
A Appendix

A.1 Tables of Notation

The same mathematical definitions and notations used in the paper were re-introduced and summarized
in two tables; Table 1 describes the mathematical functions and operators used throughout the paper,
and Table 2 describes the notations needed to define the Markov Decision Process (MDP). The tables
consist of two columns; one showing or defining the notation, and the other includes the name in
which the same notation was called in the paper.

Name Mathematical Definition or Description

Value function
V ⇡(s) :=

1

1� �
E st⇠⇢

⇡
µ

at⇠⇡(st)

[R(st, at)]

= E[
P1

t=1 �
t�1R(st, at)|s1 = s, at ⇠ ⇡(st), st+1 ⇠ P (st, at)].

Q-Value function Q⇡(s, a) := R(s, a) + � · Es0⇠P (s,a)[V
⇡(s0)]

Advantage function A⇡(s, a) := Q⇡(s, a)� V ⇡(s).

Advantage function A⇡(s,⇡0) := Ea⇠⇡0(s)[A
⇡(s, a)].

Arbitrary functions f and g are arbitrary functions used next.

Arbitrary distributions ⌫ and ⇣ are arbitrary probability distributions used next.

Hilbert inner product hf, gix :=
R
f(x)g(x)dx

Kulback-Liebler (KL)
divergence

DKL(⇣|⌫) := h⇣(x), log( ⇣(x)⌫(x) )ix =
R
⇣(x) log( ⇣(x)

⌫(x) )dx

Total Variation (TV)
distance

TV(⇣, ⌫) := 1
2 h|⇣(x)� ⌫(x)|, 1ix = 1

2

R
|⇣(x)� ⌫(x)|dx.

Coupling set �(⇣, ⌫) is the set of couplings for ⇣ and ⌫.

Wasserstein distance W (⇣, ⌫) = inf�2�(⇣,⌫)hkx� yk, �(x, y)ix,y .

Policy Wasserstein dis-
tance

W (⇡1,⇡2) := sup
s2S W (⇡1(·|s),⇡2(·|s)).

Lipschitz Constant Lip(f(x, y);x) := sup
x
krxf(x, y)k2.

Rubinstein-Kantrovich
(RK) duality

|h⇣(x)� ⌫(x), f(x)ix| W (⇣, ⌫) · Lip(f ;x).

Table 1: The mathematical notations used throughout the paper.
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Mathematical Notation Name and Description

S This is the state space of the MDP.

A This is the action space of the MDP.

� This is the discount factor of the MDP.

R : S ⇥A! R This is the reward function of the MDP.

µ This is the initial state distribution of the MDP over the state space.

� �(F) is the set of all probability distributions over the arbitrary set
F (otherwise known as the Credal set of F).

⇡ In general, ⇡ denotes the policy of the MDP. However, the output
argument type could vary in the text. See the next lines.

⇡ : S ! �(A)
Given a state s 2 S, ⇡(s) and ⇡(·|s) denote the action distribution
suggested by the policy ⇡.

In other words, a ⇠ ⇡(s) and a ⇠ ⇡(·|s).

⇡det : S ! A
For a deterministic policy ⇡det, the unique action a suggested by the
policy given the state s can be denoted by ⇡(s) specially.

In other words, a = ⇡det(s).

⇧ ⇧ is the set of all policies (i.e., 8⇡ : ⇡ 2 ⇧).

P In general, P denotes the transition dynamics model of the MDP.
However, the input argument types could vary throughout the text.
See the next lines for more clarification.

P : S ⇥A! �(S) Given a particular state s and action a, P (s, a) will be the next state
distribution of the transition dynamics (i.e. s0 ⇠ P (s, a) where s0

denotes the next state after applying s, a to the transition P ).

P : �(S)⇥A! �(S) This is a generalization of the transition dynamics to accept state
distributions as input. In other words, P (⌫s, a) := Es⇠⌫s [P (s, a)].

P : S ⇥�(A)! �(S) This is a generalization of the transition dynamics to accept action
distributions as input. In other words, P (s, ⌫a) := Ea⇠⌫a [P (s, a)].

P : �(S)⇥⇧! �(S)
This is a generalization of the transition dynamics to accept a state
distribution and a policy as input. Given an arbitrary state distribution
⌫s and a policy ⇡, and P(⌫s,⇡) will be the next state distribution
given that the state is sampled from ⌫s and the action is sampled
from the ⇡(s) distribution.

In other words, we have P(⌫s,⇡) := E s⇠⌫s
a⇠⇡(s)

[P (s, a)].

Pt : �(S)⇥⇧! �(S) This is the t-step transition dynamics generalization. Given an
arbitrary state distribution ⌫s and a policy ⇡ and non-negative in-
teger t, one can define Pt recursively as P0(⌫s,⇡) := ⌫s and
Pt(⌫s,⇡) := P(Pt�1(⌫s,⇡),⇡).

⇢⇡
µ

The discounted visitation frequency ⇢⇡
µ

is a distribution over S , and
can be defined as ⇢⇡

µ
:= (1� �)

P1
t=0 �

tPt(µ,⇡).

Table 2: The MDP notations used throughout the paper.

16



A.2 Brief Introduction to Policy Gradient Methods

Conservative Policy Iteration (CPI) [25] was one of the early dimensionally consistent methods with a
surrogate of the form L⇡1(⇡2) = ⌘⇡1+

1
1��

·E
s⇠⇢

⇡1
µ
[A⇡1(s,⇡2)]�C

2 TV2(⇡1,⇡2). The C coefficient
guarantees non-decreasing payoffs. However, CPI is limited to linear function approximation classes
due to the update rule ⇡new  (1� ↵)⇡old + ↵⇡0. This lead to the design of the Trust Region Policy
Optimization (TRPO) [50] algorithm.

TRPO exchanged the bounded squared TV distance with the KL divergence by lower bounding it
using the Pinsker inequality. This made TRPO closer to the Natural Policy Gradient algorithm[26],
and for Gaussian policies, the modified terms had similar Taylor expansions within small trust regions.
Confined trust regions are a stable way of making large updates and avoiding pessimistic coefficients.
For gradient estimates, TRPO used Importance Sampling (IS) with a baseline shift:

r✓2Es⇠⇢
⇡1
µ
[A⇡1(s,⇡2)]

���
✓2=✓1

= r✓2E s⇠⇢
⇡1
µ

a⇠⇡1(·|s)


Q⇡1(s, a)

⇡2(a|s)
⇡1(a|s)

����
✓2=✓1

. (12)

While empirical E[A⇡1(s,⇡2)] and E[Q⇡1(s,⇡2)] estimates yield identical variances in principle, the
importance sampling estimator in (12) imposes larger variances. Later, Proximal Policy Optimization
(PPO) [51] proposed utilizing the Generalized Advantage Estimation (GAE) method for variance
reduction and incorporated first-order smoothing like ADAM [32]. GAE employed Temporal-
Difference (TD) learning [7] for variance reduction. Although TD-learning was not theoretically
guaranteed to converge and could add bias, it improved the estimation accuracy.

As an alternative to IS, deterministic policy gradient estimators were also utilized in an actor-critic
fashion. Deep Deterministic Policy Gradient (DDPG) [35] generalized deterministic gradients by
employing Approximate Dynamic Programming (ADP) [39] for variance reduction. Twin Delayed
Deterministic Policy Gradient (TD3) [15] used twin critic networks and reduced the actor update
frequency to address the value over-estimation phenomenon observed in DDPG. Although both
methods used deterministic policies, they still performed stochastic search by adding stochastic noise
to the deterministic policies to force exploration.

Other lines of stochastic policy optimization were later proposed. Wu et al. [59] used a Kronecker-
factored approximation for curvatures. Haarnoja et al. [18] proposed a maximum entropy actor-critic
method for stochastic policy optimization.

A.3 Reinforcement Learning Challenges

We will briefly describe a few challenges in modern reinforcement learning: (a) the problem of
non-local rewards, (b) scalability to longer horizons, and (c) observation or action delay.

A.3.1 Non-local Rewards

An underlying assumption in the MDP framework is that the desired payoff can be decomposed into
a (discounted) sum of time-step rewards. This leaves out practical payoff functions that cannot be
expressed in this form. Non-local rewards are reward functions of the entire trajectory whose payoffs
cannot be decomposed into the sum of terms such as ⌘ =

P
t
ft(st, at), where functions ft only

depend on nearby states and actions. An example non-local reward is one that depends on the Fourier
transform of the complete trajectory signal. Other examples include trajectory statistics (e.g., the
median or maximum observation in a trajectory). In both examples, the reward cannot be determined
without collecting the entire trajectory. While approximating non-local rewards with local ones is
possible, such approximations may be difficult to engineer and may induce undesired behavior in
the resulting policy. Although policy gradient methods are designed under the MDP framework and
theoretically under-equipped for such challenges, being resilient to them is a desired property.

A.3.2 Scalability to Longer Horizons

In its simplified and un-discounted form, reinforcement learning aims at optimizing the ⌘ =
P

T

t=1 rt
payoff by determining the proper actions. It is insightful to contemplate the difficulty of this goal
relative to the time-horizon T . With T = 1 the optimal policy is to take the greedy action at each
time-step. However, with larger T finding the optimal policy becomes more challenging.
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Figure 6: The effect of soft horizon scaling on the typical pendulum continuous control task. Three
environments are defined at different control frequencies. All environments try to achieve the same
goal of making the same pendulum stand up-right within 10 seconds. The original environment runs
at 20 Hz control frequency. We also show two similar environments running at 100 Hz and 500 Hz
control frequency. To make the tasks comparable, the horizontal axis shows the training episodes
and the vertical axis shows the normalized reward per time-step. The environment and training
hyper-parameters are given in Table 3. Evidently, all methods suffer from the curse of horizon.

General
Hyper-Parameters

Control Frequency
20 hz 100 hz 500 hz

Control Time-step 50 ms 10 ms 2 ms
Trajectory Duration 10 s 10 s 10 s

Parallel Workers 4 4 4
Training Episodes 20K 20K 20K

Episode Time-steps 200 1000 5000

TD3
Hyper-Parameters

Control Frequency
20 hz 100 hz 500 hz

MDP Discount 0.99 0.998 0.9996
Replay Buffer Size 50K 250K 1.25M

Initial Random Steps 100 500 2500
Training Interval 100 500 2500
Opt. Batch Size 128 640 3200

TRPO
Hyper-Parameters

Control Frequency
20 hz 100 hz 500 hz

Sampling Batch Size 1024 5120 25600
MDP Discount 0.99 0.998 0.9996
GAE Discount 0.98 0.996 0.9992

Value Batch Size 128 640 3200

PPO
Hyper-Parameter

Control Frequency
20 hz 100 hz 500 hz

Sampling Batch Size 256 1280 6400
MDP Discount 0.99 0.998 0.9996
GAE Discount 0.95 0.99 0.998
Opt. Batch Size 64 320 1600

Table 3: The settings and hyper-parameters used to produce Figure 6. The top-left table shows the
common settings used to define the environment and the run the training. The scaled hyper-parameters
for each of the TD3, TRPO, and PPO methods are given in the top-right, bottom-left, and bottom-right
corner, respectively. Other hyper-parameters were set to their default value in all methods.

In infinite-horizon discounted MDPs, 1/(1� �) can be considered the counterpart of T . In particular,
we have

P
T

i=1 �
i/
P1

i=1 �
i = 1��T ' 1�e�T (1��); although the MDP framework defines infinite

time-steps, the cumulative weight of time-steps after T in the payoff decays exponentially with a
1/(1� �) time constant. For instance, with � = 0.99 the first 200 steps constitute 87% of the infinite-
length trajectory payoff, whereas with � = 0.999 the first 2000 steps constitute the same portion of
the payoff. This is why 1/(1� �) appears in most theoretical sample-complexity analyses and higher
bounds in an exponential capacity [27, 31, 30]. Practically, longer horizons can appear in at least
two forms: (a) preserving the task complexity but increasing the decision-making frequency, and (b)
increasing the task complexity. We call these forms soft and hard horizon scalability, respectively.

Soft Horizon Scalability: In physical systems, one can preserve the task complexity but increase
the control frequency. This increases the policy’s agility in adapting to changes in the observation.
Each time-step can be divided into k smaller time-steps, resulting in a k-fold increase of time-steps
per trajectory. This is what we call soft horizon scalability. Intuitively, we expect soft horizon scaling
to improve the optimal policy’s performance; the smaller time-step policy can be faster in response
to observation changes, and the policy will have the freedom to choose different actions in the k
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Figure 7: The effect of action delay on the inverted pendulum continuous control task where early-
termination was disabled. The top left plot shows each method’s performance on the original problem,
and the rest simulate different amounts of action delay time-steps. All methods’ lose performance
with 5 time-steps of action delay.

smaller time-steps rather than being constrained to apply the same action during the entire k smaller
time-steps. However, this expectation may not be satisfied in practice.

To showcase this effect, we consider a typical pendulum benchmark problem. Existing methods
can solve this task with their default settings in less than a million serial time-steps. By making
the control time-steps 5 or 25 times smaller, one may hope to achieve higher per-step rewards. Of
course, some hyper-parameters (e.g., the sampling batch-size) must be scaled proportionally to have
comparable settings. Table 3 summarizes such scalings. Figure 6 shows the training curves for each
method and control frequency. Evidently, all methods suffer from the curse of horizon. In particular,
on-policy methods (TRPO and PPO) are most vulnerable to soft-horizon scaling. TD3, on the other
hand, is closer to off-policy algorithms. This problem has usually been addressed with the frame-skip
trick, where the same action is zero-held for multiple time-steps. The performance deterioration with
soft horizon scaling can be attributed to the higher variance of estimated gradients in reinforcement
learning methods with longer horizons.

Hard Horizon Scalability When multiple tasks are stacked in the time horizon and are conditioned
upon the completion of each other, hard horizon scalability is achieved. Consider a treasure hunt
game where the next clue is conditioned upon solving the current task. Stacking more tasks makes
winning the game exponentially more difficult; a single mistake in any step can result in failure.
Reinforcement learning methods can suffer the same way with composite tasks. It is difficult to
resolve hard horizon scalability without being resilient to soft horizon scalability in the first place.
Overall, hard horizon scalability is a difficult challenge and beyond the scope of our work.

A.3.3 Action or Observation Delay

Delay in sensing the observation or applying the desired actuation is a challenging artifact in physical
systems. Such delays have been a favorite topic of research in traditional control theory [34]. Such
delays are most influential in high-bandwidth control systems. Although the MDP framework does
not address observation or action delays, being resilient to them is a desirable feature for policy
gradient methods. To show the effect of delay on PG methods, we simulated a typical inverted
pendulum task and delayed the proposed actions by the agent for different numbers of time-steps. The
training curves are shown in Figure 7. With no action delay, all methods produce high-performance
agents. However, at 5 time-steps of action delay, the resulting agents are almost indistinguishable
from the initial policies performance-wise. In particular, TD3 is most vulnerable to delay, while PPO
and TRPO could tolerate a few time-steps of delay. We speculate that this is due to TD3 being closely
related to the TD(0) methods, whereas PPO and TRPO are closer to TD(1) when estimating the state
values in their training processes. Overall, observation and action delays are unresolved topics in
modern reinforcement learning.
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B Theoretical Proofs and Derivations

Two theoretical results from the main paper were left to be discussed here. The bulk of our theoretical
derivations (Sections B.1-B.6) belongs to the payoff improvement lower-bound of Theorem B.7,
which was used in Algorithm 1 of the main paper to regulate the policy updates. Figure 8 shows
a flow-chart of the theoretical steps necessary to prove Theorem B.7, and Section B.8 discusses
the assumptions used in the theoretical derivations. On a separate note, Section B.7 is dedicated to
proving Theorem 3.1, which shows that the DeVine advantage estimator (Algorithm 2 of the main
paper) can provide exact policy gradient estimates under certain conditions.

Lemma B.1 Lemma B.2

Lemma B.3
Theorem B.4

Theorem B.5
Theorem B.6 Theorem B.7

Inequalities (25), (26)

Figure 8: The theoretical derivations flow-chart to prove Theorem B.7.

B.1 Bounding W (Pt(µ,⇡1),Pt(µ,⇡2))

To review, the dynamical smoothness assumptions were
W (P(µ,⇡1),P(µ,⇡2))  L⇡ ·W (⇡1,⇡2),

W (P(µ1,⇡),P(µ2,⇡))  Lµ ·W (µ1, µ2).

The following lemma states that these two assumptions are equivalent to a more concise assumption.
This will be used to bound the t-step visitation distance and prove Lemma B.2.
Lemma B.1. Assumptions (4) and (5) are equivalent to having

W (P(µ1,⇡1),P(µ2,⇡2))  Lµ ·W (µ1, µ2) + L⇡ ·W (⇡1,⇡2). (13)

Proof. To prove the (4), (5)) (13) direction, the triangle inequality for the Wasserstein distance
gives

W (P(µ1,⇡1),P(µ2,⇡2)) W (P(µ1,⇡1),P(µ2,⇡1)) +W (P(µ2,⇡1),P(µ2,⇡2)) (14)
and using (4), (5), and (14) then implies

W (P(µ1,⇡1),P(µ2,⇡2))  Lµ ·W (µ1, µ2) + L⇡ ·W (⇡1,⇡2). (15)
The other direction is trivial.

Lemma B.2. Under Assumptions (4) and (5) we have the bound
W (Pt(µ,⇡1),Pt(µ,⇡2))  L⇡ · (1 + Lµ + · · ·+ Lt�1

µ
) ·W (⇡1,⇡2), (16)

where Pt(µ,⇡) denotes the state distribution after running the MDP for t time-steps with the initial
state distribution µ and policy ⇡.

Proof. For t = 1, the lemma is equivalent to Assumption (4). This paves the way for the lemma to
be proved using induction. The hypothesis is

W (Pt�1(µ,⇡1),Pt�1(µ,⇡2))  L⇡ · (1 + Lµ + · · ·+ Lt�2
µ

) ·W (⇡1,⇡2), (17)
and for the induction step we write

W (Pt(µ,⇡1),Pt(µ,⇡2)) = W (P(Pt�1(µ,⇡1),⇡1),P(Pt�1(µ,⇡2),⇡2)). (18)
Using Assumption (13), which according to Lemma B.1 is equivalent to Assumptions (4) and (5), we
can combine (17) and (18) into

W (Pt(µ,⇡1),Pt(µ,⇡2))  L⇡ ·W (⇡1,⇡2) + Lµ ·W (Pt�1(µ,⇡1),Pt�1(µ,⇡2)). (19)
Thus, by applying the induction Hypothesis (17), we have
W (Pt(µ,⇡1),Pt(µ,⇡2))  L⇡ ·W (⇡1,⇡2) + Lµ · L⇡ · (1 + Lµ + · · ·+ Lt�2

µ
) ·W (⇡1,⇡2), (20)

which can be simplified into the lemma statement (i.e., Inequality (16)).
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B.2 Bounding W (⇢⇡1
µ
, ⇢⇡2

µ
)

Lemma B.2 suggests making the �Lµ < 1 assumption and paves the way for Theorem B.4. The
�Lµ < 1 assumption is overly restrictive and unnecessary but makes the rest of the proof easier to
follow. This assumption can be relaxed by a general transition dynamics stability assumption which
is discussed in more detail later in section B.8.3, and an equivalent �L̄µ < 1 assumption is introduced
to replace �Lµ < 1.

First, we need to introduce Lemma B.3 first, which will be used in the proof of Theorem B.4.
Lemma B.3. The Wasserstein distance between linear combinations of distributions can be bounded
as W (� · µ1 + (1� �) · ⌫1,� · µ2 + (1� �) · ⌫2)  � ·W (µ1, µ2) + (1� �) ·W (⌫1, ⌫2).

Proof. Plugging � = � ·�(µ1,µ2)+(1��) ·�(⌫1,⌫2) in the Wasserstein definition yields the result.

Theorem B.4. Assuming (4), (5), and �Lµ < 1, we have the inequality

W (⇢⇡1
µ
, ⇢⇡2

µ
)  �L⇡

1� �Lµ

·W (⇡1,⇡2). (21)

Proof. Using Lemma B.3 and the definition of ⇢⇡
µ

, we can write

W (⇢⇡1
µ
, ⇢⇡2

µ
)  (1� �)

1X

t=0

�t ·W (Pt(µ,⇡1),Pt(µ,⇡2)). (22)

Using Lemma B.2, we can take another step to relax the inequality (22) and write

W (⇢⇡1
µ
, ⇢⇡2

µ
)  L⇡(1� �)W (⇡1,⇡2)

(Lµ � 1)

1X

t=0

((�Lµ)
t � �t). (23)

Due to the �Lµ < 1 assumption, the right-hand summation in (23) is convergent. This leads us to

W (⇢⇡1
µ
, ⇢⇡2

µ
)  L⇡(1� �)W (⇡1,⇡2)

(Lµ � 1)
(

1

1� �Lµ

� 1

1� �
). (24)

Inequality (24) can then be simplified to give the result.

B.3 Steps to Bound the Second-order Term

The RK duality yields the following bound:

|h⇢⇡2
µ
� ⇢⇡1

µ
, A⇡1(·,⇡2)is| W (⇢⇡1

µ
, ⇢⇡2

µ
) · sup

s

krsA
⇡1(s,⇡2)k2. (25)

To facilitate the further application of the RK duality, any advantage can be rewritten as the following
inner product: A⇡1(s,⇡2) = h⇡2(a|s)� ⇡1(a|s), Q⇡1(s, a)ia. Taking derivatives of both sides with
respect to the state variable and applying the triangle inequality produces the bound

sup
s

krsA
⇡1(s,⇡2)k2  sup

s

khrs(⇡2(a|s)� ⇡1(a|s)), Q⇡1(s, a)iak2

+ sup
s

kh⇡2(a|s)� ⇡1(a|s),rsQ
⇡1(s, a)iak2. (26)

The second term of the RHS in (26) is compatible with the RK duality. However, the form of the first
term does not warrant an easy application of RK. For this, we introduce Theorem B.5.
Theorem B.5. Assuming the existence of Lip(Q⇡1(s, a); a), we have the bound
����
⌦
rs(⇡2(a|s)� ⇡1(a|s)), Q⇡1(s, a)

↵
a

����
2

(27)

 2 · Lip(Q⇡1(s, a); a) ·
����rs0W

✓
⇡2(a|s0) + ⇡1(a|s)

2
,
⇡2(a|s) + ⇡1(a|s0)

2

◆����
s0=s

����
2

.
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Proof. By definition, we have
��⌦rs(⇡2(a|s)� ⇡1(a|s)), Q⇡1(s, a)

↵
a

��
2

=

vuut
dim(S)X

j=1

✓D @

@s(j)
(⇡2(a|s)� ⇡1(a|s)), Q⇡1(s, a)

E

a

◆2

. (28)

For better insight, we will write the derivative using finite differences:
D @

@s(j)
(⇡2(a|s)�⇡1(a|s)), Q⇡1(s, a)

E

a

= lim
�s!0

1

�s

⌦
(⇡2(a|s+ �s · ej) �⇡1(a|s+ �s · ej) ), Q⇡1(s, a)

↵
a

�
⌦
(⇡2(a|s) �⇡1(a|s) ), Q⇡1(s, a)

↵
a

�
. (29)

We can rearrange the finite difference terms to get
D @

@s(j)
(⇡2(a|s)�⇡1(a|s)), Q⇡1(s, a)

E

a

= lim
�s!0

1

�s

⌦
(⇡2(a|s+ �s · ej) +⇡1(a|s) ), Q⇡1(s, a)

↵
a

�
⌦
(⇡2(a|s) +⇡1(a|s+ �s · ej) ), Q⇡1(s, a)

↵
a

�
. (30)

Equivalently, we can divide and multiply the inner products by a factor of 2, to make the inner product
arguments resemble mixture distributions:

D @

@s(j)
(⇡2(a|s)� ⇡1(a|s)), Q⇡1(s, a)

E

a

= lim
�s!0

2

�s

D⇡2(a|s+ �s · ej) + ⇡1(a|s)
2

, Q⇡1(s, a)
E

a

�
D⇡2(a|s) + ⇡1(a|s+ �s · ej)

2
, Q⇡1(s, a)

E

a

�
. (31)

The RK duality can now be used to bound this difference as
����
D @

@s(j)
(⇡2(a|s)� ⇡1(a|s)), Q⇡1(s, a)

E

a

���� (32)

 lim
�s!0

2

�s


W

✓
⇡2(a|s+ �s · ej) + ⇡1(a|s)

2
,
⇡2(a|s) + ⇡1(a|s+ �s · ej)

2

◆
· Lip(Q⇡1(s, a); a)

�
,

which can be simplified as
����
D @

@s(j)
(⇡2(a|s)� ⇡1(a|s)), Q⇡1(s, a)

E

a

����

 2 · Lip(Q⇡1(s, a); a) · @

@s0(j)
W

✓
⇡2(a|s0) + ⇡1(a|s)

2
,
⇡2(a|s) + ⇡1(a|s0)

2

◆����
s0=s

. (33)

Combining Inequality (33) and Equation (28), we obtain the bound in the theorem.

B.4 The Preliminary Payoff Improvement Bound

Combining the results of Inequality (26) and Theorems B.5 and B.4 leads us to define the regulariza-
tion terms and coefficients:

Lip(rsQ
⇡(s, a); a) :=

vuut
|S|X

k=1

Lip(
@

@sk
Q⇡1(s, a); a)2,
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C 0
1 := sup

s

2 · Lip(Q⇡1(s, a); a) · � · L⇡

(1� �)(1� �Lµ)
, C 0

2 := sup
s

Lip(rsQ⇡(s, a); a) · � · L⇡

(1� �)(1� �Lµ)
,

LWG(⇡1,⇡2; s) := W (⇡2(a|s),⇡1(a|s))

⇥
����rs0W

✓
⇡2(a|s0) + ⇡1(a|s)

2
,
⇡2(a|s) + ⇡1(a|s0)

2

◆����
s0=s

����
2

. (34)

This gives us the following novel lower bound for payoff improvement.

Theorem B.6. Defining C 0
1, C 0

2, and LWG(⇡1,⇡2; s) as in (34), we have ⌘⇡2 � Lsup0

⇡1
(⇡2), where

Lsup0

⇡1
(⇡2) := ⌘⇡1 +

1

1� �
E
s⇠⇢

⇡1
µ
[A⇡1(s,⇡2)]� C 0

1 · sup
s


LWG(⇡1,⇡2; s)

�

� C 0
2 · sup

s


W (⇡2(a|s),⇡1(a|s))2

�
. (35)

Proof. By first inserting Theorem B.5 into Inequality (26), and then applying it to Inequality (25)
along with Theorem B.4, one can obtain the result according to the advantage decomposition lemma
given in Equation (6) of the main paper.

B.5 Quadratic Modeling of Policy Sensitivity Regularization

First, we will build insight into the nature of the

LWG(⇡1,⇡2; s) =W (⇡2(a|s),⇡1(a|s))⇥����rs0W

✓
⇡2(a|s0) + ⇡1(a|s)

2
,
⇡2(a|s) + ⇡1(a|s0)

2

◆����
s0=s

����
2

(36)

term. It is fairly obvious that

W (⇡2(a|s),⇡1(a|s))
��
⇡2=⇡1

= 0. (37)

If ⇡2 = ⇡1, then the two distributions ⇡2(a|s0)+⇡1(a|s)
2 and ⇡2(a|s)+⇡1(a|s0)

2 will be the same no matter
what s0 is. In other words,

⇡1 = ⇡2 ) 8s0 : W
✓
⇡2(a|s0) + ⇡1(a|s)

2
,
⇡2(a|s) + ⇡1(a|s0)

2

◆
= 0. (38)

This means that����rs0W

✓
⇡2(a|s0) + ⇡1(a|s)

2
,
⇡2(a|s) + ⇡1(a|s0)

2

◆����
s0=s

����
2

����
⇡2=⇡1

= 0. (39)

The Taylor expansion of the squared Wasserestein distance can be written as

W (⇡2(a|s),⇡1(a|s))2
��
✓2=✓1+�✓

=
1

2
�✓TH2�✓ + h.o.t.. (40)

Considering (38) and similar to the previous point, one can write the following Taylor expansion
����rs0W

✓
⇡2(a|s0) + ⇡1(a|s)

2
,
⇡2(a|s) + ⇡1(a|s0)

2

◆����
s0=s

����
2

2

����
✓2=✓1+�✓

= �✓TH1�✓ + h.o.t.. (41)

According to above, LWG is the geometric mean of two functions of quadratic order. Although this
makes LWG of quadratic order (i.e., lim�✓!0

LWG(↵�✓)
LWG(�✓) = ↵2 holds for any constant ↵), this does

not guarantee that LWG is twice continuously differentiable w.r.t. the policy parameters, and may
not have a defined Hessian matrix (e.g., f(x1, x2) = |x1x2| is of quadratic order, yet is not twice
differentiable). To avoid this issue, we compromise on the local model. According to the arithmetic
mean and geometric mean inequality, for all x1, x2 � 0 and any non-zero ↵, we have

x1x2 
↵2x2

1 + ↵�2x2
2

2
. (42)
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Therefore, we can bound the LWG term into two quadratic terms:

LWG(⇡1,⇡2; s) 
1

2

✓
↵2 ·

����rs0W

✓
⇡2(a|s0) + ⇡1(a|s)
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,
⇡2(a|s) + ⇡1(a|s0)

2

◆����
s0=s

����
2

2

+

↵�2 ·W (⇡2(a|s),⇡1(a|s))2
◆
. (43)

B.6 The Final Payoff Improvement Guarantee

Inequality (43) paves the way for our final payoff lower bound theorem.

Theorem B.7. By defining C1 := C
0
1·↵

2

2 , C2 := (C 0
2 +

C
0
1

2↵2 ) with any non-zero ↵, and

LG2(⇡1,⇡2; s) :=

����rs0W
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,
⇡2(a|s) + ⇡1(a|s0)
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s0=s
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, (44)

we have ⌘⇡2 � Lsup
⇡1

(⇡2), where

Lsup
⇡1

(⇡2) :=
1

1� �
· E

s⇠⇢
⇡1
µ
[A⇡1(s,⇡2)]� C1 · sup

s


LG2(⇡1,⇡2; s)

�

� C2 · sup
s


W (⇡2(a|s),⇡1(a|s))2

�
. (45)

Proof. Applying Inequality (43) into Theorem B.6 gives the result.

C1 and C2 will be the corresponding regularization coefficients to the ones defined in Theorem B.6.
Due to the arbitrary ↵ used in the bounding process, no constrain governs the C1 and C2 coefficients.
Therefore, C1 and C2 can be chosen without constraining each other.

B.7 Proof of Theorem 3.1

Essentially, DeVine rolls out a trajectory and computes the values of each state. Since the transition
dynamics and the policy are deterministic, these values are exact. Then, it picks a perturbation
state st according to the visitation frequencies. A state-reset to st is made, a �-perturbed action is
applied for a single time-step, followed by ⇡1 policy. This exactly produces Q⇡1(st, at + �). Then,
A⇡1(st, at + �) can be computed by subtracting the value baseline. Finally, A⇡1(st, at) = 0 and
A⇡1(st, at + �) define a two-point linear A⇡1(st, a) model with respect to the action. Parallelization
can be used to have as many states of the first roll-out included in the estimator as desired. The
parameter � acts as an exploration parameter and a finite difference to establish derivatives. While
� ' 0 can produce exact gradients, larger � can build stabler interpolations.

We restate Theorem 3.1 below for reference and now prove it.
Theorem 4.1. Assume a finite horizon MDP with both deterministic transition dynamics P and
initial distribution µ, with maximal horizon length of H . Define K = H · dim(A) and ⌫ := ⌫det,
where ⌫det always returns the complete covering of {1, · · · , dim(A)}⇥ {1, · · · , H}. Then we have

lim
�!0
r⇡2A⇡1(⇡2)

��
⇡2=⇡1

= r⇡2⌘⇡2

��
⇡2=⇡1

. (46)

Proof. According to the advantage decomposition lemma, we have

r⇡2⌘⇡2

��
⇡2=⇡1

=
1

1� �
E
s⇠⇢

⇡1
µ
[r⇡2A

⇡1(s,⇡2)]
��
⇡2=⇡1

. (47)

Due to the fact that the transition dynamics, policies ⇡1 and ⇡2, and initial state distribution are all
deterministic, we can simplify Equation (47) to

r⇡2⌘⇡2

��
⇡2=⇡1

=
H�1X

t=0

�t ·r⇡2A
⇡1(st,⇡2)

��
⇡2=⇡1

, (48)
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where st is the state after applying the policy ⇡1 for t time-steps. We can use the chain rule to write

r⇡2A
⇡1(st,⇡2)

��
⇡2=⇡1

= r⇡2A
⇡1(st, at)

��
at=⇡2(st)
⇡2=⇡1

=

dim(A)X

j=1

r⇡2a
(j)
t

· @

@a(j)
t

A⇡1(st, at)
��
at=⇡2(st)
⇡2=⇡1

. (49)

To recap, Equations (48), (48), and (49) can be summarized as

r⇡2⌘⇡2

��
⇡2=⇡1

=
H�1X

t=0

�t

dim(A)X

j=1

r⇡2a
(j)
t

· @

@a(j)
t

A⇡1(st, at)
��
at=⇡2(st)
⇡2=⇡1

. (50)

Under the assumption that the (j, t) pairs are sampled to exactly cover XK = {1, . . . , dim(A)}⇥
{1, . . . , H}, we can simplify the DeVine oracle to

A⇡1(⇡2) =
1

K

H�1X

t=0

dim(A)X

j=1


dim(A) ·H · �t

⌫det(XK)
· (⇡2(st)� at)T (a0t � at)

(a0
t
� at)T (a0t � at)

·A⇡1(st, q(st; j,�))

�
. (51)

From the definition, we have a0
t
� at = �ej and (a0

t
� at)T (a0t � at) = �2. Since ⌫ is uniform (i.e.,

⌫det(XK) = 1) and K = H · dim(A), we can take the policy gradient of Equation (51) and simplify
it into

r⇡2A⇡1(⇡2)
��
⇡2=⇡1

=
H�1X

t=0

dim(A)X

j=1
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�

�
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(52)

Since, A⇡1(st,⇡1(st)) = 0, we can write

lim
�!0

A⇡1(st,⇡1(st) + �ej)

�
= lim

�!0

A⇡1(st,⇡1(st) + �ej)�A⇡1(st,⇡1(st))

�

=
@

@a(j)
t

A⇡1(st, at)
��
at=⇡1(st)

. (53)

Also, by the definition of the gradient, we can write

r⇡2(⇡2(st)� ⇡1(st))
T ej = r⇡2a

(j)
t

. (54)

Combining Equations (53) and (54), and applying them to Equation (52), yields

lim
�!0
r⇡2A⇡1(⇡2)

��
⇡2=⇡1

=
H�1X

t=0

dim(A)X
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(j)
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· @

@a(j)
t

A⇡1(st, at)
��
at=⇡2(st)
⇡2=⇡1

. (55)

Finally, the theorem can be obtained by comparing Equations (55) and (50).

B.8 The Discussion of Assumptions

There are three key groups of assumptions made in the derivation of our policy improvement lower
bound. First is the existence of Q⇡-function Lipschitz constants. Second is the transition dynamics
Lipschitz-continuity assumptions. Finally, we make an assumption about the stability of the transition
dynamics. Next, we will discuss the meaning and the necessity of these assumptions.

25



B.8.1 On the Existence of the Lip(Q⇡, a) Constant

The Lip(Q⇡, a) constant may be undefined when either the reward function or the transition dynamics
are discontinuous. Examples of known environments with undefined Lip(Q⇡, a) constants include
those with grazing contacts which define a discontinuous transition dynamics. In practice, even
for environments that do not satisfy Lipschitz continuity assumptions, there are mitigating factors;
practical Q⇡ functions are reasonably narrow-bounded in a small trust-region neighborhood, and
since we use non-vanishing exploration scales and trust regions, a bounded interpolation slope can
still model the Q-function variation effectively. We should also note that a slightly stronger version
of this assumption is frequently used in the context of Lipschitz MDPs [45, 48, 5]. In practice, we
have not found this to be a substantial limitation.

B.8.2 The Transition Dynamics Lipschitz Continuity Assumption

Assumptions 4 and 5 of the main paper essentially represent the Lipschitz continuity assumptions of
the transition dynamics with respect to actions and states, respectively. If the transition dynamics
and the policy are deterministic, then these assumptions are exactly equivalent to the Lipschitz
continuity assumptions. Assumptions 4 and 5 only generalize the Lipschitz continuity assumptions in
a distributional sense.

The necessity of these assumptions is a consequence of using metric measures for bounding errors.
Traditional non-metric bounds force the use of full-support stochastic policies where all actions have
non-zero probabilities (e.g., for the KL-divergence of two policies to be defined, TRPO needs to
operate on full-support policies such as the Gaussian policies). In those analyses, since all policies
share the same support, the next state distribution automatically becomes smooth and Lipschitz
continuous with respect to the policy measure even if the transition dynamics were not originally
smooth with respect to the input actions. However, metric measures are also defined for policies of
non-overlapping support. To be able to provide closeness bounds for future state visitations of two
similar policies with non-overlapping support, it becomes necessary to assume that close-enough
actions or states must be yielding close-enough next states. In fact, this is a very common assumption
in the framework of Lipschitz MDPs (See Section 2.2 of Rachelson and Lagoudakis [48], Section 3
of Asadi et al. [5], and Assumption 1 of Pirotta et al. [45]).

B.8.3 The Transition Dynamics Stability Assumption

Before moving to relax the �Lµ < 1 assumption, we will make a few definitions and restate
the previous lemmas and theorems under these definitions. We define Lµ1,µ2,⇡ to be the infi-
mum non-negative value that makes the equation W (P(µ1,⇡),P(µ2,⇡)) = Lµ1,µ2,⇡W (µ1, µ2)
hold. Similarly, Lµ1,µ2,⇡ is defined as the infimum non-negative value that makes the equation
W (P(µ,⇡1),P(µ,⇡)) = Lµ,⇡1,⇡2W (⇡1(·|µ),⇡2(·|µ)) hold. For notation brevity, we will also de-
note LPt(µ,⇡1),Pt(µ,⇡2),⇡2

and LPt(µ,⇡1),⇡1,⇡2
by L̃(t)

µ,⇡1,⇡2 and L̂(t)
µ,⇡1,⇡2 , respectively.

Under these definitions, Lemma B.1 evolves into

W (P(µ1,⇡1),P(µ2,⇡2))  Lµ1,µ2,⇡W (µ1, µ2) + Lµ1,⇡1,⇡2W (⇡1,⇡2). (56)

We can apply a time-point recursion to this lemma and have

W (P(Pt(µ,⇡1),⇡1),P(Pt(µ,⇡2),⇡2))

 LPt(µ,⇡1),⇡1,⇡2
W (⇡1,⇡2) + LPt(µ,⇡1),Pt(µ,⇡2),⇡2

W (Pt(µ,⇡1),Pt(µ,⇡2)) (57)

, which can be notationally simplified to

W (Pt(µ,⇡1),Pt(µ,⇡2))  L̂(t�1)
µ,⇡1,⇡2

W (⇡1,⇡2) + L̃(t�1)
µ,⇡1,⇡2

W (Pt�1(µ,⇡1),Pt�1(µ,⇡2)). (58)

These modifications lead Lemma B.2 to be updated accordingly into

W (Pt(µ,⇡1),Pt(µ,⇡2))  C(t)
L;µ,⇡1,⇡2

·W (⇡1,⇡2) (59)

, where we have

C(t)
L;µ,⇡1,⇡2

:=
tX

k=1

L̂(t�k)
µ,⇡1,⇡2

k�1Y

i=1

L̃(t�i)
µ,⇡1,⇡2

. (60)
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By a simple change of variables, we can have the equivalent definition of

C(t)
L;µ,⇡1,⇡2

:=
tX

k=1

L̂(k�1)
µ,⇡1,⇡2

t�1Y

i=k+1

L̃(i)
µ,⇡1,⇡2

. (61)

Now, we would replace the �Lµ < 1 assumption with the following assumption.

The Transition Dynamics Stability Assumption: A transition dynamics P is called stable if and
only if the induced {L̃(t)

µ,⇡1,⇡2}t�0 and {L̂(t)
µ,⇡1,⇡2}t�0 sequences satisfy

CL := sup
µ,⇡1,⇡2,t

C(t)
L;µ,⇡1,⇡2

= sup
µ,⇡1,⇡2,t

tX

k=1

L̂(k�1)
µ,⇡1,⇡2

t�1Y

i=k+1

L̃(i)
µ,⇡1,⇡2

<1. (62)

To help understand which {L̃(t)
µ,⇡1,⇡2}t�0 and {L̂(t)

µ,⇡1,⇡2}t�0 sequences can satisfy this assumption,
we will provide some examples:

• Having 8t : L̃(t)
µ,⇡1,⇡2 = c1 > 1, L̂(t)

µ,⇡1,⇡2 = c2 violates the dynamics stability assumption.

• Having 8t : L̃(t)
µ,⇡1,⇡2  1, L̂(t)

µ,⇡1,⇡2 = O( 1
t2
) sequences satisfy the dynamics stability assumption.

• Having sup
t
L̃(t)
µ,⇡1,⇡2 < 1 guarantees the dynamics stability assumption.

• Having 8t � t0 : L̃(t)
µ,⇡1,⇡2 < 1 guarantees the dynamics stability assumption no matter (1) how

big t0 is (as long as it is finite), or (2) how big the members of the finite set {L̃(t)
µ,⇡1,⇡2 |t < t0} are.

If the dynamics stability assumption holds with a constant CL, one can define a L̄µ constant such
that CL = L⇡

P1
t=0(�L̄µ)t. Then, we can replace all the Lµ instances in the rest of the proof with

the corresponding L̄µ constant, and the results will remain the same without any change of format.

The L̃(t)
µ,⇡1,⇡2 and L̂(t)

µ,⇡1,⇡2 constants can be thought as tighter versions of Lµ and L⇡, but with
dependency on ⇡1, ⇡2, µ and the time-point of application. Having �Lµ < 1 is a sufficient yet
unnecessary condition for this dynamics stability assumption to hold. Vaguely speaking, Lµ is
an expansion rate for the state distribution distance; it tells you how much the divergence in the
state distribution will expand after a single application of the transition dynamics. Having effective
expansion rates that are larger than one throughout an infinite horizon trajectory is a sign of the
system instability; some change in the initial state’s distribution could cause the observations to
diverge exponentially. While controlling unstable systems is an important and practical challenge,
none of the existing reinforcement learning methods is capable of learning effective policies in such
environments. Roughly speaking, having the dynamics stability assumption guarantees that the
expansion rates cannot be consistently larger than one for infinite time-steps.
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C Implementation Details and Supplementary Results

C.1 Implementation Details for the Environment with Non-local Rewards

We used the stable-baselines implementation [20], which has the same structure as the original
OpenAI baselines [11] implementation. We used the “ppo1” variant since no hardware acceleration
was necessary for automatic differentiation and MPI parallelization was practically efficient. TDPO,
TRPO, and PPO used the same function approximation architecture with two hidden layers, 64
units in each layer, and the tanh activation. TRPO, PPO, DDPG, and TD3 used their default
hyper-parameter settings. We used the same method of network initialization as TRPO and PPO
(Xavier initialization [16] with default gains for the inner layers, and smaller gain for the output
layer). TD3’s baseline implementation was amended to support MPI parallelization just like TRPO,
PPO, and DDPG. We performed one-dimensional hyper-parameter tuning for DDPG and TD3
both with and without the tanh final activation function that is common for DDPG and TD3 (this
causes the difference in initial payoff in the figures). We could not find a consistent training payoff
improvement over the default setting, so we used the default hyper-parameters of DDPG and TD3 in
our experiments. Mini-batch selection was unnecessary for TDPO since optimization for samples
generated by DeVine was fully tractable. The confidence intervals in all figures were generated using
1000 samples of the statistics of interest.

For designing the environment, we used Dhariwal et al. [11]’s pendulum dynamics and relaxed the
torque thresholds to be as large as 80 N m. The environment also had the same episode length of 200
time-steps. We used the reward function described by the following equations:

R(st, at) = CR ·R(⌧) · 1{t = 200}
R(⌧) = RFreq(⌧) +ROffset(⌧) +RAmp(⌧)

RFreq(⌧) = 0.1 ·
 fmaxX

f=fmin

⇥+
std(f)

2 � 1

�

ROffset(⌧) = �
����
⇥(f = 0)

200
� ✓Target Offset

���� = �
����

✓
1

200

199X

t=0

✓t

◆
� ✓Target Offset

����

RAmp(⌧) = hpiecewise

✓
⇥AC

✓Target Amp.
� 1

◆

(63)

where

• ✓ is the pendulum angle signal in the time domain.
• ⇥ is the magnitude of the Fourier transform of ✓.
• ⇥+ is the same as ⇥ only for the positive frequency components.
• ⇥AC is the normalized oscillatory spectrum of ⇥:

⇥AC =

p
⇥+T⇥+

200
. (64)

• hpiecewise is a piece-wise linear error penalization function:

hpiecewise(x) = �x · 1{x � 0}+ 10�4x · 1{�x � 0}. (65)

• ⇥+
std is the standardized positive amplitudes vector:

⇥+
std =

⇥+

p
⇥+T⇥+ + 10�6

. (66)

• CR = 1.3⇥ 104 is a reward normalization coefficient and was chosen to yield approximately the
same payoff as a null policy would yield in the typical pendulum environment of Dhariwal et al.
[11].
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• ✓Target Offset is the target offset, ✓Target Amp. is the target amplitude, and [fmin, fmax] is the target
frequency range of the environment.

All methods used 48 parallel workers. The machines used Xeon E5-2690-v3 processors and 256 GB
of memory. Each experiment was repeated 25 times for each method, and each run was given 6 hours
or 500 million samples to finish.

C.2 Implementation Details for the Environment with Long Horizon and Resonant
Frequencies

For the robotic leg, we used exactly the same algorithms with the same parameters as described in
Section C.1 above.

We used the reward function described by the following equations:

R = Rposture +Rvelocity +Rfoot offset +Rfoot height +Rground force +Rknee height +Ron-air torques (67)

with

Rposture = �1⇥
����✓knee +

⇡

2

����+
����✓hip +

⇡

4

����

�

Rvelocity = �0.08⇥
⇥
|!knee|+ |!hip|

⇤

Rfoot offset = �10⇥
⇥
|xfoot| · 1{zknee < 0.2}

⇤

Rground force = �1⇥
⇥
|fz �mg| · 1{fz < mg} · 1touchdown

⇤

Rfoot height = �1⇥
⇥
|zfoot| · 1touchdown

⇤

Rknee height = �15⇥
⇥��zknee � ztarget

knee

�� · 1touchdown
⇤

Ron-air torques = �10�4 ⇥
⇥
(⌧2knee + ⌧2hip) · (1� 1touchdown)

⇤
(68)

where

• ✓knee and ✓hip are the knee and hip angles in radians, respectively.
• !knee and !hip are the knee and hip angular velocities in radians per second, respectively.
• xfoot and zfoot are the horizontal and vertical foot offsets in meters from the desired standing point

on the ground, respectively.
• xknee and zknee are the horizontal and vertical knee offsets in meters from the desired standing

point on the ground, respectively.
• fz is the vertical ground reaction force on the robot in Newtons.
• m is the robot weight in kilograms (i.e., m = 0.76 kg).
• g is the gravitational acceleration in meters per second squared.
• 1touchdown is the indicator function of whether the robot has ever touched the ground.

• ztarget
knee is a target knee height of 0.1 m.

• ⌧knee and ⌧hip are the knee and hip torques in Newton meters, respectively.

All methods used 72 full trajectories between each policy update, and each run was given 16 hours
of wall time, which corresponded to almost 500 million samples. This experiment was repeated 75
times for each method. The empirical means of the discounted payoff values were reported without
any performance or seed filtration. The same hardware as the non-local rewards experiments (i.e.,
Xeon E5-2690-v3 processors and 256 GB of memory) was used.

C.3 Gym Suite Benchmarks

While it is clear that our deterministic policy gradient performs well on the new control environments
we consider, one may naturally wonder about its performance on existing RL control benchmarks. To
show our method’s core capability, we ran our method on a suite of Gym environments and include
six representative examples in Figure 9. Broadly speaking, our method (TDPO) performs similar to or
slightly worse than others, but occasionally performs better as seen in the Swimmer-v3 environment.
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We speculate that many of these gym environments are reasonably robust to any injected noise, and
this may mean that stochastic policy gradients can more rapidly and efficiently explore the policy
space than in our new control environments.

Figure 9: Results for the gym suite benchmarks. In this setting, we ran our method, TDPO, without
line search or adaptive exploration parameters. The experiments granted each method 72 parallel MPI
workers for about 144 million steps (i.e., 2 million sequential steps), and the returns were averaged
over 100 different seeds for each method. Since the computational cost of running both DDPG and
TD3 was high, we only included TD3.

C.4 Running Time Comparison

Figure 10 depicts a comparison of each method’s running time per million steps. These plots show the
combination of both the simulation (i.e., environment sampling) and the optimization (i.e., computing
the policy gradient and running the conjugate gradient solver) time. Our method’s DeVine gradient
estimator summarizes two full trajectories into a single state-action-advantage tuple, which saves on
computational resources and makes our method faster. That being said, these relative comparisons
could vary to a large extent (1) under different processor architectures, (2) with more (or less) efficient
implementations, or (3) when running environments whose simulation time constitutes a significantly
larger (or smaller) portion of the total running time.

C.5 Other Swinging Pendulum Variants

Multiple variants of the pendulum with non-local rewards were used, each with different frequency
targets and the same reward structure. Table 4 summarizes the target characteristics of each variant.
The main variant was shown in the paper. Figures 11, 12, 13, 14, 15, 17, 18, and 19 show similar
results for the second to ninth variants. Also, we show the performance of our method (TDPO) on all
variants in Figure 16.

C.6 Non-locality or the Frequency-based Nature of the Pendulum Reward?

Solving the frequency-domain problem of Figure 1 in the main paper is challenging. The frequency-
based nature of the reward may be the main contributor to this difficulty. Alternatively, the non-locality
of the reward may be playing the key factor in this challenge. To investigate this, we simulate a
typical MDP reward on the same pendulum model, and make it artificially non-local by accumulating
the rewards every 2, 20, or 200 time-steps. Figure 20 shows the training curves for each case. Other
methods perform better than ours when the rewards are only accumulated for 2 time-steps. However,
our method is more resilient to higher non-locality of the reward. Since this reward is not defined
in the frequency domain, yet is still challenging to solve, we speculate that the non-locality of the
reward is a more influential factor than the frequency-based nature of the reward used in Figure 1.
This explanation is consistent with the observation that a 5-fold change in the desired frequency
between the main paper’s variant, and the second and the third variants shown in Figures 11 and 12
could not resolve the issue for the existing methods.

30



Figure 10: Training time comparison in different environments. The lower the bar, the faster the
method. The vertical axis shows the time in seconds needed to consume one million state-action pairs
for training. Each environment was shown separately in a different subplot.

Pendulum Variant Desired Frequency Desired Offset Desired Amplitude
Main 1.7–2 Hz 0.524 rad 0.28 rad

Second 0.5–0.7 Hz 1.571 rad 1.11 rad
Third 2.5–3 Hz 0.524 rad 0.28 rad
Fourth 2–2.4 Hz 0.785 rad 0.28 rad
Fifth 2–2.4 Hz 1.571 rad 0.74 rad
Sixth 2–2.4 Hz 0.524 rad 0.28 rad

Seventh 2–2.4 Hz 1.047 rad 0.28 rad
Eighth 2–2.4 Hz 0.785 rad 0.74 rad
Ninth 2–2.4 Hz 1.309 rad 0.28 rad

Table 4: The target oscillation characteristics defining different pendulum swinging environments.

C.7 On the Interpretation of the Surrogate Function

For deterministic policies, the squared Wasserstein distance W (⇡2(a|s),⇡1(a|s))2 degenerates to
the Euclidean distance over the action space. Any policy defines a sensitivity matrix at a given
state s, which is the Jacobian matrix of the policy output with respect to s. The policy sensitivity
term LG2(⇡1,⇡2; s) is essentially the squared Euclidean distance over the action-to-observation
Jacobian matrix elements. In other words, our surrogate prefers to step in directions where the
action-to-observation sensitivity is preserved within updates.

Although our surrogate uses a metric distance instead of the traditional non-metric measures for
regularization, we do not consider this sole replacement a major contribution. The squared Wasserstein
distance and the KL divergence of two identically-scaled Gaussian distributions are the same up
to a constant (i.e., DKL(N (m1,�)kN (m2,�)) = W (N (m1,�),N (m2,�))2/2�2). On the other
hand, our surrogate’s compatibility with deterministic policies makes it a valuable asset for our
policy gradient algorithm; both W (⇡2(a|s),⇡1(a|s))2 and LG2(⇡1,⇡2; s) can be evaluated for two
deterministic policies ⇡1 and ⇡2 numerically without any approximations to overcome singularities.
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Figure 11: Results for the second variant of the simple pendulum with non-local rewards. Upper
panel: training curves with empirical discounted payoffs. Lower panels: trajectories in both the time
domain and frequency domain, showing target values of oscillation frequency, amplitude, and offset.

Figure 12: Results for the third variant of the simple pendulum with non-local rewards. Upper panel:
training curves with empirical discounted payoffs. Lower panels: trajectories in both the time domain
and frequency domain, showing target values of oscillation frequency, amplitude, and offset.
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Figure 13: Results for the fourth variant of the simple pendulum with non-local rewards. Upper panel:
training curves with empirical discounted payoffs. Lower panels: trajectories in both the time domain
and frequency domain, showing target values of oscillation frequency, amplitude, and offset.

Figure 14: Results for the fifth variant of the simple pendulum with non-local rewards. Upper panel:
training curves with empirical discounted payoffs. Lower panels: trajectories in both the time domain
and frequency domain, showing target values of oscillation frequency, amplitude, and offset.
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Figure 15: Results for the sixth variant of the simple pendulum with non-local rewards. Upper panel:
training curves with empirical discounted payoffs. Lower panels: trajectories in both the time domain
and frequency domain, showing target values of oscillation frequency, amplitude, and offset.

C.8 Notes on How to Implement TDPO

In short, our method (TDPO) is structured in the same way TRPO was structured; both TDPO and
TRPO use policy gradient estimation, and a conjugate-gradient solver utilizing a Hessian-vector
product machinery. On the other hand, there are some algorithmic differences that distinguish the
basic variant of TDPO from TRPO. TDPO uses the DeVine advantage estimator, which requires
storing and reloading pseudo-random generator states. Furthermore, the Hessian-vector product
machinery used in TDPO computes Wasserstein-vector products, which is slightly different from
those used in TRPO. The hyper-parameter settings and notes on how to choose them were discussed
in Sections C.1, C.9, and C.2. We will describe how to implement TDPO, and focus on the differences
between TDPO and TRPO next.

As for the state-reset capability, our algorithm does not require access to a reset function for arbitrary
states. Instead, we only require to be able to start from the prior trajectory’s initial state. Many
environments, including the Gym environments, instantiate their own pseudo-random generators
and only utilize that pseudo-random generator for all randomized operations. This facilitates a
straightforward implementation of the DeVine oracle; in such environments, implementing an
arbitrary state-reset functionality is unnecessary, and only reloading the pseudo-random generator to
its configuration prior to the trajectory would suffice. In other words, the DeVine oracle can store the
initial configuration of the pseudo-random generator before asking for a trajectory reset and then start
sampling. Once the main trajectory is finished, the pseudo-random generator can be reloaded, thus
producing the same initial state upon a reset request. Other time-step states can then be recovered by
applying the same proceeding action sequence.

To optimize the quadratic surrogate, the conjugate gradient solver was used. Implementing the
conjugate gradient algorithm is fairly straightforward, and is already included in many common
automatic differentiation libraries. The conjugate gradient solver is perfect for situations where (1)
the Hessian matrix is larger than can efficiently be stored in the memory, and (2) the Hessian matrix
includes many nearly identical eigenvalues. Both of these conditions apply for TDPO, as well as for
TRPO. Instead of requiring the full Hessian matrix to be stored, the conjugate gradient solver only
requires a Hessian-vector product machinery v ! Hv, which must be specifically implemented for
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(a)

(b)

(c)

Figure 16: Time and frequency domain trajectories for our method (TDPO) on multiple variants of
the simple pendulum with non-local rewards. (a) The high-reward trajectories for the first group of
variants, (b) the high-reward trajectories for the second group of variants, and (c) the high-reward
trajectories for the third group of variants. Target values of oscillation frequency, amplitude, and
offset were annotated in the frequency domain plots.
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Figure 17: Results for the seventh variant of the simple pendulum with non-local rewards. Upper
panel: training curves with empirical discounted payoffs. Lower panels: trajectories in both the time
domain and frequency domain, showing target values of oscillation frequency, amplitude, and offset.

Figure 18: Results for the eighth variant of the simple pendulum with non-local rewards. Upper
panel: training curves with empirical discounted payoffs. Lower panels: trajectories in both the time
domain and frequency domain, showing target values of oscillation frequency, amplitude, and offset.
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Figure 19: Results for the ninth variant of the simple pendulum with non-local rewards. Upper panel:
training curves with empirical discounted payoffs. Lower panels: trajectories in both the time domain
and frequency domain, showing target values of oscillation frequency, amplitude, and offset.

Figure 20: The training curves vs. different levels of reward non-locality for the continuous control
pendulum benchmark in gym. The reward for the default standing-up task was used in here (rather
than using the frequency-domain reward for the swinging pendulum). The trajectory length was set
to 200 time-steps in all charts. To simulate non-locality of the reward, the rewards were accumulated
every 2, 20, and 200 steps in the left, center, and the right chart, respectively, and then applied at
once. For example, the trajectories used in the middle chart have 20 evenly-spaced non-zero rewards,
and another 180 time-steps with zero rewards. The rewards were scaled so that all payoffs would be
comparable.

TDPO. Our surrogate function can be viewed as

L(�✓) = gT �✓ +
C 0

2

2
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where the Hessian matrix can be defined as
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Algorithm 3 Wasserstein-Vector-Product Machinery
Require: Current Policy ⇡1 with parameters ✓1.
Require: The vector v with the same dimensions as ✓1.
Require: An observation s.

1: Compute the action for the observation s with |A| elements.

a|A|⇥1 :=

2

664

⇡(1)(s)
...

⇡(|A|)(s)

3

775 . (70)

This vector should be capable of propagating gradients back to the policy parameters when used
in automatic differentiation software.

2: Define t to be a constant vector with the same shape as a. It could be populated with any values
such as all ones.

3: Define the scalar ã := aT t.
4: Using back-propagation, find the gradient

r✓ã =

|A|X

i=1

tir✓ai =

|A|X

i=1

ti
h
@ai
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· · · @ai
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5: Compute the following dot-product:

hr✓ã, vi = (
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i=1

ti ·
@ai
@✓1

) · v1 + · · ·+ (
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) · v|⇥|. (72)

6: Using automatic differentiation, take the gradient w.r.t. the t vector.

ã✓,v := rthr✓ã, vi =
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7: Compute the dot product hã✓,v, ãi.
8: Using back-propagation, take the gradient w.r.t. ✓, and return it as the gain-vector-product.

r✓hã✓,v, ãi =
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In order to construct a Hessian-vector product machinery v ! Hv, one can design an automatic-
differentiation procedure that returns the Hessian-vector product. Many automatic-differentiation
packages already include functionalities that can provide a Hessian-vector product machinery of a
given scalar loss function without computing the Hessian matrix. This can be used to implement the
Hessian-vector product machinery in a straightforward manner; one only needs to provide the scalar
quadratic terms of our surrogate and would obtain the Hessian-vector product machinery in return.
On the other hand, this may not be the most computationally efficient approach, as our problem
exhibits a more specific structure. Alternatively, one can implement a more elaborate and specifically
designed Hessian-vector product machinery by following these three steps:

• Compute the Wasserstein-vector product v ! H2v according to Algorithm 3.

• Compute the Sensitivity-vector product v ! H1v according to Algorithm 4.

• Return the weighted sum of H1v and H2v as the final Hessian-vector product Hv.
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Algorithm 4 Sensitivity-Vector-Product Machinery
Require: Current Policy ⇡1 with parameters ✓1.
Require: The vector v with the same dimensions as ✓1.
Require: An observation s.

1: Compute the action to observation Jacobian matrix

J|A|⇥|S| :=

2

664
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@s1
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This can either be done using finite-differences in the observation using

@⇡(i)(s)

@s(j)
' ⇡(i)(s+ ds · ej)� ⇡(i)(s)

ds
(76)

(which may be numerically inaccurate), or using automatic differentiation. In any case, this
matrix should be a parameter tensor capable of propagating gradients back to the parameters
when used in automatic differentiation software.

2: Define J̃ to be the vectorized (i.e., reshaped into a column) J matrix, with |AS| = |A| ⇥ |S|
rows and one column.

3: Define t to be a constant vector with the same shape as J̃ . It could be populated with any values
such as all ones.

4: Define the scalar Jt := J̃T t.
5: Using back-propagation, find the gradient

r✓Jt =
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6: Compute the following dot-product.

hr✓Jt, vi = (
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7: Using automatic differentiation, take the gradient w.r.t. the t vector.

(r✓J)v := rthr✓Jt, vi =
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8: Reshape (r✓J)v into a column vector and name it J̃✓,v .
9: Compute the dot product hJ̃✓,v, J̃i.

10: Using back-propagation, take the gradient w.r.t. ✓, and return it as the gain-vector-product.
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One may also need to add a conjugate gradient damping to the conjugate gradient solver (i.e., return
�v +Hv for some small � as opposed to returning Hv), which is also done in the TRPO method.
This may be important when the number of policy parameters is much larger than the sample size,
which makes the H matrix low-rank. Setting � = 0 may yield poor numerical stability if H had small
eigenvalues, and setting large � will cause the conjugate gradient optimizer to mimic the gradient
descent optimizer by making updates in the same direction as the gradient. The optimal conjugate
gradient damping may depend on the problem and other hyper-parameters such as the sample size.

Once the conjugate gradient solver returned the optimal update direction H�1g, it must be scaled
down by a factor of C 0

2 (i.e., �✓⇤ = H�1g/C 0
2). If �✓⇤ satisfied the trust region criterion (i.e.,

1
2�✓

⇤T

H�✓⇤  �2max), then one can make the parameter update (i.e., ✓new = ✓old + �✓⇤) and proceed
to the next iteration. Otherwise, the proposed update �✓⇤ must be scaled down further, namely by
↵, such that the trust region condition would be satisfied (i.e., 1

2 (↵�✓
⇤)TH(↵�✓⇤) = �2max) before

making the update ✓new = ✓old + ↵�✓⇤. A line search can also be implemented by sampling from the
environment for policy evaluation at different update scales.

C.9 Manual Choice of C1 and C2

Since the TDPO algorithm operates using the metric Wasserstein distance, thinking about how
normalizing actions and rewards affect the corresponding optimization objective builds insight into
how to set these coefficients properly. Say we use the same dynamics, only the new actions are scaled
up by a factor of �, and the rewards are scaled up by a factor of ↵:

anew = � · aold rnew = ↵ · rold. (81)

If the policy function approximation class remained the same, the policy gradient would be scaled
by a factor of ↵

�
(i.e., @⌘new

@anew
= ↵

�
· @⌘old
@aold

). Therefore, one can easily show that the corresponding new
regularization coefficient and trust region sizes can be obtained by

Cnew =
↵

�2
· Cold (82)

and
�new
max = � · �old

max. (83)

The following process can provide a starting point for hyper-parameter optimization: (1) Define
C / ↵ · ��2, �max / � and �q / � (where �q is the action disturbance parameter used for DeVine),
(2) using prior knowledge or by trial and error determine appropriate action and reward normalization
coefficients. The reward normalization coefficient ↵ can approximate the average per-step discounted
reward difference between a null policy and an optimal policy.

C.10 Implementation Details for the Practical Training of the Robotic Leg

Section C.10.1 details the one variable at a time parameter sweep experiments which served as the
initial guess set for HPO and defined the hyper-parameter search domain. Section C.10.2 details
the individual training settings for each set of proposed hyper-parameters. Section C.10.3 discusses
the HPO and the log-space search details. Finally, Section C.10.4 describes the specifications of the
transition dynamics, the reward definition, and the imposed stochasticity in the observations and the
initial state distribution. We used TDPO with line search and adaptive exploration scale parameters.
We excluded TD3 from Figure 4 since it did not produce payoffs above �103 after a few iterations.

C.10.1 One Variable at a Time Parameter Sweeps

For better performance, HPO methods need a reasonable set of initial hyper-parameter guesses. For
this, we perform a one-variable-at-a-time parameter sweep around the central (default) setting of the
reinforcement learning method. The central HP values, the search domain, and the sweep values are
shown in Tables 5, 6, and 7 for the PPO, TRPO, and TD3 methods, respectively. Each HP was swept
with the candidate values while keeping all the other HPs fixed at their central value. The test problem
for determining the best HPO method had a short horizon, so the default HPs of each method were
used as the central value. The only exception for this was the entropy coefficient, which was set to
zero since the default value caused performance deterioration for TRPO and PPO in this particular test
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Figure 21: The frame sequence of a physical drop-and-catch test from a height of 0.7 m using the
best agent trained by our method (TDPO) at 4 kHz control frequency. A short video of multiple drops
from different heights is also included in our code repository.

problem. For TD3, we implemented two common exploration noise types: the Ornstein-Uhlenbeck
and the pink noise. Each of these noises was parametrized by their relative bandwidth, where the
relative bandwidth lies within [0, 1]. This relative bandwidth was treated as a hyper-parameter for
TD3. Since the Ornstein-Uhlenbeck noise with a relative bandwidth of 1 is the same as the white
Gaussian noise (TD3’s default exploration noise), we set it as the default. All settings were repeated
with 3 random seeds, and the best agent’s return during each individual training was reported as the
performance metric for HPO. The parameter sweep values were extended on both ends until a clear
peek in performance was detected. These parameter sweeps created an initial set of HPs with their
corresponding performances, which were initially input to all HPO methods.

Since there was a 40-fold increase in the number of time-steps per trajectory between the short- and
long-horizon environments, relevant HPs were proportionally scaled in the long-horizon. In particular,
the central value, domain, and parameter sweep values for all (a) batch-sizes, (b) initial pre-training
samples, and (c) training intervals were multiplied by 40. Due to computational resource limitations,
we did not scale TD3’s optimization batch-size proportional to the horizon. We also adjusted the
MDP and GAE discount factors so that their respective horizon lengths are multiplied by 40.

C.10.2 Individual Training Details

In the short-horizon test problem, we observed that the network architecture used in PPO, TRPO, and
TDPO improved TD3’s performance over its default architecture (i.e., when using ReLU activations
in the hidden layers and a tanh output activation followed by normalizing the actions). Therefore,
we used the same neural architecture (a 3-layer MLP with 64 units in the hidden layers and tanh
activation) for all methods. As shown in Figure 3, using this architecture, TD3 managed to outperform
the other methods upon full HPO on the short-horizon test benchmark.

The short-horizon test environment: We used four parallel workers in all trainings. Therefore, all
the relevant batch-sizes in Tables 5, 6, and 7 must be quadrupled to reveal the collective values. Each
training was performed for one million time-steps per worker (i.e., four million collective training
steps). Since (a) some HPO methods were intolerant of evaluation stochasticity and (b) performing
HPO with many seeds was intractable, the HPO’s metric was defined as the average performance on
3 pre-determined random seeds. This environment defined trajectories with a duration of 2 seconds
and a control frequency of 100 Hz, corresponding to a total of 200 time-steps per trajectory.
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(a) HPO curves for PPO and TRPO

(b) PPO performance after 12 HPO iterations (c) PPO performance after 25 HPO iterations

(d) TRPO performance after 12 HPO iterations (e) TRPO performance after 25 HPO iterations

Figure 22: The top line-plots show the HPO payoff curves for PPO and TRPO. For each iteration, the
best agent obtained so far was evaluated using the 3 HPO seeds. In the top-left bar plot, the best agent
after 12 iterations of HPO was selected and evaluated twice for each method; once only with the 3
HPO seeds, and once with 100 different random seeds. The shorter the bars, the better the agent’s
performance. Three ProSRS and two Scikit-Opt variants were considered. The A variants made
30 parallel proposals per iteration, where each proposal was evaluated with a single seed randomly
chosen from the 3 HPO seeds. The B variant made 10 parallel proposals per iteration, where each
proposal was evaluated with all 3 seeds. Variant C made 30 parallel proposals per iteration, where
each proposal was evaluated with a single seed randomly chosen between 1 and 100. Similarly, Sub-
figures the top-right, bottom-left, and bottom-right bar plots were drawn for PPO after 25 iterations,
TRPO after 12 iterations, and TRPO after 25 iterations, respectively. Overall, Variant A offers the
best balance between the number of proposals and the induced stochasticity. The bar plots suggest a
high ordering correlation between the evaluations on 3 seeds and 100 seeds, which further validates
the "optimize the hyper-parameters for 3-seeds and finally evaluate on many seeds" approach.

The long-horizon leg environment: We used 144 parallel workers in this setting, which means
that the collective batch-sizes can be obtained by multiplying the values in Table 8 by 144. We trained
each set of proposed hyper-parameters for 5 billion collective time-steps. Similar to the short-horizon
environment, the HPO’s metric was defined as the average performance on 3 pre-determined random
seeds. However, the final set of best hyper-parameters for each method was trained with 25 random
seeds to be shown in Figure 4 of the main paper. This environment defined rollout durations of 2 s
and a control frequency of 4 kHz, corresponding to a total of 8000 time-steps per trajectory.

C.10.3 The HPO Details

We used the default settings with each implementation. Optuna used a Tree Parzen Estimation (TPE)
method, Bayesian Optimization used a Gaussian Process (GP) with Upper Confidence Bound (UCB)
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Hyper-Param. Center Domain Parameter Sweep Values
MDP Discount 0.99 [0.36,

0.99984375]
0.36, 0.68, 0.84, 0.92, 0.96, 0.98, 0.99, 0.995, 0.9975,

0.99875, 0.999375, 0.9996875, 0.99984375

GAE Discount 0.98 [0.36,
0.99984375]

0.36, 0.68, 0.84, 0.92, 0.96, 0.98, 0.99, 0.995, 0.9975,
0.99875, 0.999375, 0.9996875, 0.99984375

Sampling BS 256 [64, 16384] 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384

Clip Param. 0.2 [0.02, 200] 0.02, 0.06, 0.2, 0.6, 2.0, 6, 20, 60, 200

Entropy Coef. 0 [0, 0.1] 0, 0.001, 0.01, 0.1

Opt. Epochs 4 [1, 128] 1, 2, 4, 8, 16, 32, 64, 128

Opt. MBs 4 [1, 64] 1, 2, 4, 8, 16, 32, 64

Opt. LR 10�3 [10�5, 10�1] 10�5, 3⇥ 10�5, 10�4, 3⇥ 10�4, 10�3,
3⇥ 10�3, 10�2, 3⇥ 10�2, 10�1

ADAM ✏ 10�5 [10�8, 10�4] 10�8, 3⇥ 10�8, 10�7, 3⇥ 10�7, 10�6,
3⇥ 10�6, 10�5, 3⇥ 10�5, 10�4

LR Schedule Linear - Constant, Linear
Table 5: The one-variable-at-a-time parameter sweep details for the PPO method on the short-horizon
leg benchmark environment. BS, MB, and LR are short for batch-size, mini-batch, and learning rate,
respectively. See Section C.10.1 for more information.

Hyper-Param. Center Domain Parameter Sweep Values
Sampling BS 1024 [64, 16384] 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384

MDP Discount 0.99 [0.36,
0.99984375]

0.36, 0.68, 0.84, 0.92, 0.96, 0.98, 0.99, 0.995,
0.9975, 0.99875, 0.999375, 0.9996875, 0.99984375

GAE Discount 0.98 [0.36,
0.99984375]

0.36, 0.68, 0.84, 0.92, 0.96, 0.98, 0.99, 0.995,
0.9975, 0.99875, 0.999375, 0.9996875, 0.99984375

Max KL 0.01 [0.00125,
0.64]

0.00125, 0.0025, 0.005, 0.01, 0.02,
0.04, 0.08, 0.16, 0.32, 0.64

CG Iterations 10 [1, 20] 1, 2, 5, 10, 20

Entropy Coef. 0 [0.0, 10�3] 0.0, 10�5, 10�4, 10�3

CG Damping 0.01 [10�4, 1] 10�4, 10�3, 10�2, 10�1, 1

VF LR 0.0003 [3⇥ 10�6,
3⇥ 10�2]

3⇥ 10�6, 10�5, 3⇥ 10�5, 10�4, 3⇥ 10�4,
10�3, 3⇥ 10�3, 10�2, 3⇥ 10�2,

VF Iterations 3 [1, 24] 1, 3, 6, 12, 24

VF MBs 8 [1, 64] 1, 2, 4, 8, 16, 32, 64

Table 6: The one variable at a time parameter sweep details for TRPO on the short-horizon leg
benchmark environment. BS, MB, LR, VF, and CG are short for batch-size, mini-batch, learning-rate,
value function, and conjugate gradient, respectively. See Section C.10.1 for more information.

acquisitions and the Mattern kernel, Scikit-Opt used a GP with a hedge acquisition function (i.e.,
automatically determining the acquisition function from a pre-defined set), ProSRS used a GP with
Radial Basis Function (RBF) acquisitions, and GPyOpt used a GP with Local Penalization (LP),
UCB acquisitions, and a white noise kernel. All HPO parameters were left as their default values.

ProSRS and Scikit-Opt HPO implementations could tolerate evaluation noise. That is, these imple-
mentations could tolerate stochasticity in their evaluation metric according to their documentation.
On the other hand, Optuna, Bayesian Optimization, and GPyOpt’s documentation suggested run-
ning them on non-noisy evaluation functions only. Since each HPO training in the long-horizon
environment could take 10 hours, running thousands of sequential HPO iterations is impractical.
Therefore, we used the HPO implementations in a “batched” capacity, where each HPO method
proposed multiple sets of HPs for parallel evaluation and then received their performance values
simultaneously. We allowed all HPO methods to ask for 30 parallel trainings in each proposal.
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Hyper-Param. Center Domain Parameter Sweep Values
MDP

Discount
0.99 [0.36,

0.99984375]
0.36, 0.68, 0.84, 0.92, 0.96, 0.98, 0.99, 0.995, 0.9975,

0.99875, 0.999375, 0.9996875, 0.99984375

Buffer Size 50000 [3125,
800000]

3125, 6250, 12500, 25000, 50000, 100000,
200000, 400000, 800000

Pre-training 100 [25, 6400] 25, 50, 100, 200, 400, 800, 1600, 3200, 6400

Train Interval 100 [25, 6400] 25, 50, 100, 200, 400, 800, 1600, 3200, 6400

Opt. BS 128 [8, 2048] 8, 16, 32, 64, 128, 256, 512, 1024, 2048

Opt. LR 0.0003 [3⇥ 10�6,
3⇥ 10�2]

3⇥ 10�6, 10�5, 3⇥ 10�5, 10�4,
3⇥ 10�4, 10�4, 3⇥ 10�4, 10�2, 3⇥ 10�2

GD Iterations 100 [6, 400] 6, 12, 24, 50, 100, 200, 400

Soft Update
Coefficient

0.005 [0.000625,
0.08]

0.000625, 0.00125, 0.0025, 0.005,
0.01, 0.02, 0.04, 0.08

Policy Delay 2 [1, 16] 1, 2, 4, 8, 16

Noise Type Ornstein - Ornstein, Pink
Noise RFB 1 [2�8, 1] 2�8, 2�7, 2�6, 2�5, 2�4, 2�3, 2�2, 2�1, 1

Noise std 0.1 [0.00625, 0.8] 0.00625, 0.0125, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8

Target Noise
std

0.2 [0.00625, 3.2] 0.00625, 0.0125, 0.025, 0.05, 0.1,
0.2, 0.4, 0.8, 1.6, 3.2

Target Noise
Clipping

0.5 [0.0625, 4] 0.0625, 0.125, 0.25, 0.5, 1, 2, 4

Table 7: The one-variable-at-a-time parameter sweep details for the TD3 method on the short-horizon
robotic leg test environment. BS, LR, GD, and RFB are short for batch-size, learning rate, gradient
descent, and relative frequency bandwidth, respectively. See Section C.10.1 for more information.

The noise-tolerant HPO implementations (ProSRS and Scikit-Opt) were allowed to propose 30
different HPs. We ran each of these 30 with one of the 3 pre-determined random seeds (picked
at random) and returned the result to the HPO method. Figure 22 shows that this was the best
configuration for ProSRS and Scikit-Opt out of those tried. On the other hand, the noise-intolerant
HPO implementations (Optuna, Bayesian Optimization, and GPyOpt) could only propose 10 HP
sets, since each set needed to be trained on all 3 pre-determined random seeds. This “batched” HPO
approach allowed us to effectively optimize TRPO, PPO, and TD3 on the short horizon benchmark in
25 HPO iterations as shown in Figure 4. Due to resource limitations, we only ran 11 HPO iterations
for PPO and TRPO on the long-horizon environment.

Hyper-parameter pre-processing transformations: We applied a log transformation to all nu-
meric hyper-parameters before passing them to HPO methods. We made two exceptions to this rule.
Instead of searching for the MDP and GAE discount factors in the log-space, we transformed them
into their respective horizons and then searched for the horizons logarithmically. That is, instead
of searching for log(�), we searched for log(1/(1� �)). Since we wanted the HPO method to be
able to set the entropy coefficient Centropy to zero, we searched for log(Centropy + 10�5) instead of
searching for log(Centropy). The search domains for all HPs were identical to the one variable at a
time parameter sweep domains in Section C.10.1, where the domain bounds were extended until a
clear peek in performance was detected.

C.10.4 The Environment Specification

For the dynamics, we used the same physical model as the one in Sections 4.2 and C.2. For the
initial state distribution, the hip and knee angles were uniformly chosen from the [�180�,�30�]
and [�155�,�35�] intervals, respectively. The initial drop height of the robotic leg was uniformly
chosen between 0.4 and 0.8 meters. To simulate the unmodeled physical characteristics, we extracted
physical sensing noises from the hardware and used them as a template for generating stochastic
observation noise in our simulated model. For a better simulation-to-real transfer, we modified the
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Method Hyper-Param. Center Domain Parameter Sweep Values
PPO,

TRPO,
TD3

MDP
Discount

0.99975 [0.488,
0.99996875]

0.488, 0.744, 0.872, 0.936, 0.968, 0.984,
0.992, 0.996, 0.998, 0.999, 0.9995, 0.99975,

0.999875, 0.9999375, 0.99996875

PPO,
TRPO

GAE Discount 0.9995 [0.488,
0.9999375]

0.488, 0.744, 0.872, 0.936, 0.968, 0.984,
0.992, 0.996, 0.998, 0.999, 0.9995, 0.9995,

0.99975, 0.999875, 0.9999375

PPO,
TRPO

Sampling BS 40000 [19,
160000]

19, 39, 78, 156, 312, 625, 1250, 2500, 5000,
10000, 20000, 40000, 80000, 160000

TD3 Buffer Size 2000000 [62500,
8000000]

62500, 125000, 250000, 500000, 1000000,
2000000, 4000000, 8000000

TD3 Pre-training,
Train Interval

4000 [500, 64000] 500, 1000, 2000, 4000, 8000,
16000, 32000, 64000

TD3 Opt. BS 128 [8, 2048] 8, 16, 32, 64, 128, 256, 512, 1024, 2048

Table 8: The one-variable-at-a-time parameter sweep details for the long-horizon robotic leg envi-
ronment. Only the HPs in need of horizon-scaling were given here, and the rest of the HPs used the
same settings as Tables 5, 6, and 7. 144 parallel workers were used in the long-horizon environment
trainings, so the collective batch-sizes are 144 times the values in this table.

reward definition to emphasize the penalty for non-optimal behavior such as violating the physical
constraints. In particular, we used the reward function described by the following equations:

R = Rtorque sm. +Rfoot offset +Rposture +Rvelocity +Rtorque +Rconstraints (84)

with

Rtorque sm. = �2⇥
⇥
(⌧knee � ⌧ old

knee)
2 + (⌧hip � ⌧ old

hip )
2
⇤

Rfoot offset = �1⇥ x2
foot

Rposture = �0.1⇥
⇥
(zhip � zfoot)� ztarget

posture
⇤2

Rtorque = �10�7 ⇥
⇥
⌧2knee + ⌧2hip

⇤

Rvelocity = �10�4 ⇥
⇥
!2

knee + !2
hip
⇤

Rconstraints = �0.1⇥ 1phys. violation (85)

where

• !knee and !hip are the knee and hip angular velocities in radians per second, respectively.
• ⌧knee and ⌧hip are the knee and hip torques in Newton meters, respectively.
• xfoot and zfoot are the horizontal and vertical foot offsets in meters from the desired standing point

on the ground, respectively.
• zhip is the vertical hip offset in meters from the desired standing point on the ground.

• ztarget
posture is a target posture height of 0.1 m.

• ⌧ old
knee and ⌧ old

hip are the values of !knee and !hip from the previous time-step, respectively.

• 1phys. violation is an indicator variable only being one when the agent violates the physical safety
bounds of the robotic leg hardware. This involves exceeding the limits of allowed hip or knee
angles and angular velocities, or the vertical offsets of the hip and knee. Such violations could
result in physical damage to the hardware and were penalized during the training.
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D Broader Impact

This work provides foundational theoretical results and builds upon reinforcement learning techniques
within the area of machine learning. Reinforcement learning methods can provide stable control
and decision-making processes for a range of challenging applications in robotics [23], computer
vision [60], advertisement and recommendation systems [49], human search and rescue in natural
disasters [41, 12], automated resource management [37], chemistry [61], computational biology [46],
and even clinical surgeries [40].

Although many implications could result from the application of reinforcement learning, in this
work we focused especially on settings where intelligence, precision, and speed are required for
controlling robotic movements. Our work particularly investigated methods for controlling oscillation
characteristics using reinforcement learning agents. Such improvements could help stabilize high-
bandwidth robotic environments and may facilitate the training of intelligent agents for robotic
hardware where safety is of concern [3]. The negative consequences of this work could include
the removal of human decision-making from the controller design loop, the unknown existence of
unforeseen loopholes in the engineered behavior, and vulnerability to policy induction attacks [6].

To mitigate the risks, we encourage further research to develop methods to provide guarantees and
definitive answers about agent behavior. In other words, a general framework for making guaranteed
statements about the behavior of the trained agents is missing. For instance, one cannot currently
guarantee that the agent would act safely under all circumstances and perturbations even if it achieves
high performances in practice. Understanding exploitation techniques of such reinforcement learning
agents and designing processes to prevent such abuses could be of paramount societal concern.
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