
Is L2 Physics-Informed Loss Always Suitable for
Training Physics-Informed Neural Network?

Chuwei Wang1∗, Shanda Li2,5∗, Di He3†, Liwei Wang3,4†
1School of Mathematical Sciences, Peking University

2Machine Learning Department, School of Computer Science, Carnegie Mellon University
3NationalKeyLaboratoryofGeneralArtificial Intelligence,

School of Intelligence Science and Technology, Peking University
4 Center for Data Science, Peking University 5 Zhejiang Lab

chuwei.wang@pku.edu.cn, shandal@cs.cmu.edu
dihe@pku.edu.cn, wanglw@pku.edu.cn

Abstract

The Physics-Informed Neural Network (PINN) approach is a new and promising
way to solve partial differential equations using deep learning. The L2 Physics-
Informed Loss is the de-facto standard in training Physics-Informed Neural Net-
works. In this paper, we challenge this common practice by investigating the
relationship between the loss function and the approximation quality of the learned
solution. In particular, we leverage the concept of stability in the literature of
partial differential equation to study the asymptotic behavior of the learned solu-
tion as the loss approaches zero. With this concept, we study an important class
of high-dimensional non-linear PDEs in optimal control, the Hamilton-Jacobi-
Bellman (HJB) Equation, and prove that for general Lp Physics-Informed Loss,
a wide class of HJB equation is stable only if p is sufficiently large. Therefore,
the commonly used L2 loss is not suitable for training PINN on those equations,
while L∞ loss is a better choice. Based on the theoretical insight, we develop a
novel PINN training algorithm to minimize the L∞ loss for HJB equations which
is in a similar spirit to adversarial training. The effectiveness of the proposed
algorithm is empirically demonstrated through experiments. Our code is released
at https://github.com/LithiumDA/L_inf-PINN.

1 Introduction

Recently, with the explosive growth of available data and computational resources, there have been
growing interests in developing machine learning approaches to solve partial differential equations
(PDEs) [14, 13, 33, 28]. One seminal work in this direction is the Physics-Informed Neural Network
(PINN) approach [28] which parameterizes the PDE’s solution as a neural network. By defining
differentiable loss functionals that measure how well the model fits the PDE and boundary conditions,
the network parameters can be efficiently optimized using gradient-based approaches. L2 distance is
one of the most popularly used measures, which calculates the L2 norm of the PDE and boundary
residual on the domain and boundary, respectively. Previous works demonstrated that PINN could
solve a wide range of PDE problems using the L2 Physics-Informed Loss, such as Poisson equation,
Burgers’ equation, and Navier-Stokes equation [28, 6].

Although previous works empirically demonstrated promising results using L2 Physics-Informed
Loss, we argue the plausibility of using this loss for (high-dimensional) non-linear PDE problems.

∗Equal contribution.
†Correspondence to: Liwei Wang <wanglw@pku.edu.cn> and Di He <dihe@pku.edu.cn>.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

We know the trivial fact that the learned solution will equal the exact solution when its L2 loss equals
zero. However, the quality of a learned solution with a small but non-zero loss, which is a more
realistic scenario in practice, remains unknown to have any approximation guarantees. In this work,
we aim at answering a fundamental question:

Can we guarantee that a learned solution with a small Physics-Informed Loss always corresponds to
a good approximator of the exact solution?

To thoroughly investigate the problem, we advocate analyzing the stability of PDE [8] in the PINN
framework. Stability characterizes the asymptotic behavior of the distance between the learned
solution and the exact solution when the Physics-Informed Loss approaches zero. If the PDE is
not stable with respect to certain loss functions, we may not obtain good approximate solutions
by minimizing the loss. To show the strength of the theory, we perform a comprehensive study
on the stability of an important class of high-dimensional non-linear PDEs in optimal control, the
Hamilton-Jacobi-Bellman (HJB) equation, which establishes a necessary and sufficient condition for
a control’s optimality with regard to the cost function. Interestingly, we prove that for general Lp

Physics-Informed Loss, the HJB equation is stable only if p is sufficiently large. This finding suggests
that the most widely used L2 loss may not be suitable for training PINN on HJB equations as the
learned solution can be arbitrarily distant from the exact solution. Empirical observation verifies the
theoretical results.

We further show our theory can serve as a principled way to design loss functions for training PINN.
For the high-dimensional HJB equation we target in the paper, the theoretical result suggests that L∞

loss may be a better choice to learn approximate solutions. Motivated by this insight, we propose a
new algorithm for training PINN, which adopts a min-max optimization procedure to minimize the
L∞ loss. Our approach resembles the well-known adversarial training framework. In each iteration,
we first fix the network parameters and learn adversarial data points to approximate L∞ loss, and
then optimize the network parameters to minimize the loss. When the training finishes, the learned
network will converge to a solution with small L∞ losses and is close to the exact solution. We
conduct experiments to demonstrate the effectiveness of the proposed algorithm. All empirical results
show that our method can indeed learn accurate solutions for HJB equations and is much better than
several baseline methods.

The contribution of the paper is summarized as follows.

• We make the first step towards theoretically studying the loss design in PINN, and formally
introduce the concept of stability in the literature of PDE to characterize the quality of a
learned solution with small but non-zero Physics-Informed Loss.

• We provide rigorous investigations on an important class of high-dimensional non-linear
PDEs in optimal control, the HJB equation. Our results suggest that the widely used L2 loss
is not a suitable choice for training PINN on HJB equations.

• Based on the theoretical insight, we develop a novel PINN training algorithm to minimize
the L∞ loss for HJB equations. We empirically demonstrate that the proposed algorithm
can significant improve the accuracy of PINN in solving the optimal control problems.

2 Related Works

Physics-Informed Neural Network approaches [33, 28] learn to find parametric solutions to satisfy
equations and boundary conditions with gradient descent. There has been a notable scarcity of
papers that rigorously justify why PINNs work. Important works include [31], which prove the
convergence of PINN for second-order elliptic and parabolic equations. In [21], the authors study the
statistical limit of learning a PDE solution from sampled observations for elliptic equations. In [29],
the convergence of PINN with L2 loss is established for Navier-Stokes equations. At the same time,
several works observed different failure modes for training PINN in other PDE problems. In [17],
researchers discover that PINN sometimes fails to learn accurate solutions to a class of convection
and reaction equations. Their analysis shows that this may be attributed to the complicated loss
landscape. [34] observed PINN failed to learn the Helmholtz equation due to the incommensurability
between PDE and boundary losses.

2

In this work, we mainly experiment with the Hamilton-Jacobi-Bellman (HJB) equation in optimal
control. Previously, there were several works aiming at solving the HJB equation using deep learning
methods [12, 13, 25, 39, 24, 1, 27, 5]. [13] is among the first to leverage neural networks to solve
HJB equations. In particular, [13] targets constructing an approximation to a solution value u at
T = 0, which is further transformed into a backward stochastic differential equation and learned
by neural networks. The main difference between [13] and ours is that [13] only learns the solution
on a pre-defined time frame, while with our method, the obtained solution can be evaluated for any
time frame. Recently, [12] tackled the offline reinforcement learning problem and developed a soft
relaxation of the classical HJB equation, which can be learned using offline behavior data. The main
difference between [12] and ours is that no additional data is required in our setting.

Stability is one of the most fundamental concepts in studying the well-posedness of PDE problems.
Formally speaking, it characterizes the behavior of the solution to a PDE problem when a small
perturbation modifies the operator, initial condition, boundary condition, or force term. We say
the equation is stable if the solution of the perturbed PDE converges to the exact solution as the
perturbations approach zero [8]. The problem regarding whether a PDE is stable has been intensively
studied [8, 19, 11] in literature. There are also some works studying how (regularity) conditions
affect stability. [20] and [7] investigate in which topology Couette Flow is asymptotic stable. [4]
answers in which Sobolev space defocusing nonlinear Schrodinger equation, real Korteweg-de Vries
(KdV), and modified KdV are locally well-posed. Our main focus is akin to the latter works but is
settled in the machine learning framework.

3 Preliminary

In this section, we introduce basic background on Physics-Informed Neural Networks and stochastic
optimal control problems. Without loss of generality, we formulate any partial differential equation
as: {

Lu(x) = φ(x) x ∈ Ω ⊂ Rn

Bu(x) = ψ(x) x ∈ ∂Ω, (1)

where L is the partial differential operator and B is the boundary condition. We use x to denote the
spatiotemporal-dependent variable, and use Ω and ∂Ω to denote the domain and boundary.

Physics-Informed Neural Networks (PINN) PINN [28] is a popular choice to learn the function
u(x) automatically by minimizing the loss function induced by the PDE (1). To be concrete, given
p ∈ (1,+∞), we define the Lp Physics-Informed Loss as

ℓΩ,p(u) = ∥Lu(x)− φ(x)∥pLp(Ω), (2)

ℓ∂Ω,p(u) = ∥Bu(x)− ψ(x)∥pLp(∂Ω). (3)

The loss term ℓΩ,p(u) in Eq. (2) corresponds to the PDE residual, which evaluates how u(x) fits
the partial differential equation on Ω; and ℓ∂Ω,p(u) in Eq. (3) corresponds to the boundary residual,
which measures how well u(x) satisfies the boundary condition on ∂Ω. Lp denotes p-norm, where p
is usually set to 2, leading to a “mean squared error” interpretation of the loss function [33, 28]. The
goal is to find u∗ that minimizes a linear combination of the two losses defined above. The function
u(x) is usually parameterized by neural network uθ(x) with parameter θ ∈ Θ. To find θ∗ efficiently,
PINN approaches use gradient-based optimization methods. Note that computing the loss involves
integrals over Ω and ∂Ω. Thus, Monte Carlo methods are commonly used to approximate ℓΩ,p(u)
and ℓ∂Ω,p(u) in practice.

Stochastic Optimal Control Stochastic control [9, 3] is an important sub-field in optimal control
theory. In stochastic control, the state function {Xt}0≤t≤T is a stochastic process, where T is the
time horizon of the control problem. The evolution of the state function is governed by the following
stochastic differential equation:{

dXs = m(s,Xs)ds+ σdWs s ∈ [t, T]
Xt = x

, (4)

where m : [t, T]×Rn → Rn is the control function and {Ws} is a standard n-dimensional Brownian
motion.

3

Given a control function m, its total cost is defined as Jx,t(m) = E
∫ T

t
r(Xs,m, s)ds + g(XT),

where r : Rn×Rn× [0, T]→ R measures the cost rate during the process and g : Rn → R measures
the final cost at the terminal state. The expectation is taken over the randomness of the trajectories.

We are interested in finding a control function that minimizes the total cost for a given initial state.
Formally speaking, we define the value function of the control problem (4) as u(x, t) = min

m∈M
Jx,t(m),

whereM denotes the set of possible control functions that we take into consideration. It can be
obtained that the value function will follow a particular partial differential equation as stated below.

Definition 3.1 ([38]). The value function u(x, t) is the unique solution to the following partial
differential equation, which is called Hamilton-Jacobi-Bellman Equation:{

∂tu(x, t) +
1
2σ

2∆u(x, t) + min
m∈M

[r(x,m(t, x), t) +∇u ·mt] = 0

u(x, T) = g(x).
(5)

Hamilton-Jacobi-Bellman (HJB) equation establishes a necessary and sufficient condition for a
control’s optimality with regard to the cost functions. It is one of the most important high-dimensional
PDEs [16] in optimal control with tremendous applications in physics [32], biology [18], and finance
[26]. Many well-known equations, including Riccati equation, Linear–Quadratic–Gaussian control
problem [36], Merton’s portfolio problem [22] are special cases of HJB equation [37].

Conventionally, the solution to the HJB equation, i.e., the value function u(x, t), can be computed
using dynamic programming [2]. However, the computational complexity of dynamic programming
will grow exponentially with the dimension of state function. Considering that the state function
in many applications is high-dimensional, solving such HJB equations is notoriously difficult in
practice using conventional solvers. As neural networks have shown impressive power in learning
high-dimensional functions, it’s natural to resort to neural-network-based approaches for solving
high-dimensional HJB equations.

4 Failure Mode of PINN on High-Dimensional Stochastic Optimal Control

Note that u(x) is the exact solution to the PDE (1) if and only if both loss terms ℓΩ,p(u) and ℓ∂Ω,p(u)
are zero. However, in practice, we usually can only obtain small but non-zero loss values due
to the randomness in the optimization procedure or the capacity of the neural network. In such
cases, a natural question arises: whether a learned u(x) with a small loss will correspond to a good
approximator to the exact solution u∗(x)? Such a property is highly related to the concept stability in
PDE literature, which can be defined as below in our learning scenario:

Definition 4.1. Suppose Z1, Z2, Z3 are three Banach spaces. We say a PDE defined as Eq. (1)
is (Z1, Z2, Z3)-stable, if ∥u∗(x) − u(x)∥Z3 = O(∥Lu(x) − φ(x)∥Z1 + ∥Bu(x) − ψ(x)∥Z2) as
∥Lu(x)− φ(x)∥Z1 , ∥Bu(x)− ψ(x)∥Z2 → 0 for any function u.

By definition, if a PDE is (L2(Ω), L2(∂Ω), Z)-stable with a suitable Banach space Z, we can mini-
mize the widely used L2 Physics-Informed Losses ∥Lu(x)−φ(x)∥2L2(Ω) and ∥Bu(x)−ψ(x)∥2L2(∂Ω),
and the learned solution is guaranteed to be close to the exact solution when the loss terms approach
zero. However, stability is not always an obvious property for PDEs. There are tremendous equations
that are unstable, such as the inverse heat equation. Moreover, even if an equation is stable, it is
possible that the equation is not (L2(Ω), L2(∂Ω), Z)-stable, which suggests that the original L2

Physics-Informed Loss might not be a good choice for solving it. We will show later that for control
problems, some practical high-dimensional HJB equations are stable but not (L2(Ω), L2(∂Ω), Z)-
stable, and using L2 Physics-Informed Loss will fail to find an approximated solution in practice.

We consider a class3 of HJB equations in which the cost rate function is formulated as r(x,m) =
a1|m1|α1 + · · ·+ an|mn|αn − φ(x, t). The corresponding Hamilton-Jacobi-Bellman equation can

3The form of cost function we investigate in the paper is representative in optimal control. For example,
in financial markets, we often face power-law trading cost in optimal execution problems [10, 30]. The cost
function in Linear–Quadratic–Gaussian control and Merton’s portfolio model (constant relative risk aversion
utility function in [22]) is also of this form. Therefore, we believe our theoretical analysis for this class of HJB
equation is relevant for practical applications.

4

be reformulated as:LHJBu := ∂tu(x, t) +
1

2
σ2∆u(x, t)−

n∑
i=1

Ai|∂xi
u|ci = φ(x, t) (x, t) ∈ Rn × [0, T]

BHJBu := u(x, T) = g(x) x ∈ Rn

, (6)

where Ai = (aiαi)
− 1

αi−1 − ai(aiαi)
− αi

αi−1 ∈ (0,+∞) and ci = αi

αi−1 ∈ (1,∞). See Appendix B
for the detailed derivation. For a function f : X → R, where X is a measurable space, we denote by
suppf the support set of f , i.e. the closure of {x ∈ X : f(x) ̸= 0}.
An important concept for analyzing PDEs is the Sobolev space, which is defined as follows:
Definition 4.2. For m ∈ N, p ∈ [1,+∞) and an open set Ω ⊂ Rn, the Sobolev space Wm,p(Ω) is
defined as {f(x) ∈ Lp(Ω) : Dαf ∈ Lp(Ω),∀α ∈ Nn, |α| ≤ m}. The function space Wm,p(Ω) is

equipped with Sobolev norm, which is defined as ∥f∥Wm,p(Ω) =

(∑
|α|≤m

∥Dαf∥pLp(Ω)

) 1
p

.

The definition above can be extended to functions defined on a spatiotemporal domain Q ⊆ Rn ×
[0, T]. With a slight abuse of notation, we define Wm,p(Q) = {f(x, t) ∈ Lp(Q) : Dαf ∈
Lp(Q),∀α ∈ Nn, |α| ≤ m}, where the differential Dα is only operated over spatial variable x. The
norm ∥ · ∥Wm,p(Q) can also be defined accordingly.

Stability of the HJB Equation We present our main theoretical result which characterizes the
stability of the HJB equation (Eq. (6)). In particular, we show that the HJB equation is (Lp(Rn ×
[0, T]), Lq(Rn),W 1,r(Rn × [0, T]))-stable when p, q and r satisfies certain conditions. We take the
Banach space Z3 in Definition 4.1 as W 1,r here because it captures the properties of both the value
and the derivatives of a function, but Lp spaces do not. However, as could be seen from Appendix B,
for optimal control problems, it is essential to obtain an accurate approximator for both the value and
the gradient of the value function u (the solution of (Eq. (6)). Thus, it is appropriate to analyze the
quality of the approximate solution in W 1,r space.

Theorem 4.3. For p, q ≥ 1, let r0 = (n+2)q
n+q . Assume the following inequalities hold for p, q and r0:

p ≥ max

{
2,

(
1− 1

c̄

)
n

}
; q >

(c̄− 1)n2

(2− c̄)n+ 2
;

1

r0
≥ 1

p
− 1

n
, (7)

where c̄ = max
1≤i≤n

ci in Eq. (6). Then for any r ∈ [1, r0) and any bounded open set Q ⊂ Rn × [0, T],

Eq. (6) is (Lp(Rn × [0, T]), Lq(Rn),W 1,r(Q))-stable for c̄ ≤ 2.

The proof of Theorem 4.3 can be found in Appendix C and an improved theorem with relaxed
dependency on c̄ can be found in Appendix E. Intuitively, Theorem 4.3 states that (Lp, Lq,W 1,r)-
stability of Eq. (6) can be achieved when p, q = Ω(n). We further show that this linear dependency
on n cannot be relaxed in the following theorem:
Theorem 4.4. There exists an instance of Eq. (6), whose exact solution is u∗, such that for any
ε > 0, A > 0, r ≥ 1,m ∈ N and p ∈

[
1, n4

]
, there exists a function u ∈ C∞(Rn × (0, T]) which

satisfies the following conditions:

• ∥LHJBu− φ∥Lp(Rn×[0,T]) < ε, BHJBu = BHJBu
∗, and supp(u− u∗) is compact, where

LHJB and BHJB are defined in Eq. (6).

• ∥u− u∗∥Wm,r(Rn×[0,T]) > A.

The proof of Theorem 4.4 can be found in Appendix D.

Discussion. Theorem 4.3 and 4.4 together state that when the dimension of the state function n is
large, the HJB equation in Eq. (6) cannot be (Lp, Lq,W 1,r)-stable if p and q are small. Furthermore,
since Lr=W 0,r by definition, Theorem 4.4 also implies that Eq. (6) is not even (Lp, Lq, Lr)-stable.
Therefore, for high-dimensional HJB problems, if we use classic L2 Physics-Informed Loss for
training PINN, the learned solution may be arbitrarily distant from u∗ even if the loss is very small.
Such theoretical results are verified in our empirical studies in Section 6.

5

More importantly, our theoretical results indicate that the design choice of the Physics-Informed Loss
plays a significant role in solving PDEs using PINN. In this work, we shed light upon this problem
using HJB equations. We believe the relationship between PDE’s stability and the Physics-Informed
Loss should be carefully investigated in the future, especially for high-dimensional non-linear PDEs
whose stability are more complicated than low-dimensional and linear ones [8, 11, 19]. Given the
above observations, we further propose a new algorithm for training PINN to solve HJB Equations,
which will be presented in the subsequent sections.

5 Solving HJB Equations with Adversarial Training

The above results suggest that we should use a large value of p and q in the loss ℓΩ,p(u) and ℓ∂Ω,q(u)
to guarantee a learned solution u is close to u∗ for high-dimensional HJB problems. Note that
Lp-norm and L∞-norm behave similarly when p is large. We can substitute Lp-norm by L∞-norm
and directly optimize ℓΩ,∞(u) and ℓ∂Ω,∞(u). Overall, the training objective can be formulated as:

min
u

ℓ∞(u) = sup
x∈Ω
|Lu(x)− φ(x)|+ λ sup

x∈∂Ω
|Bu(x)− ψ(x)|, (8)

where λ > 0 is a hyper-parameter to trade off the two objectives.

It is straightforward to obtain that setting p and q to infinity satisfies the conditions in Theorem 4.3,
and thus the quality of the learned solution enjoys theoretical guarantee. Furthermore, Eq. (8) can be
regarded as a min-max optimization problem. The inner loop is a maximization problem to find data
points on Ω and ∂Ω where u violates the PDE most, and the outer loop is a minimization problem to
find u (i.e., the neural network parameters) that minimizes the loss on those points.

In deep learning, such a min-max optimization problem has been intensively studied, and adversarial
training is one of the most effective learning approaches in many applications. We leverage adversarial
training, and the detailed implementation is described in Algorithm 1. In each training step, the model
parameters and data points are iteratively updated. We first fix the model u and randomly sample
data points x(1), · · · , x(N1) ∈ Ω and x̃(1), · · · , x̃(N2) ∈ ∂Ω, serving as a random initialization of the
inner loop optimization. Then we perform gradient-based methods to obtain data points with large
point-wise Physics-Informed Losses, which leads to the following inner-loop update rule:

x(k) ← ProjectΩ

(
x(k) + η sign∇x

(
Luθ(x(k))− φ(x(k))

)2)
; (9)

x̃(k) ← Project∂Ω

(
x̃(k) + η sign∇x

(
Buθ(x̃(k))− ψ(x̃(k))

)2)
, (10)

Algorithm 1 L∞ Training for Physics-Informed Neural Networks
Input: Target PDE (Eq. (1)); neural network uθ; initial model parameters θ
Output: Learned PDE solution uθ
Hyper-parameters: Number of total training iterations M ; number of iterations and step size of

inner loop K, η; weight for combining the two loss term λ

1: for i = 1, · · · ,M do
2: Sample x(1), · · · , x(N1) ∈ Ω and x̃(1), · · · , x̃(N2) ∈ ∂Ω
3: for j = 1, · · · ,K do
4: for k = 1, · · · , N1 do
5: x(k) ← ProjectΩ

(
x(k) + η sign∇x

(
Luθ(x(k))− φ(x(k))

)2)
6: for k = 1, · · · , N2 do
7: x̃(k) ← Project∂Ω

(
x̃(k) + η sign∇x

(
Buθ(x̃(k))− ψ(x̃(k))

)2)
8: g ← ∇θ

(
1

N1

N1∑
i=1

(
Luθ(x(i))− φ(x(i))

)2
+ λ · 1

N2

N2∑
i=1

(
Buθ(x̃(i))− ψ(x̃(i))

)2)
9: θ ← Optimizer (θ, g)

10: return uθ

6

Table 1: Experimental results of solving the 100/250-dimensional LQG control problems. n
denotes the dimensionality of the problem. Performances are measured by L1, L2, and W 1,1 relative
error in [0, 1]n × [0, T]. The best performances are indicated in bold.

Method Relative error for n = 100 Relative error for n = 250
L1 L2 W 1,1 L1 L2 W 1,1

Original PINN [28] 3.47% 4.25% 11.31% 6.74% 7.67% 17.51%
Adaptive time sampling [35] 3.05% 3.67% 13.63% 7.18% 7.91% 18.38%
Learning rate annealing [34] 11.09% 11.82% 33.61% 6.94% 8.04% 18.47%

Curriculum regularization [17] 3.40% 3.91% 9.53% 6.72% 7.51% 17.52%

Adversarial training (ours) 0.27% 0.33% 2.22% 0.95% 1.18% 4.38%

where ProjectΩ (·) and Project∂Ω (·) project the updated data points to the domain. When the
inner-loop optimization finishes, we fix the generated data points and calculate the gradient g to the
model parameter:

g ← ∇θ

(
1

N1

N1∑
i=1

(
Luθ(x(i))− φ(x(i))

)2
+ λ · 1

N2

N2∑
i=1

(
Buθ(x̃(i))− ψ(x̃(i))

)2)
, (11)

then the model parameter can be updated using any first-order optimization methods. When the
training finishes, the learned neural network will converge to a solution with small L∞ losses and is
guaranteed to be close to the exact solution.

6 Experiments

In this section, we conduct experiments to verify the effectiveness of our approach. Ablation studies
on the design choices and hyper-parameters are then provided. Our codes are implemented based
on PyTorch [23]. All the models are trained on one NVIDIA Tesla V100 GPU with 16GB memory.
Due to space limitation, we only showcase our methods on the Linear Quadratic Gaussian control
problem in the main body of the paper. More experimental results on other PDE problems can be
found in Appendix G.

6.1 High Dimensional Linear Quadratic Gaussian Control Problem

We follow [13] to study the classical linear-quadratic Gaussian (LQG) control problem in n dimen-
sions, a special case of the HJB equation:{

∂tu(x, t) + ∆u(x, t)− µ∥∇xu(x, t)∥2 = 0 x ∈ Rn, t ∈ [0, T]

u(x, T) = g(x) x ∈ Rn,
(12)

As is shown in [13], there is a unique solution to Eq. (12):

u(x, t) = − 1

µ
ln

(∫
Rn

(2π)−n/2e−∥y∥2/2 · e−µg(x−
√

2(T−t)y)dy

)
, (13)

We set µ = 1, T = 1, and the terminal cost function g(x) = ln

(
1 + ∥x∥2

2

)
.

Experimental Design The neural network used for training is a 4-layer MLP with 4096 neurons
and tanh activation in each hidden layer. To train the models, we use Adam as the optimizer [15].
The learning rate is set to 7e−4 in the beginning and then decays linearly to zero during training. The
total number of training iterations is set to 5000/10000 for the 100/250-dimensional problem. In each
training iteration, we sample N1 = 100/50 points from the domain Rn × [0, T] and N2 = 100/50
points from the boundary Rn × {T} to obtain a mini-batch for the 100/250-dimensional problem.
The number of inner-loop iterations K is set to 20, and the inner-loop step size η is set to 0.05 unless
otherwise specified. Evaluations are performed on a hold-out validation set which is unseen during

7

0 0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0 Exact solution u*

4.590

4.592

4.594

4.596

4.598

4.600

0 0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0Learned solution u (L2 PINN)

4.460

4.462

4.464

4.466

0 0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0Learned solution u (Ours)

4.594

4.596

4.598

4.600

0 0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0 Error |u-u*| (L2 PINN)

0.02

0.04

0.06

0.08

0.10

0.12

0 0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0 Error |u-u*| (Ours)

0.02

0.04

0.06

0.08

0.10

0.12

Figure 1: Visualization for the solutions of Eq. (12). The left panel shows the exact solution u∗;
the middle panel shows the learned solutions u of the original PINN method with L2 loss and our
method with adversarial training; the right panel show the point-wise absolute error |u− u∗|. Note
that the solution is a high dimensional function, and we visualize its snapshot on a two-dimensional
domain. Specifically, we visualize a bivariate function u(x1, x2, 0, · · · , 0; 0) for x1, x2 ∈ [0, 1] with
the horizontal axis and vertical axis corresponding to x1 and x2 respectively.

training. We use the L1, L2, and W 1,1 relative error in [0, 1]n × [0, T] as evaluation metrics: L1 and
L2 relative errors are popular evaluation metrics in literature. We additionally consider W 1,1 relative
error since the gradient of the solution to HJB equations plays an important role in applications,
and our theory indicates that Eq. (12) is (L∞, L∞,W 1,r) stable. More detailed descriptions of the
experimental setting and evaluation metrics can be found in Appendix F.

We compare our method with a few strong baselines: 1) original PINN trained with L2 Physics-
Informed Loss [28]; 2) adaptive time sampling for PINN training proposed in [35]; 3) PINN with
the learning rate annealing algorithm proposed in [34]; 4) curriculum PINN regularization proposed
in [17]. The training recipes for the baseline methods, including the neural network architecture,
the training iterations, the optimizer, and the learning rate, are the same as those of our method
described above. It should be noted that although these approaches modifies the data sampler, training
algorithms or the loss function, they all keep the L2 norm of the PDE residual and boundary residual
unchanged in the training objective.

Experimental Results The experimental results are summarized in Table 1. It’s clear that the
relative error of the model trained using the original PINN does not fit the solution well, e.g., the
L1 relative error is larger than 6% when n = 250. This empirical observation aligns well with our
theoretical analysis, i.e., minimizing L2 loss cannot guarantee the learned solution to be accurate.
Advanced methods, e.g., curriculum PINN regularization [17], can improve the accuracy of the
learned solution but with marginal improvement, which suggests that these methods do not address
the key limitation of PINN in solving high-dimensional HJB Equations. By contrast, our proposed
method significantly outperforms all the baseline methods in terms of both Lp relative error and
Sobolev relative error, which indicates that both the values and the gradients of our learned solutions
are more accurate than the baselines.

We also examine the quality of the learned solution u(x, t) by visualization. As the solution is a
high-dimensional function, we visualize its snapshot on a two-dimensional space. Specifically, we
consider a bivariate function u(x1, x2, 0, · · · , 0; 0) and use a heatmap to show its function value
given different x1 and x2. Figure 1 shows the ground truth u∗, the learned solutions u of original
PINN and our method, and the point-wise absolute error |u− u∗| for each methods. The two axises
correspond x1 and x2, respectively. We can see that the point-wise error of the learned solution
using our algorithm is less than 2e− 2 on average. In contrast, the point-wise error of the learned
solution using original PINN method with L2 loss is larger than 1.3e− 1 for most areas. Therefore,

8

0 0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0 Exact | xu*|

0.002

0.004

0.006

0.008

0.010

0.012

0 0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0 Learned | xu| (L2 PINN)

0.008

0.009

0.010

0.011

0.012

0.013

0 0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0 Learned | xu| (Ours)

0.004

0.006

0.008

0.010

0.012

0 0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0 Gradient norm error (L2 PINN)

0.002

0.004

0.006

0.008

0 0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0Gradient norm error (Ours)

0.002

0.004

0.006

0.008

Figure 2: Visualization for the gradient norm of the solutions of Eq. (12). The left panel shows
the ground truth |∇xu

∗|; the middle panel shows the learned |∇xu| of the original PINN method
with L2 loss and our method with adversarial training; the right panel shows the point-wise absolute
error |∇x(u− u∗)|. We only visualize a snapshot on a two-dimensional domain. Specifically, we
visualize a bivariate function u(x1, x2, 0, · · · , 0; 0) for x1, x2 ∈ [0, 1] with the horizontal axis and
vertical axis corresponding to x1 and x2 respectively.

the visualization of the solutions clearly illustrate that PINN learned more accurate solution using our
proposed algorithm.

Furthermore, we visualize the gradient norm |∇xu| of the learned solution of both our method and
the original PINN in Figure 2, to illustrate that not only can the learned solution of our method
accurately approximate the exact solution, but also the gradient of the learned solution can accurately
approximate the gradient of the exact solution. Again, since |∇xu| is a high dimensional function,
we use a heatmap to show its function value given different x1 and x2, and set the other variables to
0. From the right panel of Figure 2, we can clearly see that the gradient of the learned solution of
our method is much more accurate compared with that of the gradient of the learned solution using
original PINN. The gradient norm error of the vanilla PINN approach is nearly 1e− 2 in some areas
shown in the visualization, while the error of our method is less than 1e − 3 for most data points.
This empirical observation aligns well with our theory, which states that Eq. (12) is (L∞, L∞,W 1,r)
stable.

6.2 Ablation studies

We conduct ablation studies on the 100-dimensional LQG control problem (Eq. (12)) to ablate the
main designs in our algorithm.

Adversarial training v.s. Directly optimizing Lp physic-informed loss. Our proposed algorithm
introduces a min-max optimization procedure. One may have concerns that such an approach may be
unnecessarily complicated, and directly minimizing Lp physic-informed loss with a large p would
have the same effect. We use these two methods to solve Eq. (12), and compare their performance in
the left panel of Table 2. It can be seen that directly minimizing Lp physic-informed loss does not
lead to satisfactory results.

We point out that this observation does not contradict our theoretical analysis (Theorem 4.3). Theorem
4.3 focuses on the approximation ability, which indicates that a model with a small Lp loss can
approximate the exact solution well. The empirical results in Table 2 demonstrate the optimization
difficulty of learning such a model with Lp loss. By comparison, our proposed adversarial training
method is more stable and leads to better performance. More detailed discussions are provided in
Appendix H.

9

Table 2: Experimental results for ablation studies. The left panel compares PINN trained with
Lp Physic Informed Loss and our method; the right panel compares PINN trained with partial or no
adversarial training and our method. In the first two columns of the right panel, % indicates using
the original L2 Physics-Informed Loss for the PDE/boundary residual loss term, while ! indicates
using the proposed adversarial training method for the corresponding loss term. Performances are
measured by L1 relative error. Best performances are indicated in bold.

Method Relative error

L4 Loss 2.42%
L8 Loss 53.55%
L16 Loss 113.24%

Ours 0.27%

Adversarial training Relative errorDomain Boundary

% % 3.47%
% ! 2.79%

! ! 0.27%
= 0.05 = 0.1 = 0.2

K = 5

K = 10

K = 20

1.7 0.97 0.49

1.6 0.46 2.5

0.27 1.2 8.8

L1 relative error (%)

2.5

5.0

7.5

Adversarial training should be applied to both the PDE residual and the boundary residual.
Our theoretical analysis suggests that we should use a large value of p and q in the loss ℓΩ,p(u)
and ℓ∂Ω,q(u) to guarantee the quality of the learned solution u. Thus, in the proposed Algorithm
1, both the data points inside the domain and the data points on the boundary are learned in the
inner-loop maximization. From the right panel of Table 2, we can see that when adversarial training is
applied to one loss term, the performance is slightly improved, but its accuracy is still not satisfactory.
When both loss terms use adversarial training, the solution is one order of magnitude more accurate,
indicating that applying adversarial training to the whole loss function is essential.

Hyper-parametersK and η for the inner loop maximization. Our approach introduces additional
hyper-parameters K (the number of inner-loop iterations) and η (the inner-loop step size). These
two parameters control the accuracy of inner-loop maximization. We conduct ablation studies to
examine the effects of different design choices. Specifically, we experiment with K = 5, 10, 20 and
η = 0.05, 0.1, 0.2, and show the L1 relative error in the right panel of Table 2. Typically we find that
setting the product Kη = 1 achieves the best performance. When Kη is fixed, our results suggest
that using a larger K and a smaller η, i.e., more inner-loop iterations and smaller step sizes, will lead
to better performance while being more time-consuming.

7 Conclusions

In this paper, we theoretically investigate the relationship between the loss function and the ap-
proximation quality of the learned solution using the concept of stability in the partial differential
equation. We study an important class of high-dimensional non-linear PDEs in optimal control, the
Hamilton-Jacobi-Bellman (HJB) equation, and prove that for general Lp Physics-Informed Loss, the
HJB equation is stable only if p is sufficiently large. Such a theoretical finding reveals that the widely
used L2 loss is not suitable for training PINN on high-dimensional HJB equations, while L∞ loss is
a better choice. The theory also inspires us to develop a novel PINN training algorithm to minimize
the L∞ loss for HJB equations in a similar spirit to adversarial training. One limitation of this work
is that we only work on the HJB Equation. Theoretical investigation of other important equations can
be an exciting direction for future works. We believe this work provides important insights into the
loss design in Physics-Informed deep learning.

Acknowledgements

We thank Weinan E, Bin Dong, Yiping Lu, Zhifei Zhang, and Yufan Chen for the helpful discussions.

This work is supported by National Science Foundation of China (NSFC62276005), The Major Key
Project of PCL (PCL2021A12), Exploratory Research Project of Zhejiang Lab (No. 2022RC0AN02),
and Project 2020BD006 supported by PKUBaidu Fund.

10

References
[1] Christian Beck, Sebastian Becker, Patrick Cheridito, Arnulf Jentzen, and Ariel Neufeld. Deep

splitting method for parabolic pdes. SIAM Journal on Scientific Computing, 43(5):A3135–
A3154, 2021.

[2] Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

[3] Dimitri Bertsekas and Steven E Shreve. Stochastic optimal control: the discrete-time case,
volume 5. Athena Scientific, 1996.

[4] Michael Christ, James Colliander, and Terrence Tao. Asymptotics, frequency modulation,
and low regularity ill-posedness for canonical defocusing equations. American journal of
mathematics, 125(6):1235–1293, 2003.

[5] Ashley Davey and Harry Zheng. Deep learning for constrained utility maximisation. Methodol-
ogy and Computing in Applied Probability, 24(2):661–692, 2022.

[6] Tim De Ryck, Ameya D Jagtap, and Siddhartha Mishra. Error estimates for physics informed
neural networks approximating the navier-stokes equations. arXiv preprint arXiv:2203.09346,
2022.

[7] Yu Deng and Nader Masmoudi. Long time instability of the couette flow in low gevrey spaces.
arXiv preprint arXiv:1803.01246, 2018.

[8] Lawrence C Evans. Partial differential equations. Graduate studies in mathematics, 19(4):7,
1998.

[9] Wendell H Fleming and Raymond W Rishel. Deterministic and stochastic optimal control,
volume 1. Springer Science & Business Media, 2012.

[10] Peter A Forsyth, J Shannon Kennedy, Shu Tong Tse, and Heath Windcliff. Optimal trade
execution: a mean quadratic variation approach. Journal of Economic dynamics and Control,
36(12):1971–1991, 2012.

[11] David Gilbarg, Neil S Trudinger, David Gilbarg, and NS Trudinger. Elliptic partial differential
equations of second order, volume 224. Springer, 1977.

[12] Igor Halperin. Distributional offline continuous-time reinforcement learning with neural physics-
informed pdes (sciphy rl for doctr-l). arXiv preprint arXiv:2104.01040, 2021.

[13] Jiequn Han, Arnulf Jentzen, and E Weinan. Solving high-dimensional partial differential
equations using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–
8510, 2018.

[14] Yuehaw Khoo, Jianfeng Lu, and Lexing Ying. Solving parametric pde problems with artificial
neural networks. arXiv preprint arXiv:1707.03351, 2017.

[15] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR
(Poster), 2015.

[16] Donald E Kirk. Optimal control theory: an introduction. Courier Corporation, 2004.

[17] Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney.
Characterizing possible failure modes in physics-informed neural networks. Advances in Neural
Information Processing Systems, 34, 2021.

[18] Weiwei Li, Emanuel Todorov, and Dan Liu. Inverse optimality design for biological movement
systems. IFAC Proceedings Volumes, 44(1):9662–9667, 2011.

[19] Gary M Lieberman. Second order parabolic differential equations. World scientific, 1996.

[20] Zhiwu Lin and Chongchun Zeng. Inviscid dynamical structures near couette flow. Archive for
rational mechanics and analysis, 200(3):1075–1097, 2011.

11

[21] Yiping Lu, Haoxuan Chen, Jianfeng Lu, Lexing Ying, and Jose Blanchet. Machine learning for
elliptic pdes: Fast rate generalization bound, neural scaling law and minimax optimality. arXiv
preprint arXiv:2110.06897, 2021.

[22] Robert C Merton. Optimum consumption and portfolio rules in a continuous-time model. In
Stochastic optimization models in finance, pages 621–661. Elsevier, 1975.

[23] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32:8026–8037, 2019.

[24] Marcus Pereira, Ziyi Wang, Tianrong Chen, Emily Reed, and Evangelos Theodorou. Feynman-
kac neural network architectures for stochastic control using second-order fbsde theory. In
Learning for Dynamics and Control, pages 728–738. PMLR, 2020.

[25] Marcus Pereira, Ziyi Wang, Ioannis Exarchos, and Evangelos A Theodorou. Learning
deep stochastic optimal control policies using forward-backward sdes. arXiv preprint
arXiv:1902.03986, 2019.

[26] Huyên Pham. Continuous-time stochastic control and optimization with financial applications,
volume 61. Springer Science & Business Media, 2009.

[27] Huyen Pham, Xavier Warin, and Maximilien Germain. Neural networks-based backward
scheme for fully nonlinear pdes. SN Partial Differential Equations and Applications, 2(1):1–24,
2021.

[28] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

[29] Tim De Ryck, Ameya D. Jagtap, and Siddhartha Mishra. Error estimates for physics informed
neural networks approximating the navier-stokes equations. CoRR, abs/2203.09346, 2022.

[30] Alexander Schied and Torsten Schöneborn. Risk aversion and the dynamics of optimal liquida-
tion strategies in illiquid markets. Finance and Stochastics, 13(2):181–204, 2009.

[31] Yeonjong Shin, Zhongqiang Zhang, and George Em Karniadakis. Error estimates of residual
minimization using neural networks for linear pdes. arXiv preprint arXiv:2010.08019, 2020.

[32] Stanislaw Sieniutycz. Hamilton–jacobi–bellman framework for optimal control in multistage
energy systems. Physics Reports, 326(4):165–258, 2000.

[33] Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving
partial differential equations. Journal of computational physics, 375:1339–1364, 2018.

[34] Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow
pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing,
43(5):A3055–A3081, 2021.

[35] Colby L Wight and Jia Zhao. Solving allen-cahn and cahn-hilliard equations using the adaptive
physics informed neural networks. arXiv preprint arXiv:2007.04542, 2020.

[36] Jan Willems. Least squares stationary optimal control and the algebraic riccati equation. IEEE
Transactions on automatic control, 16(6):621–634, 1971.

[37] William M Wonham. On a matrix riccati equation of stochastic control. SIAM Journal on
Control, 6(4):681–697, 1968.

[38] Jiongmin Yong and Xun Yu Zhou. Stochastic controls: Hamiltonian systems and HJB equations,
volume 43. Springer Science & Business Media, 1999.

[39] Yajie Yu, Bernhard Hientzsch, and Narayan Ganesan. Backward deep bsde methods and
applications to nonlinear problems. arXiv preprint arXiv:2006.07635, 2020.

12

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No] We don’t

see any potential negative societal impacts of this work.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] The proofs are

provided in the appendix.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

	Introduction
	Related Works
	Preliminary
	Failure Mode of PINN on High-Dimensional Stochastic Optimal Control
	Solving HJB Equations with Adversarial Training
	Experiments
	High Dimensional Linear Quadratic Gaussian Control Problem
	Ablation studies

	Conclusions
	Notation and Auxiliary Results
	Basic notations
	Multi-index notations
	Norm notations
	Auxiliary results

	Derivation of a Class of Hamilton-Jacobi-Bellman (HJB) Equations
	Proof of Theorem 4.3
	Proof of Theorem 4.4
	Improved Theorem 4.3
	Experimental Settings
	More experiments and visualizations
	More instance of HJB Equations
	Tracing loss and error during the training

	Discussions on training with Lp loss

