
A Appendix

A.1 Dataset descriptions

CA Housing [10, 46]. The target to regress is the median house value for California districts (1990 U.S.
census), expressed in hundreds of thousands of dollars, from 8 household-related variables.

FICO [22]. Anonymized dataset of line of credit applications made by real homeowners. The customers
in this dataset have requested a credit line in the range of $5,000 – $150,000. The task is to make a binary
prediction whether applicants will repay their account within 2 years.

CoverType [8, 16, 20]. The samples in this dataset correspond to 30⇥30m patches of forest in the U.S.,
collected for the task of predicting each patch’s cover type, i.e., the dominant species of tree. There are seven
covertypes, making this a multi-class classification problem.

Newsgroups [32, 43]. This dataset is a collection of news documents, partitioned across 20 different
newsgroups, making this a multi-class classification problem. Each article is represented by a tf-idf term for
each word in the training split word vocabulary. Newsgroups dataset has sparsity 99.9%, i.e., only around 150
words from a vocabulary of 150k words appears per a given article, on average.

MIMIC-II [41, 51]. The task is to make a binary prediction on mortality of Intensive Care Unit (ICU)
patients. Contains physiologic signals and vital signs time series captured from patient monitors for tens of
thousands of ICU patients.

Credit [17, 19]. This dataset contains anonymized credit card transactions labeled as fraudulent or genuine,
and the task is to make a binary prediction between them.

Click [15]. Subset of data from the KDD Cup 2012. Namely, 500,000 objects of a positive class and 500,000
objects of a negative class were randomly sampled to create a binary prediction task. We would like to gratefully
acknowledge the organizers of KDD Cup 2012 as well as Tencent Inc. for making the dataset available.

Epsilon [21]. Dataset for binary prediction from the PASCAL Large Scale Learning Challenge.

Higgs [3, 26]. The problem is to binary predict whether the given event produces Higgs bosons.

Microsoft [40, 49]. Ranking dataset, where features are extracted from query-url pairs. Each pair has
relevance judgment labels to regress, which take values from 0 (irrelevant) to 4 (very relevant).

Yahoo [60]. Another ranking dataset with query-url pairs that have labels to regress from 0 to 4.

Year [66]. Subset of Million Song Dataset. The task is to regress the release year of the song by using the
audio features. It contains tracks from 1922 to 2011.

CUB [18, 62]. This image classification dataset consists of images of 200 bird classes. All images are
annotated with keypoint locations of 15 bird parts (e.g., beak, wing, crown) and each location is associated with
one or more part-attribute labels (e.g., orange leg, striped wing). Some of the keypoint annotations distinguish
between the left-right instances of parts, e.g., ‘left wing’ / ‘right wing’, ‘left eye’ / ‘right eye’. We treat these as
the same part, i.e., ‘left wing’ and ‘right wing’ as ‘wing’.

iNaturalist Birds [27, 59]. Another image classification dataset that contains 1,486 bird classes. The full
iNaturalist 2021 dataset consists of various super-categories (e.g., plants, insects, birds), covering 10K species
in total. The Birds super-category contains 1,486 bird classes and more challenging scenes compared to CUB.
Therefore, the iNaturalist dataset is a challenging testbed for any image classification method. However, note
that this dataset lacks keypoint annotations.

Common Objects. Proprietary object detection dataset created by collecting public images from Instagram1.
Dataset contains 114 common household objects, (e.g., stove, bed, table), plus a background class, with bounding
box locations, 200 parts and 54 attributes. Each bounding box for each image is pre-processed using compositions
of parts (e.g., leg, handle, top) and attributes (e.g., colors, textures, shapes) to extract 2,618 interpretable features
and 100k pairwise feature interactions. Common Objects dataset has sparsity 97%, i.e., only around 76
part-attribute compositions from a vocabulary of 2618 compositions are active for a given object, on average.

1
www.instagram.com
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Table A.1: Optimal hyper-parameters for NBMs and NB2Ms on all datasets.
NBM: [256, 256, 128] hidden units, 100 basis functions

Dataset Number of Batch Learning Weight Dropout Basis Output
epochs size rate decay dropout penalty

CA Housing 1,000 1,024 0.00197 1.568e-5 0.0 0.05 1.439e-4
FICO 1,000 1,024 0.02176 1.684e-5 0.3 0.7 2.462e-4
CoverType 500 1,024 0.01990 5.931e-7 0.0 0.0 0.05533
Newsgroups 500 512 3.133e-4 1.593e-8 0.1 0.3 4.578
MIMIC-II 1,000 1,024 0.01460 3.177e-6 0.5 0.1 2.318
Credit 500 1,024 0.00391 1.574e-6 0.0 0.9 0.03737
Click 500 1,024 2.745e-4 7.21e-10 0.0 0.5 20.085
Epsilon 500 1,024 3.776e-5 1.507e-7 0.3 0.4 0.00273
Higgs 50 1,024 1.792e-4 1.087e-9 0.0 0.0 3.906e-5
Microsoft 500 1,024 1.677e-4 1.969e-7 0.1 0.3 1.986e-4
Yahoo 500 1,024 0.00446 1.399e-8 0.1 0.3 0.01688
Year 500 1,024 8.780e-5 1.580e-7 0.1 0.1 2.592e-5
CUB 500 128 0.01173 0.12910 0.7 0.3 4.739
iNaturalist Birds 100 1,024 0.00140 3.548e-5 0.0 0.2 1.423e-5
Common Objects 100 1,024 0.12480 1.001e-5 0.1 0.0 0.0

NB2M: [256, 256, 128] hidden units, 200 basis functions

Dataset Number of Batch Learning Weight Dropout Basis Output
epochs size rate decay dropout penalty

CA Housing 1,000 1,024 0.00190 7.483e-9 0.0 0.05 1.778e-6
FICO 1,000 1,024 2.287e-4 3.546e-7 0.1 0.7 0.19330
CoverType 500 512 0.00268 1.660e-7 0.0 0.0 0.00155
MIMIC-II 1,000 1,024 1.796e-4 3.494e-4 0.1 0.5 0.05964
Credit 500 1,024 3.745e-4 4.610e-5 0.5 0.0 0.25280
Click 500 1,024 9.614e-4 0.00159 0.0 0.5 0.05773
Higgs 50 1,024 0.00201 2.202e-4 0.0 0.1 1.969e-7
Microsoft 100 128 1.640e-4 1.552e-8 0.0 0.9 2.928e-6
Year 100 256 3.180e-4 1.696e-8 0.0 0.9 4.454e-4
CUB 500 32 2.629e-4 0.03209 0.0 0.0 96.894
iNaturalist Birds 100 32 6.735e-5 9.870e-5 0.05 0.0 3.785
Common Objects 100 64 0.03127 1.013e-4 0.0 0.2 8.126

A.2 Hyper-parameters

Linear, MLP, NAM, and NBM are trained using the Adam with decoupled weight decay (AdamW) optimizer [35],
on 8⇥V100 GPU machines with 32 GB memory, and a batch size of at most 1024 per GPU. We train for 1,000,
500, 100, or, 50 epochs, depending on the size and feature dimensionality of the dataset. The learning rate is
decayed with cosine annealing [34] from the starting value until zero. We find optimal hyper-parameters for all
models using validation set and random search, following the detailed guidelines.

Linear. We tune the starting learning rate in the continuous interval [1e�5, 100), weight decay in the interval
[1e�10, 1.0).

MLP. We tune the starting learning rate in the continuous interval [1e�5, 1.0), weight decay in the interval
[1e�10, 1.0), dropout coefficients in the discrete set {0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

NAM. We tune the starting learning rate in the continuous interval [1e�5, 1.0), weight decay in the interval
[1e�10, 1.0), output penalty coefficient in the interval [1e�7, 100), dropout and feature dropout coefficients in
the discrete set {0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

NBM. We tune the starting learning rate in the continuous interval [1e�5, 1.0), weight decay in the interval
[1e�10, 1.0), output penalty coefficient in the interval [1e�7, 100), dropout and basis dropout coefficients in
the discrete set {0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Optimal hyper-parameters for NBMs and
NB2Ms on all datasets are given in Table A.1.
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Figure A.1: NAM vs. NBM: #parameters (left); NA2M vs. NB2M: #parameters (right).

Finally, for EBMs and XGBoost, CPU machines are used, with hyper-parameter search as follows.

EBM. We tune the maximum bins from the set {8, 16, 32, 64, 128, 256, 512}, number of interactions from
{0, 2, 4, 8, 16, 32, 64, 128, 256, 512} (they are set to 0 for EBMs and � 0 for EB2Ms), learning rate in the
continuous range from [1e�6, 100), the maximum rounds from the set {1000, 2000, 4000, 8000, 16000},
the minimum samples in a leaf node from the set {1, 2, 4, 8, 10, 15, 20, 25, 50}, and the same range is used
for the maximum leaves parameter. For binning, we search within the set {“quantile”, “uniform”, “quan-
tile_humanized”}. The inner bags and outer bags are selected from the range {1, 2, 4, 8, 16, 32, 64, 128}.

XGBoost. We tune the number of estimators from {1, 2, 4, 8, 10, 20, 50, 100, 200, 250, 500, 1000}, the max-
depth from the set {1, 2, 5, 10, 20, 25, 50, 100, 2000}, ⌘ over a continuous range [0.0, 1.0), and use the same
for the subsample and colsample_bytree parameters.

A.3 Additional discussion w.r.t. NAM

Number of parameters for multi-class and pairwise feature interactions. We compare number of
weight parameters needed to learn NAM vs. NBM for the multi-class task. This discussion is an extension of the
discussion in Section 3.3. Let us denote with M the number of parameters in MLP for each feature in NAM,
and with N the number of parameters in MLP for bases in NBM. In most experiments the optimal NAM has 3
hidden layers with 64, 64 and 32 units (M = 6401), and, NBM has 3 hidden layers with 256, 128, 128 units
(N = 62820) and B = 100 basis functions. Finally, let us denote with D the input feature dimensionality, and
with C the number of classes in the multi-class task. Then the ratio of number of parameters in NAM vs. NBM
is given by,

|NAM|
|NBM| =

D ·M +D · C
N +D ·B +D · C =

6401 + C
62820

D + 100 + C
. (A.1)

Similarly, in the case of pairwise feature interactions in NA2M vs. NB2M, this ratio is given by,

|NA2M|
|NB2M|

=
D(D�1)

2 ·M + D(D�1)
2 · C

N + D(D�1)
2 ·B + D(D�1)

2 · C
=

6401 + C
125640
D(D�1) + 100 + C

. (A.2)

Figure A.1 shows both ratios for different values of feature dimensionality D and number of classes C.

For unary features (NAM vs. NBM, Figure A.1 left), the conclusion is the same as in the case of binary
classification, i.e., for D = 10, NBMs and NAMs have roughly equal number of parameters, for any given value
of C. For higher number of classes, NBMs still provide significant gain over NAMs, however, that gain starts
decreasing, due to the fact that the final linear classifier starts becoming the most memory hungry part of the
model. Nevertheless, even with C = 1,486 and D = 278 in iNaturalist Birds, which has the most classes from
the datasets we used, NBMs have around 5⇥ less parameters than NAMs, see Table 2.

For pairwise feature interactions (NA2M vs. NB2M, Figure A.1 right), the ratio is much more pronounced, i.e.,
already at D = 5, NB2Ms and NA2Ms have equal number of parameters, and the growth of the ratio w.r.t. D is
much more significant. Already after few hundred feature dimensions the ratio is at peak.

16



Throughput optimization of NAMs. Neural Additive Models (NAMs) [2] learn an MLP network for
each input feature, followed by a linear combination to make a prediction. Official implementation [42] runs
a for loop over all networks, which results in a poor GPU utilization. More precisely, this implementation
requires extremely large batches (>>1,024) per GPU to make the training efficient, which is impractical. We do
recognize that efficiency was not of highest priority to the authors [2], but in our case we are scaling GAMs to
multi-class datasets with order of million data points. Thus, to facilitate a fair comparison against our NBMs, we
reimplement NAMs using grouped convolutions [30, 65], which are readily available in standard deep learning
libraries. Namely, we stack corresponding hidden layers of all MLPs (e.g., first hidden layer of all MLPs) into a
grouped 1-D convolution, where number of groups equals the number of features. The computation performed
is identical to original NAMs, i.e. there is no feature interaction, while achieving around ⇥2–⇥10 speedup,
depending on the dataset. We perform the same implementation trick to NA2Ms, as well.

A.4 Additional visualization

The interpretability of GAMs comes from the fact that the learned shape functions can be easily visualized. In
the same manner as the other GAM approaches, each feature’s importance in an NBM can be represented by a
unique shape function that exactly describes how the NBM computes a prediction. For an example, see Figure 3
visualization on the CA Housing dataset. We additionally demonstrate this on the CUB image classification
dataset that consists of 200 bird classes, where each image is represented by interpretable features, e.g., a “bird”
image can be represented with “striped wings”, “needle-shaped beak”, “long legs”, etc., that are predicted from
the image using a convolutional-neural-network (CNN) model. We present visualizations of shape functions
with highest positive or negative contribution to 6 randomly selected bird classes, see Figures A.2 and A.3.

Towards this purpose, we train an ensemble of 20 models by running different random seeds with optimal hyper-
parameters, in order to analyze when the models learn the same shape and when they diverge. Following Agarwal
et al. [2], we set the average score for each shape function to be zero by subtracting the respective mean feature
score. Next, we plot each shape function as fi(xi) vs. xi for each model in the ensemble using a semi-transparent
line, and an average ensemble shape function using a thick line. Finally, the x-axis is divided by bars depicting
the normalized data density, i.e., darker areas contain more data points. Figures A.2 and A.3 depict few image
examples for the respective class (upper row), and an ensemble of NBMs (bottom row). We visually observe
that NBMs provide a strong interpretable overview of the respective bird class, and that the shape functions do
not diverge significantly even in the cases where there are only few data points (light / white areas in the graphs).
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Figure A.2: CUB bird class image examples (upper row) and NBM shape functions fi (bottom row)
with highest positive or negative contribution to the respective bird class prediction.
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Figure A.3: CUB bird class image examples (upper row) and NBM shape functions fi (bottom row)
with highest positive or negative contribution to the respective bird class prediction.
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A.5 Learning-Theoretic Guarantees for Basis Models in a RKHS

As discussed briefly in the main paper, it is possible to develop a more rigorous argument for the use of a small
set of basis functions instead of a complete generalized additive model. To elucidate we first require establishing
some notation: We represent matrices by uppercase boldface, e.g., X and vectors by lowercase boldface, i.e.,
x. We assume that the covariates lie within the set X ✓ RD , and the labels lie within the finite set Y . Data
(x, y) 2 X ⇥ Y are drawn following some unknown (but fixed) distribution P. We assume we are provided
with n i.i.d. samples {(xi, yi)}ni=1 as the train set.

Consider a generalized additive model (GAM) g : X ! Y :

g(x) =
DX

i=1

wi · fi(xi).

Assume that the shape functions f1, . . . , fD; fi : R ! Y have a maximum norm BH > 0 in some Reproducing
Kernel Hilbert Space (RKHS, [7]) H endowed with a PSD kernel k(·, ·) : R⇥R ! R and feature � : R ! RdH ,
i.e., kfikH  BH, and w = {wi}Di=1 2 RD , k(x, y) = �(x)>�(y) such that kwk2  Bw for Bw > 0. This
characterization corresponds to a family of functions HA, i.e.,

HA = {g | g(x) =
DX

i=1

wifi(xi), kfikH  BH, kwk2  Bw} (A.3)

The idea behind the basis decomposition approach highlighted in this paper is to only use a fixed number of
bases, B, to model each fi. Observe that one can obtain rigorous guarantees for fi that lie within an RKHS using
Mercer’s Theorem [39]. We have that if the kernel k associated with the RKHS H is continuous, positive-definite
and symmetric, there exist a set of eigenvalues {�i}1i=1 and eigenfunctions (basis functions) {!i}1i=1 that form
an orthonormal basis for k, i.e., for any x, y 2 R,

k(x, y) =
1X

i=1

�i!i(x)!i(y). (A.4)

Where the bases are orthonormal, i.e.,
R
x2R !i(x)!j(x)dx = 0 for i 6= j and 1 otherwise. This representation

naturally gives a form for �(·) = [
p
�i!i(·)]1i=1. Furthermore, we have that for each f 2 H there exists

f 2 L2 such that f(x) = hf ,�(x)iH8x 2 R. Note once again that the reproducing kernel Hilbert space H
corresponds to the feature-wise functions f , whereas the space HA corresponds to the overall function g. Now,
we can define, for the family HA a Generalized Basis Model of order B (denoted as HB) as the following.
Definition 1. A Generalized Basis Model of order B for any function class HA that satisfies the characterization
in Equation A.3 for some (H, BH, Bw) is given by the family HB :

HB =

8
<

:

g(x) =
PD

i=1 wifi(xi),
g fi(·) =

PB
j=1 �ijhj(·), kfikH  BH, kwk2  Bw,

hi 2 H, hi ? hj8 i 6= j.

9
=

;

Where orthogonality (?) is defined as hi ? hj =)
R
x2R hi(x) · hj(x)dx = 0.

Next, note that by Mercer’s Theorem, for each function f 2 H, there exists f = {fi}1i=1,f 2 L2 such
that f(x) = hf ,�(x)iH. Combining this statement with the basis representation for � gives us an alternate
representation of any f 2 H, as

f(·) =
1X

i=1

fi
p
�i!i(·).

Under this representation, we can relate the two spaces HA and HB as follows.
Proposition 1. For any H, dimensionality D, and number of basis functions B > 0, HB ✓ HA.

Proof. Follows from Mercer’s Theorem [39]. Any g 2 HB can be written as a linear combination of functions
in H (and consequently HA), each of which admit a basis representation via Mercer’s Theorem, where all but B
components have coefficient 0. In the limit B ! 1, HB = HA.

Since the basis functions in HB lie on a finite-dimensional subspace within H spanned by B basis vectors,
we can without loss of generality, assume that these B basis vectors correspond to {!i}Bi=1 obtained from
Equation A.4. Now, to prove generalization bounds on the best function learnable in HB and contrast that
with HA, we require a “smoothing” assumption in {!i}1i=1 (and correspondingly on H). The essence of this
assumption is to ensure that the kernel H can be spanned without introducing much error by only with a few basis
components, and is similar to smoothing kernel assumptions made in other areas as well, e.g., in reinforcement
learning.
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Assumption 1 (�-Exponential Spectral Decay of H). For the decomposition of H as outlined in Equation A.4,

we assume that there exist absolute constants C1 < 1 and C2 = O(1) and parameter � such that �i 
C1 exp(�C2 · i�) for each i � 1.

At a high level, our approach is to bound the test error of the empirical risk minimizer in HA, with the optimal
risk minimizer in HB to demonstrate that learning a generalized basis model does not incur significantly larger
error compared to learning the full model. We first make these terms precise. Recall that the empirical risk for
any function g is given by bLn(g) = 1

n

Pn
i=1 `(g(xi), yi). We denote ĝ as the empirical risk minimizer within

HB , i.e.,

bg = argmin
g2HB

bLn(g). (A.5)

Similarly, the expected risk can be given, for any function g as L = E(x,y)⇠P [`(g(x), y)]. Then we can define
the optimal expected risk minimizer g? in HA as,

g? = argmin
g2HA

L(g). (A.6)

We are now equipped to discuss our generalization bound.
Theorem 1. Let ` be a 1-Lipschitz loss, � 2 (0, 1] and Assumption 1 hold with constants C1, C2, �. Then we

have that with probability at least 1� � there exist absolute constants C1, C2 such that,

L(ĝ)� L(g?)  2Bw

r
B
n

+
DC2

C1
exp(�B�) + 5

r
log (4/�)

n
.

Proof. We will denote the weights and singular values for f? as w? and �?
ij , i.e., g?(x) =

PD
i=1 w

?
i h

?
i (xi)

where h?
i (x) =

P
1

j=1 �
?
ij!j(x). Note that this represnetation exists for some �?

ij by Mercer’s Theorem, as
discussed earlier. For any HB ,HA, consider the function g̃ 2 HB that is a truncated version of g? up to b
bases, i.e., g̃(x) =

PD
i=1 w

?
i
ehi(xi) where ehi(x) =

Pb
j=1 �

?
ij!j(x). Clearly, g̃ 2 HB . We can then rewrite

the L.H.S. in the Theorem as,

L(ĝ)� L(g?) = L(ĝ)� bLn(ĝ)| {z }
A

+ bLn(ĝ)� bLn(g̃)| {z }
0

+ bLn(g̃)� L(g)| {z }
B

.

Note that the middle term bLn(ĝ) � bLn(g̃)  0 since ĝ is the empirical risk minimizer in HB . Hence, by
bounding terms A and B , the proof will be complete. We can bound B via Lemma 1. We have that with
probability at least 1� �/2 for any � 2 (0, 1],

��� bLn(g̃)� L(g?)
��� 

L · C1

C2
exp(�B�) + 2

r
log (2/�)

n
.

We bound A via bounding the Rademacher complexity [63]. Since the loss function is Lipschitz and bounded,
with probability at least 1 � �/2, � 2 (0, 1], we have that by Theorem 12 and Theorem 8 of Bartlett and
Mendelson [4],

L(ĝ)� bLn(ĝ)  Rn(`�HB) +

r
8 log(4/�)

n
. (A.7)

Where Rn denotes the empirical Rademacher complexity at n samples [4]. Observe that each element of
HB is a linear combination of d elements that are represented by b basis vectors in H. Hence, there exist
weights {{↵ij}Di=1}Bj=1 such that any f 2 HB can be written as

P
i,j ↵ij!j(xi), k↵k2  BHBw where

↵ = {{↵ij}Di=1}Bj=1. Furthermore, we have that for any x ,�(x)>�(x) =
PB

j=1 !j(xi)
2  B. We therefore

have, by Theorem 12 of [4] that with probability at least 1� �/2, � 2 (0, 1],

L(ĝ)� bLn(ĝ)  Rn(`�HB) +

r
8 log(4/�)

n

 2LRn(HB) +

r
8 log(4/�)

n

 2LBwRn(H) +

r
8 log(4/�)

n

 2LBw

r
B
n

+

r
8 log(4/�)

n

The last inequality follows from Lemma 22 of [4]. Replacing the above result for k, we have that with probability
at least 1� �/2, Using the bound for term B and applying a union bound provides us the final result.
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Lemma 1. The following holds with probability at least 1� �, � 2 (0, 1], for some absolute constant C ⌧ 1,

��� bLn(g̃)� L(g?)
��� 

LD · C1

C2
exp(�B�) + 2

r
log (2/�)

n
.

Proof.

bLn(g̃)� L(g?) = bLn(g̃)� L(g̃) + L(g̃)� L(g?)


��� bLn(g̃)� L(g̃)

���
| {z }

1

+ |L(g̃)� L(g?)|| {z }
2

.

To bound 1 , we have that for any (x, y) within the training set, E[`(g̃(x), y)] = L(g̃) and 0  `(·, ·)  1. By
Azuma-Hoeffding, we obtain with probability at least 1� �, � 2 (0, 1],

��� bLn(g̃)� L(g̃)
���  2

r
log (2/�)

n
.

For 2 , since ` is L�Lipschitz, we have for some x1, x2, y 2 Y ,

|`(x1, y)� `(x2, y)|  |L · |x1 � y|� L · |x2 � y||
 L · |x1 � x2| .

Therefore:

|L(g̃)� L(g?)| 
��E(x,y)⇠P [`(g̃(x), y)� `(g?(x), y)]

��

 E(x,y)⇠P [|`(g̃(x), y)� `(g?(x), y)|]
 L · E(x,y)⇠P [|g̃(x)� g?(x)|]
 L · sup

x2X

|g̃(x)� g?(x)| .

Observe now that for any x 2 X ,

|g̃(x)� g?(x)| =

�����

DX

i=1

1X

j=1

(�?
ij � e�ij)!j(xi)

����� 
DX

i=1

BX

j=1

���(�?
ij � e�ij)

��� 
DX

i=1

1X

j=B+1

|�?
ij |.

Invoking Assumption 1, we have that
DX

i=1

1X

j=B+1

|�?
ij |  D

1X

j=B+1

C1 exp(�C2j
�)  D

Z
1

j=B

C1 exp(�C2j
�).

Since � � 1, we have,
Z

1

j=ri

C1 exp(�C2j
�)  C1

C2
exp (�B�) .

A union bound for both parts finishes the proof.

Discussion. The result holds when the target function class is a member of a Reproducing Kernel Hilbert Space
(RKHS). While RKHSes include a variety of expressive machine learning function classes, e.g., radial basis
functions, polynomials, linear classifiers, it is not known whether arbitrarily initialized neural networks have a
small norm in any RKHS with desirable properties. Most notably, however, it was shown recently that certain
neural networks can be represented via the Neural Tangent Kernel (NTK), an example of where the theory can
be applied as-is. More generally, however, this result demonstrates for arbitrary infinite-dimensional RKHS, we
have an exponential dependence on the number of basis B required in the approximation error (second term).
Observe that if we set B = O(logD), the second term is o(1) and goes to 0 as n ! 1, which suggests that in
practice, we only require a number of bases, B that grows logarithmically with the dimensionality D.

21


