n log n+ 2t logm) ≤ O(n(log2 n+ logm)).

3.2 A Nearly Matching Lower Bound

We show that the excess empirical risk guarantee in Theorem 3 is tight, even for approximate-DP
algorithms with a sufficiently small δ, under a mild assumption about the loss function stated below.

Definition 14 (Distance-Based Loss Function). For R ≥ 0, a loss function ℓ is said to be R-distance-
based if there exist g : [0, 1] → R+ such that ℓ(y, y′) = g(|y − y′|) where g is a non-decreasing
function with g(0) = 0 and g(1/2) ≥ R.

We remark that standard loss functions, including ℓ1- or ℓ22-loss, are all Ω(1)-distance-based.

Our lower bound is stated below. It is proved via a packing argument [25] in a similar manner as a
lower bound for properly PAC learning threshold functions [10]. This is not a coincidence: indeed,
when we restrict the range of our function to {0, 1}, the problem becomes exactly (the empirical
version of) properly learning threshold functions. As a result, the same technique can be used to
prove a lower bound in our setting as well.

Theorem 15. For all 0 ≤ δ < 0.1 · (eε − 1)/m, any (ε, δ)-DP algorithm for isotonic regres-
sion over [m] for any R-distance-based loss function ℓ must have expected excess empirical risk

Ω
(
R ·min

{
1, logm

εn

})
.

Proof. Suppose for the sake of contradiction that there exists an (ε, δ)-DP algorithm M for iso-
tonic regression with an R-distance-based loss function ℓ with expected excess empirical risk
0.01 ·

(
R ·min

{
1, log(0.1m)

εn

})
. Let k := ⌊0.1 log(0.1m)/ε⌋.

We may assume that n ≥ 2k, as the Ω(R) lower bound for the case n = 2k can easily be adapted
for an Ω(R) lower bound for the case n < 2k as well.

We will use the standard packing argument [25]. For each j ∈ [m− 1], we create a dataset Dj that
contains k copies of (j, 0), k copies of (j+1, 1) and n− 2k copies of (1, 0). Finally, let Dm denote
the dataset that contains k copies of (m, 0) and n − k copies of (1, 0). Let Vj denote the set of all
f ∈ F([m], [0, 1]) such that L(f ;D) < Rk/n. The utility guarantee ofM implies that

Pr[M(Dj) ∈ Vj ] ≥ 0.5.

Furthermore, it is not hard to see that V1, . . . , Vm are disjoint. In particular, for any function f ∈
F([m], [0, 1]), let xf be the largest element x ∈ [m] for which f(x) ≤ 1/2; if no such x exists (i.e.,
f(0) > 1/2), let xf = 0. For any j < xf , we have L(f ;Dj) ≥ k

nℓ(f(j + 1), 1) ≥ k
n · g(1/2) ≥
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Rk/n. Similarly, for any j > xf , we have L(f ;Dj) ≥ k
nℓ(f(j), 0)

k
n ·g(1/2) ≥ Rk/n This implies

that f can only belong to Vj , as claimed.

Therefore, we have that

1 ≥
∑

j∈[m] Pr[M(Dm) ∈ Vj ]

≥
∑

j∈[m]
1

e2kε

(
Pr[M(Dj) ∈ Vj ]− δ (e2kε−1)

eε−1

)
(Fact 10)

≥
∑

j∈[m]
10
m (0.5− 0.1)

> 1,

a contradiction.

3.3 Extensions

We now discuss several variants of the isotonic regression problem that places certain additional
constraints on the function f that we seek, as listed below.

• k-Piecewise Constant: f must be a step function that consists of at most k pieces.
• k-Piecewise Linear: f must be a piecewise linear function with at most k pieces.
• Lipschitz Regression: f must be Lf -Lipschitz for some specified Lf > 0.
• Convex/Concave: f must be convex/concave.

We devise a general meta algorithm that, with a small tweak in each case, works for all of these
constraints to yield Theorem 4. At a high-level, our algorithm is similar to Algorithm 1, except that,
in addition to using exponential mechanism to pick the threshold αi,t, we also pick certain auxiliary
information that is then passed onto the next stage. For example, in the k-piecewise constant setting,
the algorithm in fact picks also the number of pieces to the left of αi,t and that to the right of it.
These are then passed on to the next stage. The algorithm stops when the number of pieces become
one, and then simply use the exponential mechanism to find the constant value on this subdomain.

The full description of the algorithm and the corresponding proof are deferred to Appendix C.

4 DP Isotonic Regression over General Posets

We now provide an algorithm and lower bounds for the case of general discrete posets. We first
recall basic quantities about posets. An anti-chain of a poset (X ,≤) is a set of elements such that
no two distinct elements are comparable, whereas a chain is a set of elements such that every pair
of elements is comparable. The width of a poset (X ,≤), denoted by width(X ), is defined as the
maximum size among all anti-chains in the poset. The height of (X ,≤), denoted by height(X ),
is defined as the maximum size among all chains in the poset. Dilworth’s theorem and Mirsky’s
theorem give the following relation between chains an anti-chains:
Lemma 16 (Dilworth’s and Mirsky’s theorems [12, 36]). A poset with width w can be partitioned
into w chains. A poset with height h can be partitioned into h anti-chains.

4.1 An Algorithm

Our algorithm for general posets is similar to that of totally ordered set presented in the previ-
ous section. The only difference is that, instead of attempting to pick a single maximal point α
such that f(α) ≤ τ as in the previous case, there could now be many such maximal α’s. In-
deed, we need to use the exponential mechanism to pick all such α’s. Since these are all maxi-
mal, they must be incomparable; therefore, they form an anti-chain. Since there can be as many
as |X |width(X ) anti-chains in total, this means that the error from the exponential mechanism
is O

(
log |X |width(X )/ε′

)
= O(width(X ) log |X |/ε′), leading to the multiplicative increase of

width(X ) in the total error. This completes our proof sketch for Theorem 1.

4.2 Lower Bounds

To prove a lower bound of Ω(width(X )/εn), we observe that the values of the function in any anti-
chain can be arbitrary. Therefore, we may use each element in a maximum anti-chain to encode X
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as a binary vector. The lower bound from Lemma 8 then gives us an Ω(width(X )/n) lower bound
for ε = 1, as formalized below.

Lemma 17. For any δ > 0, any (1, δ)-DP algorithm for isotonic regression for any R-distance-

based loss function ℓ must have expected excess empirical risk Ω
(
R(1− δ) ·min

{
1, width(X )

n

})
.

Proof. Consider any (1, δ)-DP isotonic regression algorithmM′ for loss ℓ. Let A be any maximum
anti-chain (of size width(A)) in X . We use this algorithm to build a (1, δ)-DP algorithm M for
privatizing a binary vector of m = min{n, |A| − 1} dimensions as follows:

• Let x0, x1, . . . , xm be distinct elements of A.
• On input z ∈ {0, 1}m, create a dataset D = {(x1, z1), . . . , (xm, zm), (x0, 0), . . . , (x0, 0)}

where (x0, 0) is repeated n−m times.
• RunM′ on the instance D to get f , and output a vector z′ where z′i = 1[f(xi) ≥ 1/2].

It is obvious that this algorithm is (1, δ)-DP. Observe also thatL(f∗;D) = 0 and thusM′’s expected
excess empirical risk is Ef∼M′(D)[L(f ;D)] ≥ R ·Ez′∼M(z)[∥z− z′∥0]/n, which, from Lemma 8,

must be at least Ω(Rm(1− δ)/n) = Ω
(
R(1− δ) ·min

{
1, width(X )

n

})
.

By using group privacy (Fact 10) and repeating each element Θ(1/ε) times, we arrive at a lower
bound of Ω

(
R ·min

{
1, width(X )

εn

})
. Furthermore, sinceX contains height(X ) elements that form

a totally ordered set, Theorem 15 gives a lower bound of Ω(R · log(height(X ))/εn) as long as
δ < 0.01 · ε/height(X ). Finally, due to Lemma 16, we have height(X ) ≥ |X |/width(X ), which
means that max{width(X ), log(height(X ))} ≥ Ω(log |X |). Thus, we arrive at:

Theorem 18. For any ε ∈ (0, 1] and any δ < 0.01 · ε/|X |, any (ε, δ)-DP algorithm for iso-
tonic regression for R-distance-based loss function ℓ must have expected excess empirical risk
Ω
(
R ·min

{
1, width(X )+log |X |

εn

})
.

4.3 Tight Examples for Upper and Lower Bounds

Recall that our upper bound is Õ
(

width(X )·log |X |
εn

)
while our lower bound is Ω

(
width(X )+log |X |

εn

)
.

One might wonder whether this gap can be closed. Below we show that, unfortunately, this is
impossible in general: there are posets for which each bound is tight.

Tight Lower Bound Example. Let Xdisj(w,h) denote the poset that consists of w disjoint chains,
C1, . . . , Cw where |C1| = h and |C2| = · · · = |Cw| = 1. (Every pair of elements on different chains
are incomparable.) In this case, we can solve the isotonic regression problem directly on each chain
and piece the solutions together into the final output f . Note that |Xdisj(w,h)| = w + h − 1 and
width(X ) = w,height(X ) = h. According to Theorem 1, the unnormalized excess empirical risk
in Ci is Õ (log(|Ci|)/ε). Therefore, the total (normalized) empirical risk for the entire domain X is
Õ
(

log h+(w−1)
εn

)
. This is at most Õ

(
w
εn

)
as long as h ≤ exp(O(w)); this matches the lower bound.

Tight Upper Bound Example. Consider the grid poset Xgrid(w,h) := [w] × [h] where (x, y) ≤
(x′, y′) if and only if x ≤ x′ and y ≤ y′. We assume throughout that w ≤ h. Observe that
width(Xgrid(w,h)) = w and height(Xgrid(w,h)) = w + h.

We will show the following lower bound, which matches the Õ
(

width(X ) log |X |
εn

)
upper bound in the

case where h ≥ w1+Ω(1), up to O(log2(εn)) factor. We prove it by a reduction from Lemma 9. Note
that this reduction is in some sense a “combination” of the proofs of Theorem 15 and Lemma 17,
as the coordinate-wise encoding aspect of Lemma 17 is still present (across the rows) whereas the
packing-style lower bound is present in how we embed elements of [D] (in blocks of columns).

Lemma 19. For any ε ∈ (0, 1] and δ < Oε(1/h), any (ε, δ)-DP algorithm for isotonic
regression for any R-distance-based loss function ℓ must have expected excess empirical risk
Ω
(
R ·min

{
1, w·log(h/w)

εn

})
.
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Proof. Let D := ⌊h/w − 1⌋,m = w and r := min{⌊0.5n/m⌋, ⌊0.5 ln(D/2)/ε⌋}. Consider any
(ε, δ)-DP algorithmM′ for isotonic regression for ℓ on Xgrid(w,h) where δ ≤ 0.01ε/D. We use this
algorithm to build a (ln(D/2), 0.25)-DP algorithmM for privatizing a vector z ∈ [D]m as follows:

• Create a dataset D that contains:
– For all i ∈ [m], r copies of ((i, (w− i)(D+1)+ zi), 0) and r copies of ((i, (w− i)(D+1)+
zi + 1), 1).

– n− 2rm copies of ((1, 1), 0).
• RunM′ on instance D to get f .
• Output a vector z′ where z′i = max {j ∈ [D] | f((i, (w − i)(D + 1) + j)) ≤ 1/2}. (For sim-

plicity, when such j does not exist let z′i = 0.)

By group privacy,M is (ln(D/2), 0.25)-DP. Furthermore,L(f∗;D) = 0 and the expected empirical
excess risk ofM′ is

Ef∼M′(D)[L(f ;D)]

≥ r
n

∑
i∈[m] (ℓ(f(i, (w − i)(D + 1) + zi), 0) + ℓ(f(i, (w − i)(D + 1) + zi + 1), 1))

≥ r
n

∑
i∈[m] g(1/2) · 1[z′i ̸= zi] =

Rr
n · ∥z− z′∥0,

which must be at least Ω(Rrm/n) = Ω
(
R ·min

{
1, w·log(h/w)

εn

})
by Lemma 9.

5 Additional Related Work

(Non-private) isotonic regression is well-studied in statistics and machine learning. The one-
dimensional (aka univariate) case has long history [9, 46, 5, 44, 45, 13, 8, 35, 14, 15, 49]; for a
general introduction, see [22]. Moreover, isotonic regression has been studied in higher dimensions
[24, 27, 26], including the sparse setting [21], as well as in online learning [29]. A related line of
work studies learning neural networks under (partial) monotonicity constraints [3, 50, 30, 40].

There has been a rich body of work on DP machine learning, including DP empirical risk minimiza-
tion (ERM), e.g., [11, 6, 48, 47], and DP linear regression, e.g., [1]; however, to the best of our
knowledge none of these can be applied to isotonic regression to obtain non-trivial guarantees.

Another line of work related to our setting is around privately learning threshold functions [7, 20,
10, 2, 28]. We leveraged this relation to prove our lower bound for totally ordered case (Section 3.2).

6 Conclusions

In this paper we obtained new private algorithms for isotonic regression on posets and proved nearly
matching lower bounds in terms of the expected empirical excess risk. Although our algorithms
for totally ordered sets are efficient, our algorithm for general posets is not. Specifically, a trivial
implementation of the algorithm would run in time exp(Õ(width(X ))). It remains an interesting
open question whether this can be sped up. To the best of our knowledge, this question does not
seem to be well understood even for the non-private setting, as previous algorithmic works have
focused primarily on the totally ordered case. Similarly, while our algorithm is efficient for the
totally ordered sets, it remains interesting to understand whether nearly linear time algorithms for
ℓ1- and ℓ22-losses can be extended to a larger class of loss functions.
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[8] L. Birgé and P. Massart. Rates of convergence for minimum contrast estimators. Prob. Theory
Rel. Fields, 97(1):113–150, 1993.

[9] H. D. Brunk. Maximum likelihood estimates of monotone parameters. Ann. Math. Stat., pages
607–616, 1955.

[10] M. Bun, K. Nissim, U. Stemmer, and S. P. Vadhan. Differentially private release and learning
of threshold functions. In FOCS, pages 634–649, 2015.

[11] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate. Differentially private empirical risk mini-
mization. JMLR, 12(3), 2011.

[12] R. P. Dilworth. A decomposition theorem for partially ordered sets. Ann. Math., 51(1):161–
166, 1950.

[13] D. L. Donoho. Gelfand n-widths and the method of least squares. Technical Report, University
of California, 1991.

[14] C. Durot. On the lp-error of monotonicity constrained estimators. Ann. Stat., 35(3):1080–1104,
2007.

[15] C. Durot. Monotone nonparametric regression with random design. Math. Methods Stat.,
17(4):327–341, 2008.

[16] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our data, ourselves: Privacy
via distributed noise generation. In EUROCRYPT, pages 486–503, 2006.

[17] C. Dwork, F. McSherry, K. Nissim, and A. D. Smith. Calibrating noise to sensitivity in private
data analysis. In TCC, pages 265–284, 2006.

[18] C. Dwork, F. McSherry, K. Nissim, and A. D. Smith. Calibrating noise to sensitivity in private
data analysis. In TCC, pages 265–284, 2006.

[19] R. L. Dykstra and T. Robertson. An algorithm for isotonic regression for two or more indepen-
dent variables. Ann. Stat., 10(3):708–716, 1982.

[20] V. Feldman and D. Xiao. Sample complexity bounds on differentially private learning via
communication complexity. In COLT, volume 35, pages 1000–1019, 2014.

[21] D. Gamarnik and J. Gaudio. Sparse high-dimensional isotonic regression. NeurIPS, 2019.

[22] P. Groeneboom and G. Jongbloed. Nonparametric Estimation under Shape Constraints. Cam-
bridge University Press, 2014.

11



[23] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On calibration of modern neural networks.
In ICML, pages 1321–1330, 2017.

[24] Q. Han, T. Wang, S. Chatterjee, and R. J. Samworth. Isotonic regression in general dimensions.
Ann. Stat., 47(5):2440–2471, 2019.

[25] M. Hardt and K. Talwar. On the geometry of differential privacy. In STOC, pages 705–714,
2010.

[26] S. M. Kakade, V. Kanade, O. Shamir, and A. Kalai. Efficient learning of generalized linear and
single index models with isotonic regression. In NeurIPS, 2011.

[27] A. T. Kalai and R. Sastry. The isotron algorithm: High-dimensional isotonic regression. In
COLT, 2009.

[28] H. Kaplan, K. Ligett, Y. Mansour, M. Naor, and U. Stemmer. Privately learning thresholds:
Closing the exponential gap. In COLT, pages 2263–2285, 2020.

[29] W. Kotłowski, W. M. Koolen, and A. Malek. Online isotonic regression. In COLT, pages
1165–1189, 2016.

[30] X. Liu, X. Han, N. Zhang, and Q. Liu. Certified monotonic neural networks. NeurIPS, pages
15427–15438, 2020.

[31] R. Luss, S. Rosset, and M. Shahar. Efficient regularized isotonic regression with application to
gene–gene interaction search. Ann. Appl. Stat., 6(1):253–283, 2012.

[32] P. Manurangsi. Tight bounds for differentially private anonymized histograms. In SOSA, pages
203–213, 2022.

[33] F. McSherry. Privacy integrated queries: an extensible platform for privacy-preserving data
analysis. Commun. ACM, 53(9):89–97, 2010.

[34] F. McSherry and K. Talwar. Mechanism design via differential privacy. In FOCS, pages 94–
103, 2007.

[35] M. Meyer and M. Woodroofe. On the degrees of freedom in shape-restricted regression. Ann.
Stat., 28(4):1083–1104, 2000.

[36] L. Mirsky. A dual of Dilworth’s decomposition theorem. AMS, 78(8):876–877, 1971.

[37] C. Radebaugh and U. Erlingsson. Introducing TensorFlow Privacy: Learning with Differential
Privacy for Training Data, March 2019. blog.tensorflow.org.

[38] T. Robertson, F. T. Wright, and R. L. Dykstra. Order restricted statistical inference. John
Wiley & Sons, 1988.

[39] M. J. Schell and B. Singh. The reduced monotonic regression method. JASA, 92(437):128–135,
1997.

[40] A. Sivaraman, G. Farnadi, T. Millstein, and G. Van den Broeck. Counterexample-guided learn-
ing of monotonic neural networks. In NeurIPS, pages 11936–11948, 2020.

[41] T. Steinke and J. R. Ullman. Between pure and approximate differential privacy. J. Priv.
Confidentiality, 7(2), 2016.

[42] Q. F. Stout. Unimodal regression via prefix isotonic regression. Comput. Stat. Data Anal.,
53(2):289–297, 2008.

[43] D. Testuggine and I. Mironov. PyTorch Differential Privacy Series Part 1: DP-SGD Algorithm
Explained, August 2020. medium.com.

[44] S. Van de Geer. Estimating a regression function. Ann. Stat., pages 907–924, 1990.

[45] S. Van de Geer. Hellinger-consistency of certain nonparametric maximum likelihood estima-
tors. Ann. Stat., 21(1):14–44, 1993.

12

blog.tensorflow.org
medium.com


[46] C. van Eeden. Testing and Estimating Ordered Parameters of Probability Distribution. CWI,
Amsterdam, 1958.

[47] D. Wang, C. Chen, and J. Xu. Differentially private empirical risk minimization with non-
convex loss functions. In ICML, pages 6526–6535, 2019.

[48] D. Wang, M. Ye, and J. Xu. Differentially private empirical risk minimization revisited: Faster
and more general. In NIPS, 2017.

[49] F. Yang and R. F. Barber. Contraction and uniform convergence of isotonic regression. Elec.
J. Stat., 13(1):646–677, 2019.

[50] S. You, D. Ding, K. Canini, J. Pfeifer, and M. Gupta. Deep lattice networks and partial mono-
tonic functions. NIPS, 2017.

[51] B. Zadrozny and C. Elkan. Transforming classifier scores into accurate multiclass probability
estimates. In KDD, pages 694–699, 2002.

13



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] Since this

is a purely theoretical paper regarding private algorithms for well studied ML task of
isotonic regression, we do not foresee any immediate potential negative impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] Including some

proofs in the supplementary material.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [N/A]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14


