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Abstract

Neural network verification aims to provide provable bounds for the output of a
neural network for a given input range. Notable prior works in this domain have
either generated bounds using abstract domains, which preserve some dependency
between intermediate neurons in the network; or framed verification as an optimiza-
tion problem and solved a relaxation using Lagrangian methods. A key drawback
of the latter technique is that each neuron is treated independently, thereby ignoring
important neuron interactions. We provide an approach that merges these two
threads and uses zonotopes within a Lagrangian decomposition. Crucially, we can
decompose the problem of verifying a deep neural network into the verification of
many 2-layer neural networks. While each of these problems is provably hard, we
provide efficient relaxation methods that are amenable to efficient dual ascent pro-
cedures. Our technique yields bounds that improve upon both linear programming
and Lagrangian-based verification techniques in both time and bound tightness.

1 Introduction

With the growing prevalence of machine learning in real-world applications, the brittleness of deep
learning systems poses an even greater threat. It is well-known that deep neural networks are
vulnerable to adversarial examples, where a minor change in the input to a network can cause a major
change in the output [1]. There is a long history of defense techniques being proposed to improve
the robustness of a network, only to be completely broken shortly thereafter [2]. This has inspired
researchers to focus instead on neural network verification, which, for a given network and a range of
input, aims to verify whether a certain property is satisfied for every input in that range. A typical
adversarial attack seeks to minimize the output of a scalar-valued network subject to certain input
constraints. Verification provides lower bounds on the minimum output value achievable by such an
adversary. Concretely, for a scalar-valued network f and input range X , verification provides lower
bounds to the problem minx∈X f(x).

As observed in [3], prior works in verification can be broadly categorized into primal and dual
views. In the primal view, convex relaxations are applied to attain, for every intermediate layer of the
network, a convex superset of the true attainable range. For example, if f = fL ◦ · · · ◦ f1, convex
sets Zk are obtained such that {fk ◦ · · · ◦ f1(x) | x ∈ X} ⊆ Zk for k ∈ {1, . . . , L}.
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Under the dual lens, verification is treated as a stagewise optimization problem and Lagrangian
relaxation is applied to yield a dual function that always provides valid lower bounds. Often, this
dual function is decomposable into a sum of minimization problems which are efficiently computable.
One hallmark of all existing dual verification techniques is that intermediate bounds Zk are required.
In this case, either an efficient primal verification algorithm must first be applied or, for example,
the dual verifier can be run iteratively on each neuron to provide upper and lower bounds for each
intermediate layer.

Our approach is an attempt to combine the primal and dual threads of verification. We first apply a
primal verification algorithm that generates bounds on the attainable range of each intermediate layer.
To do this we leverage zonotopes, a more expressive class of polytopes than axis-aligned hyperboxes.
Notably, we offer an improvement to existing zonotope bounds when we are also provided with
incomparable hyperbox bounds. These zonotopic intermediate bounds are then applied to a dual
verification framework, for which dual ascent can be performed. Our formulation may be viewed
as taking the original nonconvex verification problem and decomposing it into many subproblems,
where each subproblem is a verification problem for a 2-layer neural network. However, as even
verifying a 2-layer network is hard in general, we further develop efficient relaxation techniques that
allow for tractable dual ascent.

We introduce a novel algorithm, which we call ZonoDual, which i) is highly scalable and amenable
to GPU acceleration, ii) provides tighter bounds than both the prior primal and dual techniques
upon which our approach is built, iii) is highly tunable and able to effectively balance the competing
objectives of bound tightness and computation speed, and iv) is applicable as an add-on to existing
dual verification frameworks to further boost their performance. We apply ZonoDual to a variety of
networks trained on MNIST and CIFAR-10 and demonstrate that ZonoDual outperforms the linear
programming relaxation in both tightness and runtime, and yields a tighter bounding algorithm than
the prior dual approaches.

We first discuss prior works in the verification domain. Then, we examine the existing dual framework
that serves as the backbone for our algorithm, paying particular attention to the areas in which this
may be tightened. Then, we discuss how we attain zonotope-based intermediate bounds and introduce
the fundamental sub-problem required by our dual ascent algorithm. Ultimately, we combine these
components into our final algorithm and demonstrate the scalability and tightness of our approach on
networks trained on the MNIST and CIFAR-10 datasets.

2 Related Work

Neural network verification is a well-studied problem and has been approached from several angles.
Exactly solving the verification problem is known as complete verification, and is known to be
NP-hard even for 2-layer ReLU networks [4]. Complete verification approaches include mixed-
integer programs, satisfiability modulo theories (SMT), geometric procedures, and branch-and-bound
techniques [5, 6, 7, 4, 8, 9, 10]. In particular, branch-and-bound procedures generate custom branching
rules to decompose verification into many smaller subproblems, which can be relaxed or further
branched, allowing the algorithm to focus its efforts on the areas for greatest improvement [11, 12].
We stress that this current work focuses only on the ‘bound’ phase, and our approach may be applied
to branched subproblems.

Often it is not necessary to exactly solve the verification problem, and only providing a lower bound
to the minimization problem can suffice. This is known as incomplete verification. We closely
examine the primal and dual verification threads, but first mention a few lines of work that do not fit
neatly into this paradigm: notable approaches here include semidefinite programming relaxations
[13, 14], or verification via provable upper bounds of the Lipschitz constant [15, 16, 17, 18].

Primal verification: A general theme in primal verification techniques is to generate convex sets
that bound the attainable range of each intermediate layer. The simplest such approach is interval
bound propagation (IBP) which computes a bounding hyperbox for each layer [19]. A more complex
approach is to bound each intermediate layer with a polytope. Several different polyhedral relaxations
are available, with DeepPoly being on the lesser-complexity side, PLANET being the canonical
triangle relaxation, and the formulation by Anderson et. al being tightest albeit with exponential
complexity [20, 21, 7]. Zonotopes provide a happy medium, being both highly expressive and
computationally easy to work with [22, 23]. We will discuss zonotope relaxations more thoroughly
in section 4.
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Dual verification: Orthogonal to the primal approaches exist several works which consider verifica-
tion by relaxations in a dual space [24, 25, 12, 26, 27]. Here, verification is viewed as an optimization
problem with constraints enforced by layers of the network. The general scheme here is to introduce
dual variables penalizing constraint violation, and then leverage weak duality to provide valid lower
bounds. The standard Lagrangian relaxation was first proposed in [24], and then several improve-
ments have been made to provide provably tighter bounds, faster convergence, or generalizations
of the augmented lagrangian. These techniques are highly scalable and notably, one recent work
has been able to provide bounds tighter than even the standard LP relaxation [9]. Our approach will
follow a similar scheme, but differs fundamentally from prior works in that we operate over a tighter
primal domain and can therefore provide tighter bounds.

3 Lagrangian Decomposition

Problem Definition: In a canonical neural network verification problem, we are given a scalar-
valued feedforward neural network, f(·), composed of L alternating compositions of affine layers and
elementwise ReLU layers. We name the intermediate representations as z0 . . . zL, and are supplied
with a subset, X , of the domain of f(·), which we assume to be an axis-aligned hyperbox. Verification
is then written as an optimization problem

minimize
x0∈X ,z0,...,zL

zL (1a)

subject to z0 = W0x0 (1b)
zk+1 = Wk+1σ(zk) (0 ≤ k ≤ L− 1) (1c)

where σ denotes the ReLU operator applied elementwise, and each Wk is the weight of an affine or
convolutional layer. Our formulation is also amenable to bias terms everywhere, though we omit
these throughout for simplicity.

Dual verification: While there are several verification approaches leveraging Lagrangian duality, we
consider the Lagrangian decomposition formulation introduced in [25]. Here, each primal variable zk
of the verification problem is replaced by a pair of primal variables zAk , z

B
k , along with accompanying

equality constraints, yielding an equivalent optimization problem:

minimize
x0∈X ,zA0 ,...,zBL−1,z

A
L

zAL (2a)

subject to zA0 = W0x0 (2b)

zAk+1 = Wk+1σ(zBk ) (0 ≤ k ≤ L− 1) (2c)

zAk = zBk (0 ≤ k ≤ L− 1) (2d)

By introducing unconstrained dual variables ρk for each constraint in Equation (2d) and maximizing
over ρk, we attain an optimization problem that is equivalent to the original. To tractably solve this,
two relaxations are performed. First, weak duality is applied by swapping the max and min, which
introduces the dual function g(ρ), for which every value of ρ provides a lower bound:

g(ρ) := minimize
x0∈X ,zA0 ,...,zBL−1,z

A
L

zAL +

L−1∑
k=0

ρ>k (zAk − zBk ) (3a)

subject to zA0 = W0x0 (3b)

zAk+1 = Wk+1σ(zBk ) (0 ≤ k ≤ L− 1), (3c)

The goal now is to solve maxρ g(ρ). The dual function can be decomposed into L subproblems by
substituting equality constraints and rearranging the objective function:

g(ρ) :=

(
min
x0∈X

ρ>0 W0x0

)
+

L−2∑
k=1

(
min
zBk

ρ>k+1Wk+1σ(zBk )− ρ>k zBk

)
+ (4a)(

min
zBL−1

WLσ(zBL−1)− ρ>L−1zBL−1

)
(4b)

In its current state, it is unlikely that g(ρ) for nonzero ρ will lead to any finite lower bound as each
zBk is unconstrained. In other words, only subproblem, (4a), has any information about the input
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constraint (x0 ∈ X ). To remedy this, one can tighten the dual optimization by imposing intermediate
bounds on zBk ’s, so long as those bounds include all feasible values. Specifically, for each zBk , we can
impose a bounding set Zk, as long as the following implication holds:

x0 ∈ X =⇒ zBk ∈ Zk 1 ≤ k ≤ L− 1. (5)

All prior dual approaches have chosen the sets Zk to be axis-aligned hyperboxes for two reasons.
First, it is extremely efficient to attain hyperbox bounds at every layer. Second, when Zk is a
hyperbox, the dual function can be evaluated efficiently by further decomposing each component
of the dual along its coordinates. Equipped with intermediate bounds Zk, and noting that g(ρ) is
a concave function of ρ, the standard procedure is to perform dual ascent on g(ρ). This requires
gradients ∇ρg(ρ), which can easily be computed as the primal residuals. Letting zA∗k and zB∗k be the
argmin of the dual function, then∇ρkg(ρ) = zA∗k − zB∗k .

The key innovation in this work is to replace the intermediate bounds Zk with zonotopes everywhere.
In this case, intermediate bounds may easily be computed as we will see in the next section. Zonotopes
have a distinct advantage over hyperboxes in that every coordinate is no longer independent, and
therefore neuron dependencies are encoded. This further constrains the feasible set of the dual
function and leads to larger dual values. However, this comes with the cost that the dual function is
more computationally difficult to evaluate.

4 Zonotopes

We start with a review of zonotopes and how they may be used to attain intermediate bounds. Then
we introduce the problem of ReLU programming, tie it to the dual decomposition formulation, and
discuss our relaxations for efficient dual evaluation. Proofs of all claims are contained in the appendix.

Zonotope Properties: Zonotopes are a class of polytopes, which we formally define using the
notation Z(c, E) to refer to the set

Z(c, E) := {c+ Ey | y ∈ [−1, 1]m}

where c ∈ Rd is called the center, and E ∈ Rd×m is called the generator matrix. Each column
of the generator matrix is a line segment in Rd, and Z(c, E) can be equivalently be viewed as the
Minkowski sum of each generator column offset by c; or as the affine map y → c+ Ey applied to
the `∞ ball in Rm. In particular, note that a hyperbox is a zonotope with a diagonal generator matrix.
Zonotopes have several convenient properties:

Efficient Linear Programs: Linear programs can be solved in closed form over a zonotope:

min
z∈Z(c,E)

a>z = a>c+ |a>E|~1.

Closure under affine operators and Minkowski sums: given an affine map x → Wx + b, the set
{Wz+ b | z ∈ Z(c, E)} is equivalent to the zonotope Z(Wc+ b,WE). The Minkowski sum of two
sets A,B is defined as A⊕B := {x+ y | x ∈ A, y ∈ B}. Letting E1||E2 denotes concatenation
of columns, the Minkowski sum of two zonotopes Z(c1, E1), Z(c2, E2) is also a zonotope:

Z(c1, E1)⊕ Z(c2, E2) = Z(c1 + c2, E1||E2).

Intermediate Bounds with Zonotopes: Prior work has developed efficient techniques to generate
intermediate layer bounds using zonotopes for feedforward neural networks. The details are deferred
to the appendix, and we can assume that we have access to a black box that, given a zonotope Z ,
is able to generate a zonotope Y such that {σ(z) | z ∈ Z} ⊆ Y . Such an operation is called a
sound pushforward operator. One such pushforward operator is known as DeepZ and can be applied
repeatedly to provide valid zonotopic bounds for every intermediate layer of the neural network [22].
We make two observations regarding these intermediate bounds here:
Proposition 4.1. Let Zk be the kth zonotope bound provided by the DeepZ procedure, and let Hk
be the kth intermediate bound provided by the Kolter-Wong dual procedure [20]. Then the smallest
hyperbox containing Zk is exactlyHk.

Proposition 4.2. Suppose Z is a zonotope and H is a hyperbox, such that Z 6⊆ H. Then we can
develop a sound pushforward operator for the ReLU operator that outputs a zonotope Z ′ containing
the ReLU of every element of Z ∩H, with the property that Z ′ ( DeepZ(Z).
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The first proposition states that a common technique for generating intermediate hyperbox bounds is
never any tighter than the procedure we use to generate intermediate zonotope bounds. The second
proposition describes an improved pushforward operator that offers improvements against DeepZ but
requires extra information provided by a hyperbox.

ReLU Programming: We return our attention to the dual function introduced in equations Equa-
tions (4a) and (4b). Note that the first term of Equation 4a is a linear program of a zonotope which
can be solved extremely efficiently, while all other terms adopt a form we refer to as a ReLU program

Definition 4.1. Given a set Z ⊆ Rd, and two objective vectors c1, c2 ∈ Rd, we say the ReLU
Program is the optimization problem

min
z∈Z

c>1 z + c>2 σ(z). (6)

ReLU programming is nonconvex for general c2. When Z is an interval, only the endpoints, or 0 if
it is contained in the interval, are candidate optima. In this case, the ReLU program may be solved
by evaluating the objective at each candidate. When Z is a hyperbox in Rd, each coordinate can be
considered independently, amounting to solving d ReLU programs over intervals. The story quickly
becomes more complicated if Z is a zonotope:
Theorem 4.1. When Z is a zonotope, solving a ReLU program over Z is equivalent to a neural
network verification problem for a 2-layer network, which is known to be NP-hard.

Remarks: This theorem implies that solving ReLU programs over more complex sets, such as
polytopes in general, is also NP-hard. However it remains an open question whether solving ReLU
programs over other simpler sets such as parallepipeds, i.e. zonotopes with an invertible generator
matrix, is hard. Note that ReLU programs can be solved exactly via a Mixed-Integer Program (MIP)
using the standard form for encoding a ReLU [5].

We pause here to observe the current situation. Lagrangian methods for verification first make a
relaxation by applying weak duality. When using zonotopes for the intermediate bounds, one is able
to decompose the very large non-convex optimization problem of deep network verification into many
smaller subproblems which are equivalent to two-layer network verification problems. Unfortunately,
each of these subproblems is also NP-hard, and thus must be further relaxed to attain tractability.

Zonotope Partitioning: The primary relaxation technique we consider comes from the following
observation. Consider a d-dimensional zonotope Z and ReLU programming objectives (c1, c2).
Then, for any partition S1 ∪ · · · ∪ Sn of {1, . . . , d}, the inequality

min
z∈Z

d∑
i=1

(
c1,izi + c2,iσ(zi)

)
≥

n∑
j=1

min
z∈Z

∑
i∈Sj

(
c1,izi + c2,iσ(zi)

)
holds. This approach has a nice geometric interpretation as well. The decomposed minimization
minz∈Z

∑
i∈Sj

(
c1,izi+ c2,iσ(zi)

)
can be viewed as optimization over Z when it has been projected

onto the linear subspace spanned by the elements of Sj . Projection onto a linear subspace is an affine
operator, so each projection of Z is itself a zonotope. Indeed, the projection onto the linear subspace
spanned by Sj is simply the center and generator rows indexed by Sj .

Observe that if each Sj were a singleton set, then decomposing the ReLU program according to these
Sj’s is equivalent to relaxing the ReLU program by casting Z to the smallest containing hyperbox. If
the partition were the trivial partition {1, . . . , d}, then Z remains unchanged. Finally, notice that the
Minkowski sum of every projection of Z is itself a zonotope.

In this sense, by choosing any partitioning of coordinates, we are able to relax Z into a zonotope that
is simultaneously a superset of Z and a subset of the hyperbox-relaxation of Z . This is optimistic for
our dual ascent procedure, as any partitioning restricts the primal feasible space for the dual function
evaluation. It is in this way that we are able to interpolate the coarseness of our relaxation, which
is directly controlled by the coarseness of our partitioning. Because we expect the complexity of
solving a ReLU program over a zonotope to be superlinear in the dimension, shattering a zonotope in
this fashion can drastically improve the complexity of solving a relaxation of a ReLU program.

Two-dimensional Zonotopes: A special case we consider is when we partition a zonotope into
2-dimensional groups. This is because a 2-dimensional zonotope can be significantly more descriptive
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than a 2-dimensional rectangle, but the solution of a ReLU program can still be computed efficiently.
Observe that the argmin of a ReLU program over a 2-dimensional zonotope must occur at either
i) a vertex of the zonotope, ii) a point where the zonotope crosses a coordinate-axis, iii) the origin.
This follows from the fact that a ReLU program over 2-dimensions may be viewed as 4 independent
linear programs over the intersection of the zonotope and each orthant. For the purposes of ReLU
programs, it suffices to enumerate all vertices of the zonotope and compute any axis crossings or
origin-containments. It turns out that this may be done in nearly linear time:

Theorem 4.2. If Z(c, E) is a 2-dimensional zonotope with m generators, Z has 2m vertices and
the set of all vertices, axis crossings, and the containment of the origin can all be computed in
O(m logm) time.

5 The ZonoDual Algorithm

With both preliminaries of dual verification techniques and zonotopic primal verification techniques in
hand, we can now fully describe the algorithm we employ in practice. We first describe the algorithm
as it is used to bound a single neuron’s value, i.e. the output neuron. After we describe how we adapt
our approach to the stagewise setting where our algorithm is applied to each intermediate neuron
to yield tighter box bounds. Our algorithm can be described in three main phases: an initialization
phase, where primal bounds are generated to define the feasible set for each subproblem in the dual
function; an iteration phase, where the argmin of the dual function is computed many times to provide
informative gradients for updates to the dual variables; and an evaluation phase, where the primal
bounds are tightened to yield a more computationally intensive dual function, which only needs to be
evaluated a single time.

Initialization phase: Naively, we can apply the DeepZ procedure here to attain a zonotope bounding
the output range of the network at every layer. Both this procedure and our box-improved variant can
be done extremely efficiently. We adapt two techniques from [25] in the initialization phase. First we
notice that some very minor improvements to DeepZ can be made using an application of Proposition
4.2 when provided with the boxes from interval bound propagation. Second, we initialize the dual
variables to the KW dual variables from [20], which by 4.1 are equivalent to the scale factors applied
internally in the zonotope pushforward operators.

Iteration Phase: In the iteration phase, each intermediate zonotope Zk is partitioned into compo-
nents that are amenable to repeated evaluations of the dual function. We always initially partition
each zonotope into 2-d chunks for which the dual function may be evaluated on a GPU without
requiring any MIP calls. Recall that for a d-dimensional zonotope with m generators, after the initial
O(dm logm) candidate optima computation, each ReLU program can be evaluated in O(dm) time.
These initial 2-d partitions are computed using one of several simple heuristics, described in the
appendix, with the aim to generate 2-d zonotopes which are as ‘un-box-like’ as possible. Optionally,
after an initial 2-d iteration phase, these partitions may be combined and dual ascent can be applied,
where each subproblem now requires several calls to a MIP solver. At any point during this phase,
the dual function evaluations still provide valid lower bounds to the verification problem.

Evaluation Phase: In this phase, we can presume that effective dual variables have been found
during the previous phase. The objective here is to tighten the feasible range of each subproblem,
which will necessarily improve the value of the dual function. Because we only need to evaluate a
bound on the dual function once here, we find that it is often worth it to spend more time solving
each subproblem. We do this by simply merging several partition elements together, converting our
2-dimensional zonotopes into higher-dimensional ones that require calls to a MIP solver to compute.
Despite the theoretical intractibility of MIPs, we find that this procedure is remarkably efficient. In
practice, it is often sufficient to only merge zonotopes at the later layers in a network where the dual
function subproblems are the most negative. Finally, we note that as only a bound upon the dual
function is required here, and each subproblem is itself a 2-layer verification problem, the MIPs may
be terminated early. Any other incomplete verification approach can be applied here as well.

Guarantees: Ultimately, our algorithm will always provide a valid lower bound to the verification
problem so long as the dual function is evaluated appropriately. The provable correctness of our
algorithm stems from i) the fact that weak duality always holds and any evaluation of the dual function
with feasible dual variables provides a valid lower bound tot the primal problem; and ii) by leveraging
zonotopes and a sound relaxation of them, we only ever provide lower bounds to the evaluation of the
dual function. Further, we can also guarantee that, for any fixed set of dual variables ρ, the bounds
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we provide will be tighter than those provided by the approach in [25]. This follows because we have
reduced the feasible set within each dual subproblem, relative to the hyperbox approaches in prior
works. Similarly, because ρ = 0 is always a valid choice, when the dual variables are optimized
appropriately, we will provide tighter bounds than whichever primal verification method is applied at
the initialization phase.

Stagewise computation: When the network of interest is of sufficiently small size, any verification
algorithm may be applied stagewise, where the algorithm computes upper and lower bounds to each
neuron, starting from those in the first layer. This is often effective for generating tighter intermediate
box bounds, which in turn yields much tighter output bounds. However this comes the cost of
running many calls to the verification algorithm. This can be parallellized for verification procedures
amenable to GPU acceleration, but demands a large memory footprint.

At first glance, it may seem that such a stagewise procedure obviates the improvements we attain
by leveraging zonotopes: indeed, each stagewise bound is a box bound. However, we show that we
can apply this stagewise trick to our approach to generate tighter box bounds, which can then be
employed by Proposition 4.2 to yield tighter zonotopic bounds. Additionally, in the case that these
box bounds are incomparable to the improved zonotope bounds, these can be employed in imposing
further constraints upon each subproblem. Instead of solving each ReLU program over a zonotope,
we can instead solve each ReLU program over the intersection of a zonotope and a hyperbox. In the
higher-dimensional case, it is trivial to apply elementwise constraints to each variable in the MIP —
in fact, this often improves the running time of each MIP. In the 2-d case, we observe that we are
able to solve ReLU programs over the intersection of a 2-d zonotope and rectangle as efficiently as
solving over a 2-d zonotope alone. This is the content of the following corollary to Theorem 4.2.

Corollary 5.1. Given a 2-d zonotope with m generators, the set of candidate optimal points to a
ReLU program has cardinality no greater than (2m+ 9) and is computable in time O(m logm).

Ablation study: To clarify the bound improvements and their corresponding runtime cost imposed
by each step of our approach, we perform an ablation study on an MNIST fully connected network
(MNIST FFNet). We report the bounds relative to the bound attained by the LP relaxation in Table
??. We consider three initialization settings separately: the standard DeepZ zonotopes, the DeepZ
zonotopes augmented with IBP bounds, and zonotopes informed by the the box bounds from BDD+
[25]. Then we perform dual ascent over 2-d zonotopes, before merging the zonotopes of the final
layer only and evaluating the MIP. We report these numbers in Table ??. Here we see that a tight
initialization does indeed help, but this gap shrinks after our dual ascent procedure. We also see a
substantial gain in bound improvement by using MIPs, even in the last layer’s zonotopes alone.

6 Experiments

We evaluate the effectiveness of our approach on several networks trained on the MNIST and CIFAR-
10 datasets. While many recent verification techniques employ a branch-and-bound strategy, we only
provide innovations on the bounding component of this pipeline. Strong verifiers should employ both
effective bounding algorithms and clever branching strategies, which are both necessary but fairly
independent components. Like other dual-based verification techniques, our approach can be applied
using any of a number of branching strategies. We focus our efforts primarily on the improvements
in the bound provided by a single run of each considered method. We argue this is a reasonable
choice of metric because most prior benchmarks focus on ε-values far lower than typically used in
adversarial attack scenarios. This artifically decreases the depth to which branching strategies must
search, skewing the results. By focusing on the bound of the verification, we directly measure the
metric that bounding algorithms such as ours seek to optimize. However, for the sake of completeness,
we do also evaluate verified robustness percentage upon several benchmark MNIST networks. For
bound evaluations, we separate our experiments into two cases: we first examine the setting where
only the output neuron is optimized, which we denote the ‘single-stage’ setting; and the case where
every neuron is optimized to provide tighter intermediate box bounds, denoted the ‘stagewise’ setting.
We compare the bound and running time against the following approaches: BDD+, the Lagrangian
Decomposition procedure proposed in [25], where the optimization is performed using optimal
proximal step sizes; LP, the original linear programming relaxation using the PLANET relaxation on
each ReLU neuron [20]; Anderson, the linear programming relaxation, where 1-cut is applied per
neuron as in [7]; AS, a recent Lagrangian technique which iteratively chooses cuts to employ from
the Anderson relaxation [9].
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Figure 1: Cumulative density function plots of the bounds obtained by each algorithm for a deep
convolutional network trained on MNIST (left) and a deep convolutional network trained on CIFAR10
(right). Lines further to the right indicate tighter bounds. Our algorithms are bolded in the legend.

Table 1: Timing data for the single-stage bounds.

Alg\Net MNIST Deep CIFAR SGD

BDD+ 2.5± 0.2 1.5± 0.1
LP 4.8± 0.5 6.2± 0.6
ZD-2D 10.9± 0.5 7.6± 0.3
AS 16.9± 1.2 10.2± 0.8
ZD-MIP 23.1± 12.4 11.0± 3.1
Anderson 52.4± 27.5 21.3± 4.6

All baselines are run implemented using the
code and hyperparameter choices from prior
works, and network weights are taken from ex-
isting works where applicable. Architecture de-
scriptions are contained in the supplementary.
We follow [25] to construct scalar-valued ver-
ification problems: for examples with label i,
we compare the difference between the ith and
(i+ 1)th logit of a network. We can extend this
procedure to a multi-class task by applying the
verification n− 1 times for each incorrect logit.

Single-stage bound evaluation: In the single-stage setting we make the following hyperparameter
choices for our approach. We initialize the intermediate bounds using zonotopes informed by the
boxes attained by the best of the DeepZ bounds and the IBP bounds. We then decompose each
zonotope into 2-dimensional partitions, using the ‘similarity’ heuristic for fully-connected networks,
and the ‘spatial’ heuristic for convolutional networks. Then we perform 1000 iterations of the Adam
optimizer during the dual ascent procedure. We report the value at the last iteration as ZD-2D. Then
we merge the partitions of only the last layer of each network into 20-dimensional zonotopes, and
evaluate the dual function under this new partitioning. We report these values as ZD-MIP.

We present results of our approach on the MNIST-Deep network, which has 5196 neurons and 6
layers, evaluating over a domain of `∞ boxes with ε = 0.1. Specifically we present cumulative
density function plots: a point (x, y) on any curve in these plots indicates that that particular algorithm
attains a bound tighter than x for (1 − y)% of the examples. Curves further to the right indicate
tighter bounds in aggregate. Figure 1 (left) contains the distribution of reported bounds over every
correctly-classified example in the MNIST validation set. In Figure 1 (right), we present a similar
CDF plot for a CIFAR-10 network with 6244 ReLU neurons and 4 layers. For this CIFAR network,
we set ε = 5/255, as in [9]. The average and standard deviation runtimes for these networks is
provided in Table 1.
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Figure 2: Stagewise bounds on the MNIST-FFNet (left) and MNIST-Deep (right) networks.

Stagewise bound evaluation: Now we turn our attention to the setting where enough computation
time is allowed to perform the optimization procedure on every neuron in turn, which is able to
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Table 3: Verified Robustness on MNIST Networks. Methods denoted with an asterisk had numbers
taken from [28].

Model ε ZD BDD+ CROWN* PRIMA* β-CROWN*
MLP 5x100 0.026 28.5% (24s) 19.8% (7s) 16.0% (1s) 51.0% (159s) 69.9% (102s)
MLP 8x100 0.026 21.8% (19s) 19.1% (15s) 18.2% (1s) 42.8% (301s) 62.0% (103s)
MLP 5x200 0.015 41.8% (28s) 33.2% (8s) 29.2% (2s) 69.0% (224s) 77.4% (86s)
MLP 8x200 0.015 29.7% (26s) 27.4% (17s) 25.9% (6s) 62.4% (395s) 73.5% (95s)
ConvSmall 0.12 52.6% (38s) 16.6% (6s) 15.8% (3s) 59.8% (42s) 72.7% (7s)

generate tighter box bounds. Here we notice an interesting observation: our method can be improved
by leveraging tighter intermediate box bounds, but is agnostic as to where these bounds come from.
Indeed, our approach can take as input any collection of tighter box bounds and generate tighter
zonotopes via Proposition 4.2. However, our current implementation of this tighter primal bound is
not vectorized to be amenable, in the way that others are, to stagewise bounding procedures. This is
purely an implementation detail, and we instead use existing primal bounding techniques.

As baselines here, we compare against the LP approach, BDD+, and the active set approach with 256
and 512 iterations, denoted AS256, AS512. We leverage box bounds provided by each of these dual
approaches to inform our zonotope bounds from which we can run our method, denoted by a→ ZD.
Note that BDD+ can never surpass bounds provided by the LP approach, whereas ours and the active
set procedure can both improved even further with a longer runtime. Hence it is not sufficient to
provide a better bound, but to also do so more efficiently. In this case, our approach performs 2000
iterations of Adam on 2-D zonotopes and increases the partition size of the final two layers of each
network to sizes of 16 and 20 respectively.

Table 2: Timing data for stagewise bounds

Alg\Net MNIST Deep MNIST Wide

BDD+ 15.4± 0.4 8.3± 0.3
BDD+ → ZD 51.7± 14.0 36.4± 6.8
AS256 138.9± 0.9 45.4± 0.6
AS256 → ZD 174.1± 13.6 73.3± 6.6
AS512 289.3± 1.7 91.3± 0.9
AS512 → ZD 324.1± 13.5 119.2± 6.9
LP 2132.2± 494.4 387.1± 65.5

We present our results on the MNIST-FFNet
and MNIST-Deep network which have 960
and 5196 neurons, and 5 and 6 layers respec-
tively, again using an ε = 0.1. CDF plots of
bounds for these two networks are provided
in 2, with timing data in 2. We observe that
the BDD+ bound completes very quickly, but
attains a bound only slightly worse than LP.
Our approach, when initialized with the BDD+
bounds runs more efficiently than AS256, pro-
viding bounds that are comparable or better
than the slower AS512 approach.

%-Verified Robustness: Finally we evaluate our approach comparing against all incorrect logits
on MNIST trained networks, mirroring the setup of [28]. We report numbers from an unbranched
version of ZD and BDD+ alongside several other verification techniques [29, 30, 31]. Compared
to other efficient, branch-friendly procedures such as BDD+ and CROWN, our approach provides
tighter bounds at a fair cost to efficiency. Our approach provides weaker bounds than PRIMA, but is
significantly faster. β-CROWN, in particular, leverages a dual-based branching strategy which could
be applied to our method. However due to its extremely efficient bounding procedure and the need to
solve millions of subproblems for verification, it is unclear if our approach can surpass this method.

7 Conclusion

In this work, we demonstrated how primal and dual verification techniques can be combined to yield
efficient bounds that are tighter than either of them alone. Primal methods capture complex neuron
dependencies, but do not optimize for a verification instance; while dual methods are highly scalable,
but rely on unnecessarily loose primal bounds. This work is a first step in combining these two
approaches. We believe that this combination of approaches is a necessary direction for providing
scalable and tight robustness guarantees for safety-critical applications of machine learning.
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A Broader Impacts

Our work focuses on proving robustness and security for machine learning applications. While any
new technology may be used maliciously, we believe the technical advances proposed in this work
are as benign as possible and will only serve to offer certification of existing technologies.

B Limitations and Future Work

While ZonoDual has some benefits over prior works, it is not without limitations. We enumerate
these here, as well as potential ways to overcome these:

• Reliance on ReLU nonlinearities: ZonoDual relies on the ability to solve ReLU programs
over zonotopes using MIPs. Unfortunately, this approach cannot generalize to nonlinearites
that are not piecewise linear, such as the sigmoid activation. While it might be possi-
ble to solve ‘sigmoid programs’ over 2-dimensional zonotopes, the formulation becomes
significantly more complicated.

• MIPs are not conducive to GPU acceleration: A crucial component of our procedure is
to evaluate the dual using a tighter relaxation during the final phase of ZonoDual. Prior
works that leverage box bounds do not include such a tightening step, but we note that MIPs
can not benefit from GPU computations. In practice, small MIPs can solve very quickly, but
for extremely large nets, such as SOTA image models, it is unlikely that this approach can
scale as nicely as other techniques. This presents a need for fast and tight lower bounds for
the reduced verification problem when the network is known to only have one hidden layer.
Unfortunately, such methods, such as SDP’s cannot currently scale to the case where this
would be helpful for us.

• Intermediate zonotopes may have very large order: One drawback of using zonotopic
intermediate bounds is that the number of generators can grow to be quite large for deeper
layers in the network. This can slow down the dual computation procedure, even in the
2-dimensional case for which dual evaluation time is linear in the number of generators.
There is room for improvement here in what is known as ’order reduction’ techniques
for zonotopes, which soundly compresses the number of generators of a zonotope. Naive
approaches are very quick and can allow for a 2x compression factor with only marginal
degradations to dual function values, but significantly tighter compressions require much
more work. We have not included any of these accelerations in our presentation for the sake
of simplicity.

• Exact evaluations of the dual seem to be necessary for informative gradients: One
might hope that the dual need not be evaluated exactly during the iteration phase of ZonoDual.
Such a procedure could allow for much faster and tighter dual ascent iterations when
only informative gradients are required. Unfortunately the approaches we have tried in
this domain (including Frank-Wolfe, L-BFGBS, and a modified simplex algorithm) do
not provide gradients that are informative enough to yield good dual values for the final
evaluation phase. It is possible there are techniques here that could work, but we have not
found them.

C Zonotope Pushforward Operators

Here we describe the sound zonotope pushforward operators we use to generate intermediate bounds.
Since zonotopes are closed under affine transformation, all that’s required is to describe the pushfor-
ward operator for the ReLU operator. Specifically, given a zonotope Z(c, E), we seek to generate
a zonotope Z(c′, E′) such that {σ(z) | z ∈ Z(c, E)} ⊆ Z(c′, E′). First we describe the ap-
proach when no extra information is known. This was first presented in [32], but we adapt the
analysis of [33]. Next we consider the case when we also have the extra information in the form
of a hyperbox H(l, u) := {x | l ≤ x ≤ u}, where the goal is to construct Z(c′, E′) such that
{σ(z) | z ∈ Z(c, E) ∩H(l, u)} ⊆ Z(c′, E′).

DeepZ: The primary strategy is to compress each coordinate of Z(c, E) by a scale factor λi ∈ [0, 1],
which will in general, incur some error along each coordinate, bi. These errors are accumulated into
a hyperbox, which will then be incorporated into Z(c′, E′) in the form of a Minkowski sum. The
goal is to minimize the amount of error that is accumulated. In other words, each coordinate can be
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considered independently, where we wish to solve the minmax procedure

min
λi,bi

(
max

z∈Z(c,E)
|σ(zi)− λizi − bi|

)
where the choice of the compression factor λi is chosen to minimize the error that needs to be added
in at the end between σ(zi) and λizi over all feasible points in the zonotope. Noticing that projecting
Z(c, E) only onto the ith coordinate necessarily yields an interval, so the max is performed over an
interval, [li, ui]. In the case that li ≥ 0, the ReLU is always on, and λi can be chosen to be 1, with
bi = 0. In the case that ui ≤ 0, then the ReLU is always off, and λi can be chosen to be 0, again
with bi = 0. In the case that li < 0 < ui, it is not difficult to see that the optimum value is attained
when λi is chosen to be ui

ui−li , such that the optimal value is −liui

ui−li . Hence we can accumulate λi
for each coordinate i into a diagonal matrix Λ. The optimal offsets, (b1, . . . , bd), can be divided by
2, and accumulated into a diagonal matrix B whose columns may be appended to the compressed
zonotope. Put concisely,

Z(c′, E′) := Z(Λc,ΛE|B)

where

Λi,i =


0 if ui ≤ 0

1 if li > 0
ui

ui−li otherwise
Bi,i =

{
0 if ui · li ≥ 0
−li·ui

2(ui−li) otherwise

Improvements using Hyperboxes: Now we restate our proposition that allows for an improvement
upon this pushforward operator when we have an incomparable hyperbox bound.
Proposition 4.2. Suppose Z is a zonotope and H is a hyperbox, such that Z 6⊆ H. Then we can
develop a sound pushforward operator for the ReLU operator that outputs a zonotope Z ′ containing
the ReLU of every element of Z ∩H, with the property that Z ′ ( DeepZ(Z).

Proof. Let Z(c, E) be the zonotope Z , and let H(lh, uh) be the hyperboxH. Similar to DeepZ, the
strategy we employ to develop a sound pushforward operator is to scale each coordinate independently,
and Minkwoski sum the errors, accumulated as a hyperbox. Again, this decomposes into a minmax
procedure as

min
λi,bi

(
max

z∈Z(c,E)∩H(lh,uh)
|σ(zi)− λizi − bi|

)
.

In a single dimension, both a zonotope and hyperbox are intervals, so their intersection is
also an interval. Letting (lzi , u

z
i ) be the ith coordinates lower and upper bounds for Z , then

the intersection between the ith coordinate projection of H and Z is the interval [li, ui] :=
[max({lzi , lhi },min({uzi , uhi })]. From here the choice of Λ and B is exactly the same as in DeepZ,
where the tightened coordinate-wise bounds are used. This is guaranteed to be as tighter as long as at
least one coordinate exists for which the interval is reduced, because both the compression factor
λi and error bi are reduced by tightening the interval. By our assumption that Z 6⊆ H, at least one
coordinate interval must be tightened, so the inclusion Z ′ ⊂ DeepZ(Z) is strict.

Kolter-Wong Bounds Here we present a geometric proof of Proposition 4.1. We will only briefly
discuss the derivation of this bound in the context of this proof. For a more thorough discussion on
the exact structure and derivation of the Kolter/Wong dual relaxation, we point to the original paper
[20] and a self-contained derivation in the appendix of [25].
Proposition 4.1. Let Zk be the kth zonotope bound provided by the DeepZ procedure, and let Hk
be the kth intermediate bound provided by the Kolter-Wong dual procedure [20]. Then the smallest
hyperbox containing Zk is exactlyHk.

Proof. In [20], the authors derive the original linear programming relaxation and dual procedure for
verifying ReLU networks. This technique can be interpreted in the primal sense as maintaining a
polyhedral primal bound for every intermediate layer. Assuming a polyhedral input range, such a
hyperbox, this procedure works by incrementally lifting the dimensionality of the polytope. In other
words, an H-polytope is maintained, where new dimensions/variables are introduced through equality
constraints defined by each layer. For affine layers, this lifting procedure is exact. For ReLU layers,
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Figure 3: Graphical representation of the coordinatewise bounding procedure of both DeepZ and our
improved version when box bounds are available. On the left, the blue zonotope is the one introduced
by DeepZ. On the right, we are also aware than our interval is bounded by the blue-interval, and the
blue zonotope is the improved bound.
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Figure 4: An application of the improved zonotope pushforward operator on a 2-d example. On the
left, the original zonotope is outlined in blue, and the extra hyperbox information is drawn in orange.
On the right, the output of DeepZ is drawn in orange. The output of the improved pushforward
operator, that has access to the box, is drawn in green.

this lifting procedure introduces some error. This follows because the graph of the ReLU function,
viewed as a 2-d set, is not convex. In this case the canonical triangle relaxation is applied, which
is simply the convex hull of the graph of the ReLU function. This triangle relaxation, applied over
an interval [l, u] with l < 0 < u, has as its upper convex hull, a line with slope u

u−l and intercept
−ul
u−l . This lifting procedure is iterated over all layers, ultimately yielding a polytope of dimension

dim(X ) +
∑L
i=1 2ni, where ni refers to the number of neurons of the ith layer. Optimization over

this lifted polytope was framed as a linear program, where the objective was set to minimize the
variable corresponding to the final output neuron.

In the original KW formulation, the dual of this linear program, a dual variable was introduced that
geometrically corresponds to a lower-bounding linear functional on the triangle relaxation. This is
similar to the observation made in α−β−CROWN [28]. In the original linear programming paper,
an initial choice of α = u

u−l was chosen, which in this case may be interpreted as lower bounding the
triangle relaxation by a line that is parallel to the upper convex hull, essentially providing an initial
relaxation as a parallelogram with vertical sides.

On the other hand, the zonotope propagation procedure may also be viewed as a polyhedral lifting
procedure. Recall in the DeepZ formulation, the sound pushforward operator for the ReLU operator
works by scaling the ith coordinate by the factor ui

ui−li and incorporating the error in terms of a
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Minkowski sum. This may equivalently be viewed as lifting a d-dimensional zonotope, to a (d+ 1)-
dimensional zonotope where the newly added dimension has range that is a function of only the
ith coordinate. In particular, it is constrained to lie inside the vertical parallelogram defined on the
vertical edges by l, u, with the slanted edge having slope ui

ui−li . The upper edge is exactly the convex
upper hull of the graph of the ReLU function. In practice, because it is convenient and efficient
to project zonotopes onto lower dimensional subspaces, when mapping a d-dimensional through
a ReLU layer, instead of lifting to a 2d-dimensional zonotope, the original dimensions are simply
dropped to retain a d-dimensional zonotope.

It is in this sense that the convex outer adversarial polytope described by Kolter and Wong, with the
choice of α = u

u−l is exactly equivalent to the zonotope attained by DeepZ if no dimensions were
dropped in the zonotope. Hence, each coordinate-wise upper and lower bound attained by each is
exactly equivalent.

D Proof of Hardness of ReLU Programming

Theorem 4.1. When Z is a zonotope, solving a ReLU program over Z is equivalent to a neural
network verification problem for a 2-layer network, which is known to be NP-hard.

Proof. Let Z = Z(c, E) be a zonotope in Rd with m columns in the generator matrix. Then we can
construct an equivalent scalar-valued ReLU network, f(y) = w>2 σ(W1y + b). We define w2,W1, b
as follows:

W1 =

[
E
−E

]
b =

[
c
−c

]
w2 =

[
c1 + c2
−c1

]
such that f(y) = c>2 σ(c+ Ey) + c>1 (σ(c+ Ey)− σ(−c− Ey))T , where the ReLU programming
objective is recovered by x = σ(x)−σ(−x). Then we can set the input domain to [−1, 1]m to equate
this verification problem to ReLU programming over Z . The hardness result comes directly from
Katz et al [4].

E 2-Dimensional Zonotopes

Now we turn our attention to 2-dimensional zonotopes, ultimately, we will arrive at a proof of
Theorem 4.2 and Corollary 5.1. Throughout, we consider a 2-dimensional zonotope Z(c, E), where
E is assumed to havem generators. Further we will assume that the generators are in general position,
i.e. two generators are colinear. If this is the case they can be combined into a single generator without
changing the set represented by the zonotope. The strategy of this proof will follow in several parts.
First we start with a preliminary theorem that holds for zonotopes of all dimension, which describes a
relationship between the vertices of the zonotope and the faces of the generating hypercube. Then we
show how every two-dimensional zonotope has 2m vertices and therefore 2m edges. Next we prove
that each edge corresponds to exactly one generator, and conversely, every generator corresponds to
exactly 2 edges. Finally we describe the procedure we use to enumerate these vertices in a sorted
fashion, and compute axis-crossings, origin-containment, and extend this to the intersection of a
zonotope and rectangle. We will commonly make use of the notion of the upper and lower convex
hulls of a 2-dimensional shape. The upper hull of a convex set is the smallest concave function that is
larger than the convex hull, and the lower convex hull of a convex set is the largest convex function
that is smaller than the convex hull; it is helpful to think of this as the ‘upper half‘ and ‘lower half’ of
the convex hull.
Lemma E.1. Every vertex v of a zonotope with m generators has a corresponding face of the
m-dimensional `∞ ball that maps to that vertex.

Proof. Consider any zonotope Z = Z(c, E), which can be equivalently viewed as the affine mapping
y → c + Ey applied to every element in the set {y | y ∈ [−1, 1}m}. Consider any vertex v of Z ,
which by definition must have some vector a (in the polar cone of that vertex), such that a>v < a>z
for all z 6= v in Z . In other words, v is the argmin of some linear program with feasible set Z .
Equivalently, the set of y such that c+ Ey = v are the argmin of some linear program over the `∞
ball in Rm. This implies that the set {y | c+ Ey = v} is a face of the `∞ ball. Note that face here
includes 0-faces such as vertices of the `∞ ball, as well as higher dimensional faces.
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Figure 5: Pictorial aid for Lemma E.2. We consider the following 2-dimensional shapes. The
parallelogram on the left is the base case – a zonotope with 2 generators, denoted by the convex hull
of the gray vertices only. By incorporating a new vertical generator, the new candidate vertices are
colored blue. Taking the convex hull of the blue vertices, we arrive at the 2-dimensional irregular
hexagon on the right. Here we see that only the vertices on the left and right endpoints of the upper
convex hull yield 2 vertices, whereas the other original vertices only generate 1 new vertex.

Lemma E.2. A 2-dimensional zonotope with m generators in general position has exactly 2m
vertices and edges.

Proof. We proceed by induction. First note that a zonotope with a two generators is a parallelogram
in 2d and has 4 vertices and edges. Now assume we have a zonotope Zk with k generators, and
by the induction hypothesis, 2k vertices. Now assume without loss of generality that we add the
k + 1th generator which is the vector g := [0, 1]: we are always able to rotate and scale the zonotope
such that this is the case, and invert this operation afterwards. If Vk = {v1, . . . , v2k} is the set of
vertices of Zk, then Zk can be equivalently represented as conv(Vk). Because adding a generator to
a zonotope is the minkowski sum of a segment, Zk+1 can equivalently be written as conv( ˜Vk+1),
where ˜Vk+1 is the set of points {v1 + g, v1− g, . . . v2k + g, v2k − g}. We now show that only 2k+ 2
of these 4k points are vertices. To see this, consider just the vertices of the convex upper hull of Zk.
Because zonotopes are centrally symmetric, there are exactly k + 1 of these points. By choosing g to
be [0, 1], we see that for every vi in the convex upper hull, vi + g is a vertex of Zk+1. We also see
that unless vi is also a point of the convex lower hull of Zk, vi − g is not a vertex of Zk+1, because
by definition there is an interval vertically beneath vi such that the entire interval, with g subtracted,
is also in Zk+1. Hence for k − 1 points of the convex upper hull, we can eliminate vi − g from the
candidate vertex set. We can repeat a similar procedure for the convex lower hull. Hence we are able
to eliminate 2k − 2 points from the 4k candidate vertices, leaving exactly 2k + 2 vertices in Zk as
desired. Finally notice that every 2-d polytope with 2k + 2 vertices has exactly 2k + 2 edges.

Lemma E.3. If Z is a 2-dimensional zonotope in general position, then every edge corresponds to
exactly one generator. Conversely, every generator corresponds to exactly two edges.

Proof. Pick any edge of Z and without loss of generality, assume that zonotope is oriented such that
the left endpoint of this edge, vl, is the left-most point of the zonotope, neither edge connected to that
endpoint is vertical, and the right endpoint of this edge, vr is above vl. Note that this can always be
done and then undone later. Next assume that all generators are oriented such that the x-coordinate of
each generator is nonnegative. This follows because any generator can be negated without changing
the zonotope. From the previous lemma, it can be shown that for zonotope Z = Z(c, E), the vector
y = −~1 satisfies c+ Ey = vl. Then, by moving in y-space by swapping any coordinate of y from
−1 to +1, we may end up at a new vertex. We can now sort the generators by slope, in terms of
g(2)
g(1) , where g(i) refers to the ith coordinate of generator g. Suppose g(j) is the generator with the
largest slope. Then by interpolating from y to y + 2ej we traverse along an edge of the zonotope.
Indeed, there exists no other direction in y-space in which we could move that corresponds to a larger
slope-increase in z-space. This is essentially a gift-wrapping procedure. Thus, the edge spanned by
vl, vr corresponds exactly to g(j). To show that every generator corresponds to at least two edges,
this follows easily from the fact that zonotopes are centrally symmetric. To show that every generator
corresponds to exactly two edges, we can apply Lemma E.2 to show by the pigeonhole principle, no
generator can correspond to more than two edges.
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Now with these lemmas in hand, we are prepared to solve the main 2-d vertex enumeration theorem.
Theorem 4.2. If Z(c, E) is a 2-dimensional zonotope with m generators, Z has 2m vertices and
the set of all vertices, axis crossings, and the containment of the origin can all be computed in
O(m logm) time.

Proof. First we describe how to enumerate all vertices of Z(c, E) in O(m logm) time. This proce-
dure is a simple extension of Lemma E.3. Recall, in that lemma, we were able to find the left-most
vertex by solving a linear program minimizing the e>1 z over Z(c, E). Then we were able to find the
next vertex, starting from the left and going clockwise, by finding the generator with the largest slope,
once generators had been appropriately sign-normalized. We can simply continue this procedure, and
from the right-endpoint of the edge enumerated in Lemma E.3, the next clockwise vertex is attained
by traversing the generator with the next highest slope. In this way, we can sort the entire set of
m generators by their slope in decreasing order and iteratively enumerate the vertices, where the
(i+ 1)th vertex vi+1 is simply vi + 2gi, where vi is the ith vertex and gi is the ith generator, in the
sorted order. This process generates the m+ 1 vertices of the entire convex upper hull of Z(c, E) in
left-right order. To attain the vertices of the lower convex hull, we rely on the centrally symmetric
property of zonotopes: negate each vertex, add 2 · c, and reverse the order of this list to generate
the m+ 1 vertices of the lower convex hull in right-left order. By concatenating these two lists, and
removing duplicates at the endpoints of each convex hull, we are able to generate all 2m vertices of
the zonotope in clockwise order. The runtime of this algorithm is the time to compute the first vertex
and then the slope of each generator, each of which is O(m) time. Then the generator slopes must
be sorted in O(m logm) time. Iterating through this list and adding each generator to the current
vertex requires O(m) constant time steps. Computing the lower convex hull only requires O(m)
time as well, so the whole procedure requires O(m logm) time, dominated by the cost of sorting the
generators by their slopes.

Now we demonstrate how it takes an additional O(m) time to compute the points on the zonotope
where either x = 0 or y = 0. We consider only the x = 0 case, without loss of generality. Since we
are given the vertices in clockwise order, it is trivial to walk through the vertex list and report any
pair of vertices for which vi(1) · vi+1(1) < 0. If this is the case, then the edge between vi and vi+1

crosses the y-axis. Since we have both endpoints on this edge, it requires constant time to compute
the point along that line segment for which x = 0. A similar procedure can be applied for the x = 0
case. Finally, notice that the zonotope only contains the origin if it crosses both the x-axis and y-axis
in two places.

2

1

4

3 2

1

4

3

Figure 6: Pictorial aid for Theorem 4.2. By only considering the edges on the upper convex hull
(above the dotted line), we sort the edges according to slope and step along them until we reach the
end of the upper convex hull. The convex lower hull can be computed easily by central symmetry of
zonotopes.

From this procedure, it is now trivial to consider the intersection of a 2-d zonotope and a rectangle.
Corollary 5.1. Given a 2-d zonotope with m generators, the set of candidate optimal points to a
ReLU program has cardinality no greater than (2m+ 9) and is computable in time O(m logm).

Proof. First we provide a bound on the cardinality of the set of vertices of the intersection of a 2-d
zonotope and a rectangle. The set of candidate vertices is exactly: the vertices of the zonotope, the
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vertices of the rectangle, and any intersections of edges of the rectangle and zonotope. Here it is
easiest to refer the pictorial aid in Fig. 7. For any rectangle vertex contained in the zonotope, there
is necessarily a zonotope vertex not contained in their intersection. For any rectangle vertex not
contained in the zonotope, it is possible that up to two new vertices are introduced in the intersection.
This means that each vertex of the rectangle can add a net +1 to the number of vertices of their
intersection. In general, the number of vertices of the intersection of two 2-d polygons is bounded by
the sum of the number of vertices of each. Then the candidate optima for a ReLU program over this
set is exactly this set of vertices, with cardinality at most 2m+ 4, and any extra axis crossings, and
the origin. This brings the set of candidate optima to no more than 2m+ 9.

Next, we describe how to compute this set of candidate optima. We assume that we have obtained
the 2m vertices of the zonotope in O(m logm) time. We now check containment of each of the
candidate vertices. It requires constant time to compute point-containment within a rectangle, so we
can eliminate any zonotope vertices not contained in the box in O(2m) time. It is more complicated
to compute point-containment within a zonotope. In general this requires a linear program, but since
we already have the vertex list oriented clockwise, we are able to leverage this to compute the set of
rectangle vertices contained in the zonotope as well as any edge-edge crossings in O(m) time. The
idea is similar to the idea used to compute axis crossings in Theorem 4.2.

The general procedure is to fix an axis and value and shoot a line through that value. For example,
we consider the x = a line and compute the intersection of the set {(x, y) | x = a} with Z(c, E).
We can do this by finding the y-coordinates of the edges of Z(c, E) that cross this vertical line. This
amounts to a single scan through the oriented vertex list of the zonotope, and yields an interval
[lz, uz] or None. We perform this line-shooting procedure at most 6 times. Once for the left-bound,
right-bound, top-bound, and bottom-bound of the rectangle, and if the rectangle itself crosses the x or
y axis, we line-shoot the x = 0 line or y = 0 lines accordingly. For each line-shoot, we are able to
compare the interval defined by the box [lb, ub] and the line-shoot interval [lz, uz]. The intersection of
this interval can be used to determine which box vertices and edge-edge intersections are contained
within the intersection of the zonotope and rectangle. Overall this requires a constant number of calls
to a subroutine running in O(m) time, so the overall runtime of this procedure is still dominated by
the sort time from the zonotope vertex enumeration, i.e. O(m logm).

Figure 7: Pictorial aid for the proof of Lemma 5.1. A zonotope (octagon) is intersected with a
rectangle. Some rectangle vertices are not contained within the zonotope and can be eliminated, and
vice versa. The rectangle vertex on the upper right introduces a net +1 vertices to the intersection.

E.1 Partitioning Heuristics

Here we describe the heuristics used to fragment a higher dimensional zonotope into two-dimnesional
pieces. We certainly could do this randomly, but we have found some minor performance gains can
be achieved by cleverly choosing this partitioning. The key idea for each of these is to choose pairs of
dimensions yielding zonotopes that would suffer greatly from being relaxed into a rectangle. Recall
that for a two-dimensional zonotope, a rectangle is attained when each generator is colinear with an
elementary basis vector. Our two partitioning styles are as follows:

• Similarity heuristic: Here we assign each pair of dimensions a scalar-valued score that
roughly resembles how far each generator column is from an elementary basis vector. These
pairwise scores are encoded in a d×dmatrix. Each row of this matrix is sorted in descending
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order, and the partitions are formed by looping over the rows of the matrix and choosing the
first available index, that has not already been chosen by a prior pair. The scoring function
here, for dimensions i, j is the dot product of the absolute values of the rows of the generator
matrix. Hence the scoring matrix can be computed by the matrix-matrix multiplication
|E| · |E|>. For zonotopes of very large dimension, this method requires the multiplication
of two (d × m) matrices, and then the sort-and-choose method takes O(d2) time in the
worst case. However since we only have to do this one time, it is often worth it to apply
this heuristic on networks with intermediate networks with moderate dimension, or those
without spatial information imbued by convolutional layers.

• Spatial or depthwise heuristic: For convolutional networks, the structure of convolutional
operators can be applied to choose partitionings. In the spatial partitioning heuristic, we
assign each coordinate its pair by choosing a coordinate adjacent to it in the feature map.
In the depthwise partitioning heuristic, we assign each coordinate its pair by choosing a
coordinate in the same location on the feature map but in a different channel. The intuition
here is that random partitioning here would often choose coordinates that have disjoint
receptive fields and would yield zonotopes that are rectangles. These heuristics much more
quickly than the similarity heuristic and are amenable to larger convolutional nets.

F Experimental Details

F.1 Computation Environment

Computations for this paper were performed using the idle resource queue of computing cluster. The
cluster uses Intel Xeon Gold 6230R and 6230R CPUs and mixture of NVIDIA 2080 Ti, Quadro RTX
6000, and Telsa A40 GPUs. Due to our usage of the idle resource queue, we ran on a variety of
different CPUs and GPUs depending on which resources were being underutilized on the cluster. Our
job requirements were 5 CPU cores, 20 GB of RAM, and 1 GPU of any kind per job. Despite our
timing information not being representative of a single hardware configuration, we believe we can
still make valid comparisons using it, as we ensured that we ran all methods for a particular image on
the same node.

F.2 Network Architectures

F.2.1 MNIST Networks:

We consider three different architectures trained on the MNIST dataset. Each is randomly initialized,
and trained adversarially for 25 epochs using the Adam optimizer and standard hyperparameters
to update network weights [34]. The adversarial training was perfromed using 10 iterations of
PGD with an `∞ adversarial radius of ε = 0.1 [35]. The architectures are as follows, where
Conv2D(in, out, k, s, p) refers to a convolutional layer with in input channels, out output channels,
a square kernel of size k, a stride of s, and padding p. The Wide and Deep network architecture
choices were taken from [11], though the FFNet was our choice for a fully connected network. We
trained these networks ourselves.

• MNIST FFNet: (960 ReLU neurons)
1. Linear(784, 512)→ ReLU
2. Linear(512, 256)→ ReLU
3. Linear(256, 128)→ ReLU
4. Linear(128, 64)→ ReLU
5. Linear(64, 10)

• MNIST Wide: (4804 ReLU neurons)
1. Conv2D(1, 16, 4, 2, 1)→ ReLU
2. Conv2D(16, 32, 4, 2, 1)→ ReLU→ Flatten
3. Linear(1568, 100)→ ReLU
4. Linear(100, 10)

• MNIST Deep: (5196 ReLU neurons)
1. Conv2D(1, 8, 4, 2, 1)→ ReLU
2. Conv2D(8, 8, 3, 1, 1)→ ReLU
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3. Conv2D(8, 8, 3, 1, 1)→ ReLU
4. Conv2D(8, 8, 4, 2, 1)→ ReLU→ Flatten
5. Linear(392, 100)→ ReLU
6. Linear(100, 10)

F.2.2 CIFAR-10 Networks

For the CIFAR-10 networks, we directly utilized the models and weights from prior work [9]†.
Specifically, we considered the models trained both using SGD and adversarially using PGD with the
architecture:

• CIFAR WIDE: (6244 ReLU neurons)
1. Conv2D(3, 16, 4, 2, 1)→ ReLU
2. Conv2D(16, 32, 4, 2, 1)→ ReLU→ Flatten
3. Linear(2048, 100)→ ReLU
4. Linear(100, 10)

F.3 Hyperparameter Choices

Here we describe the hyperparameter choices for both our model and competing methods. Wherever
possible, code from prior works was utilized, with minimal tuning applied. We found the codebase
associated with the Active Set paper to be immensely helpful here [9]. Because we changed
our partitioning hyperparameters slightly between networks, we describe each hyperparameter
choice explicitly. Scripts to run each experiment are contained with the attached codebase. For all
experiments, we employ Gurobi as MIP-solver [36].

Single-stage setting:

• BDD+: For the optimal proximal method, we apply the default parameters where 400
iterations were applied with 2 inner steps and η ranging from 1 to 5.

• AS: 1000 iterations of AS were increased to 1000 to match our approach, where all other
hyperparameters were kept at their default values.

• ZD (MNIST): For the MNIST networks, we initialized with the KW dual variables, used
the ’similarity’ partitioning heuristic for the 2-d zonotopes, and used 1000 iterations of
Adam with default β parameters. The learning rate was initialized at η = 0.01, and decayed
by a multiplicative 0.75 factor every 100 iterations.

• ZD (CIFAR): For the CIFAR networks, we initialized with the KW dual variables, used
the ’spatial’ partitioning heuristic for the 2-d zonotopes, and used 1000 iterations of Adam
with default β parameters. The learning rate was initialized at η = 0.0025 and decayed by a
multiplicative 0.5 factor every 200 iterations.

• ZD-MIP: For all single stage experiments, for every network, we ran the exact same setting
as ZD, but merged partitions of the final layer only into zonotopes of dimension 20 and
evaluated the dual function. The only exception here is in MNIST FFNET, where only the
final layer was merged to zonotopes of dimension 16.

Stagewise Setting: In this setting, we kept most hyperparameters the same as in the single-stage
setting. The notable exception is a change in the number of iterations in the AS method. We found that
1000 iterations would frequently cause CUDA memory errors, and to the best of our understanding,
these methods weren’t run in a stagewise setting in [9]. Because these methods are allowed to run
for a longer time, we increased the number of iterations dual ascent was performed for, as well as
the partitioning at the end. Essentially, these were tuned slightly in order to reliably prove tighter
bounds such that AS256-ZD was both faster and tighter than AS512. We summarize the iteration and
partitioning changes here :

• MNIST FFNET: We initialize as before, using the specified box bounds, and then run 2000
iterations of gradient ascent, with an initial learning rate of 0.0025, decaying by a factor
of 0.75 every 400 epochs. Because this method is relatively smaller, we increase the final

†https://github.com/oval-group/scaling-the-convex-barrier
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Figure 8: Full plots for the MNIST FFNet network (zoom in for detail). (a) The CDF plot for the
single-stage setting. (b) The CDF plot for the multi-stage setting. (c) The difference plot for the
single-stage setting, where the reference method is ZD-MIP. (d) The difference plot for the multi-stage
setting, where the reference method is AS256→ZD.

layer partition size to 32 and run 20 iterations of dual ascent. Finally, we expand all other
2-dimensional partitions to zonotopes of dimensin 16 and evaluate the dual.

• MNIST WIDE/DEEP: We initialize and run dual ascent over the 2-d zonotopes as in
MNIST FFNet. We then increase partition sizes to 16 for the penultimate layer and 20 for
the final layer and evaluate the dual function once.

Ablation Study Details: For the ablation study, we only evaluate on the MNIST FFNet. We initialize
either with the DeepZ bounds, the DeepZ bounds augmented via IBP, or the zonotopes augmented by
the stagewise BDD+ bounds. Then we partition the zonotopes using the ‘similarity’ heuristic and run
1000 iterations of gradient ascent with an initial learning rate of 0.01, decaying by a factor of 0.75
every 100 iterations. We increase the partition size to 32 on the final layer only and evaluate the dual.
We give results complete with error bars in Table 4.

Table 4: Ablation study for each of phase of ZonoDual. We evaluate the bound and runtime after
completion of the Initialization phase (init), Iteration phase (iter), and Evaluation (eval) phases,
averaging over the first 1000 examples from MNIST. We report three initialization techniques: DeepZ
preactivation bounds, and DeepZ augmented with IBP or BDD+ hyperbox bounds. The computed
lower bounds are reported relative to the LP relaxation (a larger number means a tighter bound).

Init\Phase Init Iter Eval

DeepZ −3.9± 1.1 2.9± 1.0 7.7± 2.6
Runtime (s) 0.0047± 0.0004 5.6± 0.3 7.0± 1.5

DeepZ + IBP −3.9± 1.1 2.9± 1.0 7.7± 2.6
Runtime (s) 0.024± 0.002 5.6± 0.2 6.9± 1.4

DeepZ + BDD+ 5.3± 1.8 6.4± 1.9 10.1± 3.2
Runtime (s) 4.9± 0.3 10.5± 0.5 11.5± 1.4

G Additional experimental results

Here we have included data from experiments that did not fit in the main paper. Unless otherwise
stated, the setup and hyperparameters are chosen as in the main paper and in Appendix F.3.

We present two styles of plots in Figs. 8 to 11. The cumulative distribution plots present the quantity
of examples considered that yield a bound less than a specified value. Curves further to the right are
better here. The difference plots present the distribution of bound differences relative to a reference
method, which is represented by the dotted vertical line. Curves further to the right provide better
bounds, and portions of the curve greater than 0 indicate the proportion of examples that the method
beats the reference. For example, in the single-stage setting, the curves represent the difference
between the technique in the plot and the ZD-MIP method. In the multi-stage setting, we use
AS256→ZD as the reference.

We also report numerical timing results in Tables 5 and 6 and bound statistics in Tables 7 and 8.
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Figure 9: Full plots for the MNIST Wide network (zoom in for detail). (a) The CDF plot for the
single-stage setting. (b) The CDF plot for the multi-stage setting. (c) The difference plot for the
single-stage setting, where the reference method is ZD-MIP. (d) The difference plot for the multi-stage
setting, where the reference method is AS256→ZD.
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Figure 10: Full plots for the MNIST Deep network (zoom in for detail). (a) The CDF plot for the
single-stage setting. (b) The CDF plot for the multi-stage setting. (c) The difference plot for the
single-stage setting, where the reference method is ZD-MIP. (d) The difference plot for the multi-stage
setting, where the reference method is AS256→ZD.
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Figure 11: Plots for the CIFAR-10 network: (a) CDF plots repeated from the main paper. (b) the
difference plots where the reference method is the ZD-MIP method.

Table 5: Time required by each algorithm across a set of four networks in the single-stage setting.
Numbers reported are mean and standard deviations in seconds.

Alg\Net MNIST FFNet MNIST Deep MNIST Wide CIFAR SGD

BDD+ 1.7± 0.1 2.5± 0.2 1.5± 0.1 1.5± 0.1
LP 6.2± 1.1 4.8± 0.5 5.5± 0.5 6.2± 0.6
ZD-2D 5.7± 0.3 10.9± 0.5 10.2± 0.5 7.6± 0.3
AS 10.7± 0.9 16.9± 1.2 10.4± 0.7 10.2± 0.8
ZD-MIP 6.0± 0.3 23.1± 12.4 14.7± 4.6 11.0± 3.1
Anderson 13.1± 2.5 52.4± 27.5 52.4± 19.2 21.3± 4.6
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Table 6: Time required by each algorithm across a set of three networks in the all-stage setting.
Numbers reported are mean and standard deviations in seconds.

Alg\Net MNIST FFNet MNIST Deep MNIST Wide

BDD+ 5.2± 0.5 15.4± 0.4 8.3± 0.3
BDD+ → ZD 52.0± 31.2 51.7± 14.0 36.4± 6.8
AS256 29.5± 0.9 138.9± 0.9 45.4± 0.6
AS256 → ZD 70.0± 27.5 174.1± 13.6 73.3± 6.6
AS512 61.6± 1.8 289.3± 1.7 91.3± 0.9
AS512 → ZD 100.3± 26.6 324.1± 13.5 119.2± 6.9
LP 90.0± 16.9 2132.2± 494.4 387.1± 65.5

Table 7: Bounds obtained by each algorithm across a set of four networks in the single-stage setting.
Numbers reported are average and standard deviation of the bound relative to ZD-2D over the first
1000 images from the respective validation set.

Alg\Net MNIST FFNet MNIST Deep MNIST Wide CIFAR SGD

BDD+ −3.4± 1.1 −8.6± 2.7 −4.2± 1.3 −1.5± 0.9
LP −2.8± 1.0 −6.6± 2.4 −3.7± 1.3 −1.2± 0.9
Anderson −1.3± 0.7 −5.9± 2.3 −2.6± 1.2 −0.7± 0.8
AS −1.2± 0.9 −6.3± 2.4 −2.6± 1.2 −0.5± 0.8
ZD-2D 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
ZD-MIP 3.7± 1.4 18.1± 5.8 9.0± 2.6 4.9± 2.8

Table 8: Bounds obtained by each algorithm across a set of three networks in the all-stage setting.
Numbers reported are average and standard deviation of the bound relative to BDD+ → ZD over the
first 1000 images from the MNIST validation set.

Alg\Net MNIST FFNet MNIST Deep MNIST Wide

BDD+ −6.5± 2.1 −11.5± 4.5 −5.4± 2.2
LP −5.9± 2.0 −8.2± 4.0 −4.7± 2.1
AS256 −2.0± 1.5 −5.0± 3.4 −1.4± 1.7
AS512 −0.7± 1.3 −3.1± 3.1 −0.1± 1.5
BDD+ → ZD 0.0± 0.0 0.0± 0.0 0.0± 0.0
AS256 → ZD 1.1± 0.4 2.3± 0.7 0.9± 0.8
AS512 → ZD 1.5± 0.5 3.3± 0.9 1.2± 0.8
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