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Abstract

Distributionally Robust Optimization (DRO), which aims to find an optimal de-
cision that minimizes the worst case cost over the ambiguity set of probability
distribution, has been widely applied in diverse applications, e.g., network behavior
analysis, risk management, etc. However, existing DRO techniques face three key
challenges: 1) how to deal with the asynchronous updating in a distributed envi-
ronment; 2) how to leverage the prior distribution effectively; 3) how to properly
adjust the degree of robustness according to different scenarios. To this end, we
propose an asynchronous distributed algorithm, named Asynchronous Single-looP
alternatIve gRadient projEction (ASPIRE) algorithm with the itErative Active
SEt method (EASE) to tackle the distributed distributionally robust optimization
(DDRO) problem. Furthermore, a new uncertainty set, i.e., constrained D-norm
uncertainty set, is developed to effectively leverage the prior distribution and flex-
ibly control the degree of robustness. Finally, our theoretical analysis elucidates
that the proposed algorithm is guaranteed to converge and the iteration complexity
is also analyzed. Extensive empirical studies on real-world datasets demonstrate
that the proposed method can not only achieve fast convergence, and remain robust
against data heterogeneity as well as malicious attacks, but also tradeoff robustness
with performance.

1 Introduction

The past decade has witnessed the proliferation of smartphones and Internet of Things (IoT) devices,
which generate a plethora of data everyday. Centralized machine learning requires gathering the
data to a particular server to train models which incurs high communication overhead [46] and
suffers privacy risks [43]. As a remedy, distributed machine learning methods have been proposed.
Considering a distributed system composed of N workers (devices), we denote the dataset of
these workers as {D1, · · · , DN}. For the jth (1≤ j ≤N ) worker, the labeled dataset is given as
Dj = {xi

j , y
i
j}, where xi

j ∈Rd and yij ∈ {1, · · · , c} denote the ith data sample and the corresponding
label, respectively. The distributed learning tasks can be formulated as the following optimization
problem,

min
w∈W

F (w) with F (w) :=
∑

j
fj(w), (1)

where w ∈ Rp is the model parameter to be learned and W⊆Rp is a nonempty closed convex set,
fj(·) is the empirical risk over the jth worker involving only the local data:

fj(w) =
∑

i:xi
j∈Dj

1

|Dj |
Lj(x

i
j , y

i
j ;w), (2)

∗Corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



where Lj is the local objective function over the jth worker. Problem in Eq. (1) arises in numerous
areas, such as distributed signal processing [19], multi-agent optimization [36], etc. However, such
problem does not consider the data heterogeneity [57, 40, 39, 30] among different workers (i.e.,
data distribution of workers could be substantially different from each other [44]). Indeed, it has
been shown that traditional federated approaches, such as FedAvg [33], built for independent and
identically distributed (IID) data may perform poorly when applied to Non-IID data [27]. This issue
can be mitigated via learning a robust model that aims to achieve uniformly good performance over all
workers by solving the following distributionally robust optimization (DRO) problem in a distributed
manner:

min
w∈W

max
p∈Ω⊆∆N

F (w,p) :=
∑

j
pjfj(w), (3)

where p = [p1, · · · , pN ]∈RN is the adversarial distribution in N workers, the jth entry in this vector,
i.e., pj represents the adversarial distribution value for the jth worker. ∆N = {p ∈ RN

+ : 1⊤p = 1}
and Ω is a subset of ∆N . Agnostic federated learning (AFL) [35] firstly introduces the distributionally
robust (agnostic) loss in federated learning and provides the convergence rate for (strongly) convex
functions. However, AFL does not discuss the setting of Ω. DRFA-Prox [16] considers Ω = ∆N

and imposes a regularizer on adversarial distribution to leverage the prior distribution. Nevertheless,
three key challenges have not yet been addressed by prior works. First, whether it is possible to
construct an uncertainty framework that can not only flexibly maintain the trade-off between the
model robustness and performance but also effectively leverage the prior distribution? Second, how to
design asynchronous algorithms with guaranteed convergence? Compared to synchronous algorithms,
the master in asynchronous algorithms can update its parameters after receiving updates from only
a small subset of workers [58, 10]. Asynchronous algorithms are particularly desirable in practice
since they can relax strict data dependencies and ensure convergence even in the presence of device
failures [58]. Finally, whether it is possible to flexibly adjust the degree of robustness? Moreover, it
is necessary to provide convergence guarantee when the objectives (i.e., fj(wj),∀j) are non-convex.

To this end, we propose ASPIRE-EASE to effectively address the aforementioned challenges. Firstly,
different from existing works, the prior distribution is incorporated within the constraint in our
formulation, which can not only leverage the prior distribution more effectively but also achieve
guaranteed feasibility for any adversarial distribution within the uncertainty set. The prior distribution
can be obtained from side information or uniform distribution [41], which is necessary to construct
the uncertainty (ambiguity) set and obtain a more robust model [16]. Specifically, we formulate the
prior distribution informed distributionally robust optimization (PD-DRO) problem as:

min
z∈Z,{wj∈W}

max
p∈P

∑
j
pjfj(wj) (4)

s.t. z = wj , j=1,· · ·, N,

var. z,w1,w2, · · · ,wN ,

where z∈Rp is the global consensus variable, wj ∈Rp is the local variable (local model parameter) of
jth worker and Z⊆Rp is a nonempty closed convex set. P⊆RN

+ is the uncertainty (ambiguity) set of
adversarial distribution p, which is set based on the prior distribution. To solve the PD-DRO problem
in an asynchronous distributed manner, we first propose Asynchronous Single-looP alternatIve
gRadient projEction (ASPIRE), which employs simple gradient projection steps for the update of
primal and dual variables at every iteration, thus is computationally efficient. Next, the itErative
Active SEt method (EASE) is employed to replace the traditional cutting plane method to improve
the computational efficiency and speed up the convergence. We further provide the convergence
guarantee for the proposed algorithm. Furthermore, a new uncertainty set, i.e., constrained D-norm
(CD-norm), is proposed in this paper and its advantages include: 1) it can flexibly control the degree
of robustness; 2) the resulting subproblem is computationally simple; 3) it can effectively leverage
the prior distribution and flexibly set the bounds for every pj .

Contributions. Our contributions can be summarized as follows:

1. We formulate a PD-DRO problem with CD-norm uncertainty set. PD-DRO incorporates the prior
distribution as constraints which can leverage prior distribution more effectively and guarantee ro-
bustness. In addition, CD-norm is developed to model the ambiguity set around the prior distribution
and it provides a flexible way to control the trade-off between model robustness and performance.

2. We develop a single-loop asynchronous algorithm, namely ASPIRE-EASE, to optimize PD-
DRO in an asynchronous distributed manner. ASPIRE employs simple gradient projection steps to
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update the variables at every iteration, which is computationally efficient. And EASE is proposed to
replace cutting plane method to enhance the computational efficiency and speed up the convergence.
We demonstrate that even if the objectives fj(wj),∀j are non-convex, the proposed algorithm is
guaranteed to converge. We also theoretically derive the iteration complexity of ASPIRE-EASE.

3. Extensive empirical studies on four different real world datasets demonstrate the superior perfor-
mance of the proposed algorithm. It is seen that ASPIRE-EASE can not only ensure the model’s
robustness against data heterogeneity but also mitigate malicious attacks.

2 Preliminaries

2.1 Distributionally Robust Optimization

Optimization problems often contain uncertain parameters. A small perturbation of the parameters
could render the optimal solution of the original optimization problem infeasible or completely
meaningless [5]. Distributionally robust optimization (DRO) [28, 17, 7] assumes that the probability
distributions of uncertain parameters are unknown but remain in an ambiguity (uncertainty) set and
aims to find a decision that minimizes the worst case expected cost over the ambiguity set, whose
general form can be expressed as,

min
x∈X

max
P∈P

EP [r(x, ξ)], (5)

where x ∈X represents the decision variable, P is the ambiguity set of probability distributions
P of uncertain parameters ξ. Existing methods for solving DRO can be broadly grouped into two
widely-used categories [42]: 1) Dual methods [15, 50, 18] reformulate the primal DRO problems
as deterministic optimization problems through duality theory. Ben-Tal et al. [2] reformulate the
robust linear optimization (RLO) problem with an ellipsoidal uncertainty set as a second-order cone
optimization problem (SOCP). 2) Cutting plane methods [34, 6] (also called adversarial approaches
[21]) continuously solve an approximate problem with a finite number of constraints of the primal
DRO problem, and subsequently check whether new constraints are needed to refine the feasible set.
Recently, several new methods [41, 29, 23] have been developed to solve DRO, which need to solve
the inner maximization problem at every iteration.

2.2 Cutting Plane Method for PD-DRO

In this section, we introduce the cutting plane method for PD-DRO in Eq. (4). We first reformulate
PD-DRO by introducing an additional variable h∈H (H⊆R1 is a nonempty closed convex set) and
protection function g({wj}) [55]. Introducing additional variable h is an epigraph reformulation
[3, 56]. In this case, Eq. (4) can be reformulated as the form with uncertainty in the constraints:

min
z∈Z,{wj∈W},h∈H

h

s.t.
∑

j
pfj(wj)+g({wj})− h≤0, (6)

z = wj , j=1,· · ·, N,

var. z,w1,w2, · · · ,wN , h,

where p is the nominal value of the adversarial distribution for every worker and g({wj}) =
max
p∈P

∑
j (pj − p)fj(wj) is the protection function. Eq. (6) is a semi-infinite program (SIP) which

contains infinite constraints and cannot be solved directly [42]. Denoting the set of cutting plane
parameters in (t+1)th iteration as At⊆RN , the following function is used to approximate g({wj}):

g({wj}) = max
al∈At

a⊤
l f(w) = max

al∈At

∑
j
al,jfj(wj), (7)

where al = [al,1, · · · , al,N ] ∈ RN denotes the parameters of lth cutting plane in At and f(w) =
[f1(w1), · · · , fN (wN )]∈RN . Substituting the protection function g({wj}) with g({wj}), we can
obtain the following approximate problem:

min
z∈Z,{wj∈W},h∈H

h

s.t.
∑

j
(p+ al,j)fj(wj)− h≤0,∀al∈At, (8)

z = wj , j=1,· · ·, N,

var. z,w1,w2, · · · ,wN , h.
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3 ASPIRE

Distributed optimization is an attractive approach for large-scale learning tasks [54, 8] since it does
not require data aggregation, which protects data privacy while also reducing bandwidth requirements
[45]. When the neural network models (i.e., fj(wj),∀j are non-convex functions) are used, solving
problem in Eq. (8) in a distributed manner facing two challenges: 1) Computing the optimal
solution to a non-convex subproblem requires a large number of iterations and therefore is highly
computationally intensive if not impossible. Thus, the traditional Alternating Direction Method of
Multipliers (ADMM) is ineffective. 2) The communication delays of workers may differ significantly
[11], thus, asynchronous algorithms are strongly preferred.

To this end, we propose the Asynchronous Single-looP alternatIve gRadient projEction (ASPIRE).
The advantages of the proposed algorithm include: 1) ASPIRE uses simple gradient projection
steps to update variables in each iteration and therefore it is computationally more efficient than
the traditional ADMM method, which seeks to find the optimal solution in non-convex (for wj ,∀j)
and convex (for z and h) optimization subproblems every iteration, 2) the proposed asynchronous
algorithm does not need strict synchronization among different workers. Therefore, ASPIRE remains
resilient against communication delays and potential hardware failures from workers. Details of the
algorithm are given below. Firstly, we define the node as master which is responsible for updating the
global variable z, and we define the node which is responsible for updating the local variable wj as
worker j. In each iteration, the master updates its variables once it receives updates from at least S
workers, i.e., active workers, satisfying 1 ≤ S ≤ N . Qt+1 denotes the index subset of workers from
which the master receives updates during (t+ 1)th iteration. We also assume the master will receive
updated variables from every worker at least once for each τ iterations. The augmented Lagrangian
function of Eq. (8) can be written as:

Lp = h+
∑

l
λl(

∑
j
(p+ al,j)fj(wj)−h)+

∑
j
ϕ⊤

j (z−wj)+
∑

j

κ1

2
||z−wj ||2, (9)

where Lp =Lp({wj},z, h, {λl}, {ϕj}), λl ∈Λ,∀l and ϕj ∈Φ,∀j represent the dual variables of
inequality and equality constraints in Eq. (8), respectively. Λ ⊆ R1 and Φ ⊆ Rp are nonempty
closed convex sets, constant κ1 > 0 is a penalty parameter. Note that Eq. (9) does not consider the
second-order penalty term for inequality constraint since it will invalidate the distributed optimization.
Following [52], the regularized version of Eq. (9) is employed to update all variables as follows,

L̃p({wj},z, h, {λl}, {ϕj}) = Lp −
∑

l

ct1
2
||λl||2 −

∑
j

ct2
2
||ϕj ||2, (10)

where ct1 and ct2 denote the regularization terms in (t + 1)th iteration. To avoid enumerating the
whole dataset, the mini-batch loss could be used. A batch of instances with size m can be randomly
sampled from each worker during each iteration. The loss function of these instances from jth

worker is given by f̂j(wj) =
m∑
i=1

1
mLj(x

i
j , y

i
j ;wj). It is evident that E[f̂j(wj)] = fj(wj) and

E[∇f̂j(wj)]=∇fj(wj). In (t+ 1)th master iteration, the proposed algorithm proceeds as follows.

1) Active workers update the local variables wj as follows,

wt+1
j =

{
PW(wt

j − α
t̃j
w∇wj L̃p({w

t̃j
j },zt̃j , ht̃j ,{λt̃j

l },{ϕt̃j
j })),∀j∈Qt+1,

wt
j ,∀j /∈ Qt+1,

(11)

where t̃j is the last iteration during which worker j was active. It is seen that ∀j∈Qt+1,wt
j=w

t̃j
j

and ϕt
j=ϕ

t̃j
j . αt̃j

w represents the step-size and let αt
w=ηtw when t<T1 and αt

w=ηw when t≥T1,
where ηtw and constant ηw will be introduced below. PW represents the projection onto the closed
convex set W and we set W = {wj | ||wj ||∞≤ α1}, α1 is a positive constant. And then, the active
workers (j∈Qt+1) transmit their local model parameters wt+1

j and loss fj(wj) to the master.

2) After receiving the updates from active workers, the master updates the global consensus variable
z, additional variable h and dual variables λl as follows,

zt+1=PZ(zt − ηtz∇zL̃p({wt+1
j },zt, ht,{λt

l},{ϕt
j})), (12)

ht+1=PH(ht − ηth∇hL̃p({wt+1
j },zt+1, ht,{λt

l},{ϕt
j})), (13)
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λt+1
l =PΛ(λ

t
l+ρ1∇λl

L̃p({wt+1
j },zt+1, ht+1,{λt

l},{ϕt
j})), l=1,· · ·, |At|, (14)

where ηtz , ηth and ρ1 represent the step-sizes. PZ , PH and PΛ respectively represent the projection
onto the closed convex sets Z , H and Λ. We set Z = {z| ||z||∞≤ α1}, H = {h| 0 ≤h≤ α2} and
Λ = {λl| 0 ≤λl≤ α3}, where α2 and α3 are positive constants. |At| denotes the number of cutting
planes. Then, master broadcasts zt+1, ht+1, {λt+1

l } to the active workers.

3) Active workers update the local dual variables ϕj as follows,

ϕt+1
j =

{
PΦ(ϕ

t
j+ρ2∇ϕj

L̃p({wt+1
j },zt+1, ht+1,{λt+1

l },{ϕt
j})),∀j∈Qt+1,

ϕt
j ,∀j /∈ Qt+1,

(15)

where ρ2 represents the step-size and PΦ represents the projection onto the closed convex set Φ
and we set Φ = {ϕj | ||ϕj ||∞≤ α4}, α4 is a positive constant. And master can also obtain {ϕt+1

j }
according to Eq. (15). It is seen that the projection operation in each step is computationally simple
since the closed convex sets have simple structures [4].

4 Iterative Active Set Method

Cutting plane methods may give rise to numerous linear constraints and lots of extra message passing
[55]. Moreover, more iterations are required to obtain the ε-stationary point when the size of a set
containing cutting planes increases (which corresponds to a larger M ), which can be seen in Theorem
1. To improve the computational efficiency and speed up the convergence, we consider removing
the inactive cutting planes. The proposed itErative Active SEt method (EASE) can be divided into
the two steps: during T1 iterations, 1) solving the cutting plane generation subproblem to generate
cutting plane, and 2) removing the inactive cutting plane every k iterations, where k>0 is a pre-set
constant and can be controlled flexibly.

The cutting planes are generated according to the uncertainty set. For example, if we employ ellipsoid
uncertainty set, the cutting plane is generated via solving a SOCP. In this paper, we propose CD-norm
uncertainty set, which can be expressed as follows,

P={p : −p̃j≤pj − qj≤ p̃j ,
∑

j
|pj − qj

p̃j
|≤Γ,1⊤p=1}, (16)

where Γ∈R1 can flexibly control the level of robustness, q = [q1, · · · , qN ]∈RN represents the prior
distribution, −p̃j and p̃j (p̃j ≥ 0) represent the lower and upper bounds for pj − qj , respectively.
The setting of q and p̃j ,∀j are based on the prior knowledge. D-norm is a classical uncertainty set
(which is also called as budget uncertainty set) [5]. We call Eq. (16) CD-norm uncertainty set since
p is a probability vector so all the entries of this vector are non-negative and add up to exactly one,
i.e., 1⊤p = 1. Due to the special structure of CD-norm, the cutting plane generation subproblem is
easy to solve and the level of robustness in terms of the outage probability, i.e., probabilistic bounds
of the violations of constraints can be flexibly adjusted via a single parameter Γ. We claim that
l1-norm (or twice total variation distance) uncertainty set is closely related to CD-norm uncertainty
set. Nevertheless, there are two differences: 1) CD-norm uncertainty set could be regarded as a
weighted l1-norm with additional constraints. 2) CD-norm uncertainty set can flexibly set the lower
and upper bounds for every pj (i.e., qj−p̃j≤pj≤pj+p̃j), while 0≤pj≤1,∀j in l1-norm uncertainty
set. Based on the CD-norm uncertainty set, the cutting plane can be derived as follows,

1) Solve the following problem,

pt+1 = argmax
p1,··· ,pN

∑
j
(pj − p)fj(wj)

s.t.
∑

j
|pj−qj

p̃j
|≤Γ, −p̃j≤pj−qj≤ p̃j ,∀j,

∑
j
pj=1 (17)

var. p1, · · · , pN ,

where pt+1 = [pt+1
1 ,· · · , pt+1

N ] ∈ RN . Let ãt+1 = pt+1 − p, where p = [p, · · · , p] ∈ RN . This
first step aims to obtain the distribution ãt+1 by solving problem in Eq. (17). This problem can
be effectively solved through combining merge sort [13] (for sorting p̃jfj(wj), j=1, · · · , N ) with
few basic arithmetic operations (for obtaining pt+1

j , j =1, · · · , N ). Since N is relatively large in
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Algorithm 1 ASPIRE-EASE
Initialization: iteration t = 0, variables {w0

j}, z0, h0, {λ0
l }, {ϕ0

j} and set A0.
repeat

for active worker do
updates local wt+1

j according to Eq. (11);
end for
active workers transmit local model parameters and loss to master;
master receives updates from active workers do

updates zt+1, ht+1, {λt+1
l }, {ϕt+1

j } in master according to Eq. (12), (13), (14), (15);
master broadcasts zt+1, ht+1, {λt+1

l } to active workers;
for active worker do

updates local ϕt+1
j according to Eq. (15);

end for
if (t+ 1) mod k == 0 and t < T1 then

master updates At+1 according to Eq. (19) and (20), and broadcast parameters to all workers;
end if
t = t+ 1;

until convergence

distributed system, the arithmetic complexity of solving problem in Eq. (17) is dominated by merge
sort, which can be regarded as O(N log(N)).

2) Let f(w)=[f1(w1), · · · , fN (wN )]∈RN , check the feasibility of the following constraints:

ãt+1⊤f(w)≤ max
al∈At

al
⊤f(w). (18)

3) If Eq. (18) is violated, ãt+1 will be added into At:

At+1 =

{
At ∪ {ãt+1}, if Eq.(18) is violated,
At, otherwise,

(19)

when a new cutting plane is added, its corresponding dual variable λt+1
|At|+1 = 0 will be generated.

After the cutting plane subproblem is solved, the inactive cutting plane will be removed, that is:

At+1 =

{
∁At+1{al}, if λt+1

l =0andλt
l=0, 1≤ l≤|At|,

At+1, otherwise,
(20)

where ∁At+1{al} is the complement of {al} in At+1, and the dual variable will be removed. Then
master broadcasts At+1, {λt+1

l } to all workers. Details of algorithm are summarized in Algorithm 1.

5 Convergence Analysis
Definition 1 (Stationarity gap) Following [52, 32, 53], the stationarity gap of our problem at tth
iteration is defined as:

∇Gt=



{ 1
αt

w
(wt

j−PW(wt
j−αt

w∇wj
Lp({wt

j},zt, ht, {λt
l}, {ϕt

j})))}
1
ηt
z
(zt−PZ(zt−ηtz∇zLp({wt

j},zt, ht, {λt
l}, {ϕt

j})))
1
ηt
h
(ht−PH(ht−ηth∇hLp({wt

j},zt, ht, {λt
l}, {ϕt

j})))
{ 1
ρ1
(λt

l−PΛ(λ
t
l+ρ1∇λl

Lp({wt
j},zt, ht, {λt

l}, {ϕt
j})))}

{ 1
ρ2
(ϕt

j−PΦ(ϕ
t
j+ρ2∇ϕj

Lp({wt
j},zt, ht, {λt

l}, {ϕt
j})))}

 , (21)

where ∇Gt is the simplified form of ∇G({wt
j},zt, ht, {λt

l}, {ϕt
j}).

Definition 2 (ε-stationary point) ({wt
j},zt, ht, {λt

l}, {ϕt
j}) is an ε-stationary point (ε ≥ 0) of a

differentiable function Lp, if ||∇Gt|| ≤ ε. T (ε) is the first iteration index such that ||∇Gt||≤ε, i.e.,
T (ε)=min{t | ||∇Gt||≤ε}.
Assumption 1 (Smoothness/Gradient Lipschitz) Lp has Lipschitz continuous gradients. We assume
that there exists L > 0 satisfying
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||∇θLp({wj}, z, h,{λl},{ϕj})−∇θLp({ŵj}, ẑ, ĥ,{λ̂l},{ϕ̂j})||
≤ L||[wcat−ŵcat; z−ẑ;h−ĥ;λcat−λ̂cat;ϕcat−ϕ̂cat]||,

where θ ∈ {{wj}, z, h, {λl}, {ϕj}} and [; ] represents the concatenation. wcat−ŵcat = [w1−
ŵ1; · · · ;wN − ŵN ] ∈ RpN , λcat− λ̂cat = [λ1− λ̂1; · · · ;λ|At|− λ̂|At|] ∈ R|At|, ϕcat− ϕ̂cat =

[ϕ1−ϕ̂1; · · · ;ϕN−ϕ̂N ]∈RpN .

Assumption 2 (Boundedness) Before obtaining the ε-stationary point (i.e., t≤T (ε)−1), we assume
variables in master satisfy that ||zt+1−zt||2+||ht+1−ht||2+

∑
l ||λ

t+1
l −λt

l ||2 ≥ ϑ, where ϑ > 0 is
a relative small constant. The change of the variables in master is upper bounded within τ iterations:

||zt − zt−k||2≤τk1ϑ, ||ht − ht−k||2≤τk1ϑ,
∑

l ||λt
l − λt−k

l ||2≤τk1ϑ,∀1≤k≤τ ,

where k1 > 0 is a constant.

Setting 1 (Bounded |At|) |At| ≤ M,∀t, i.e., an upper bound is set for the number of cutting planes.

Setting 2 (Setting of ct1, ct2) ct1 = 1

ρ1(t+1)
1
6
≥ c1 and ct2 = 1

ρ2(t+1)
1
6
≥ c2 are nonnegative non-

increasing sequences, where c1 and c2 are positive constants and meet Mc1
2 +Nc2

2 ≤ ε2

4 .

Theorem 1 (Iteration complexity) Suppose Assumption 1 and 2 hold. We set ηtw = ηtz = ηth =
2

L+ρ1|At|L2+ρ2NL2+8(
|At|γL2

ρ1(ct1)2
+ NγL2

ρ2(ct2)2
)

and ηw = 2

L+ρ1ML2+ρ2NL2+8(MγL2

ρ1c1
2 +NγL2

ρ2c2
2 )

. And we set

constants ρ1<min{ 2
L+2c01

, 1
15τk1NL2 } and ρ2≤ 2

L+2c02
, respectively. For a given ε, we have:

T (ε)∼O(max{(4Mσ1
2

ρ12
+
4Nσ2

2

ρ22
)3
1

ε6
, (
4(d6 +

ρ2(N−S)L2

2 )
2
(
−
d+kd(τ−1))d5

ε2
+(T1+τ)

1
3 )3}),

(22)
where σ1, σ2, γ, τ , kd,

−
d, d5, d6 and T1 are constants. The detailed proof is given in Appendix A.

There exists a wide array of works regarding the convergence analysis of various algorithms for
nonconvex/convex optimization problems involved in machine learning [25, 53]. Our analysis,
however, differs from existing works in two aspects. First, we solve the non-convex PD-DRO in an
asynchronous distributed manner. To our best knowledge, there are few works focusing on solving
the DRO in a distributed manner. Compared to solving the non-convex PD-DRO in a centralized
manner, solving it in an asynchronous distributed manner poses significant challenges in algorithm
design and convergence analysis. Secondly, we do not assume the inner problem can be solved nearly
optimally for each outer iteration, which is numerically difficult to achieve in practice [4]. Instead,
ASPIRE-EASE is single loop and involves simple gradient projection operation at each step.

6 Experiment
In this section, we conduct experiments on four real-world datasets to assess the performance of the
proposed method. Specifically, we evaluate the robustness against data heterogeneity, robustness
against malicious attacks and efficiency of the proposed method. Ablation study is also carried out to
demonstrate the excellent performance of ASPIRE-EASE.

6.1 Datasets and Baseline Methods
We compare the proposed ASPIRE-EASE with baseline methods based on SHL [20], Person Ac-
tivity [26], Single Chest-Mounted Accelerometer (SM-AC) [9] and Fashion MNIST [51] datasets.
The baseline methods include Indj (learning the model from an individual worker j), MixEven

(learning the model from all workers with even weights using ASPIRE), FedAvg [33], AFL [35] and
DRFA-Prox [16]. The detailed descriptions of datasets and baselines are given in Appendix C.

In our empirical studies, since the downstream tasks are multi-class classification, the cross entropy
loss is used on each worker (i.e., Lj(·),∀j). For SHL, Person Activity, and SM-AC datasets, we
adopt the deep multilayer perceptron [49] as the base model. And we use the same logistic regression
model as in [35, 16] for Fashion MNIST dataset. The base models are trained with SGD. More
details are given in Appendix C. Following related works in this direction [41, 35, 16], worst case
performance are reported for the comparison of robustness. Specifically, we use Accw and Lossw
to represent the worst case test accuracy and training loss (i.e., the test accuracy and training loss
on the worker with worst performance), respectively. We also report the standard deviation Std of
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Table 1: Performance comparisons based on Accw (%) ↑, Lossw ↓ and Std ↓ (↑ and ↓ respectively
denote higher scores represent better performance and lower scores represent better performance).
The boldfaced digits represent the best results, “−” represents not available.

Model
SHL Person Activity SC-MA Fashion MNIST

Accw↑ Lossw↓ Std↓ Accw↑ Lossw ↓ Std↓ Accw ↑ Lossw ↓ Std↓ Accw ↑ Lossw ↓ Std↓
max{Indj} 19.06±0.65 − 29.1 49.38±0.08 − 8.32 22.56±0.78 − 17.5 − − −
MixEven 69.87±3.10 0.806±0.018 4.81 56.31±0.69 1.165±0.017 3.00 49.81±0.21 1.424±0.024 6.99 66.80±0.18 0.784±0.003 10.1
FedAvg [33] 69.96±3.07 0.802±0.023 5.21 56.28±0.63 1.154±0.019 3.13 49.53±0.96 1.441±0.015 7.17 66.58±0.39 0.781±0.002 10.2
AFL [35] 78.11±1.99 0.582±0.021 1.87 58.39±0.37 1.081±0.014 0.99 54.56±0.79 1.172±0.018 3.50 77.32±0.15 0.703±0.001 1.86
DRFA-Prox [16] 78.34±1.46 0.532±0.034 1.85 58.62±0.16 1.096±0.037 1.26 54.61±0.76 1.151±0.039 4.69 77.95±0.51 0.702±0.007 1.34
ASPIRE-EASE 79.16±1.13 0.515±0.019 1.02 59.43±0.44 1.053±0.010 0.82 56.31±0.29 1.127±0.021 3.16 78.82±0.07 0.696±0.004 1.01
ASPIRE-EASEper 78.94±1.27 0.521±0.023 1.36 59.54±0.21 1.051±0.016 0.79 56.71±0.16 1.119±0.028 3.48 78.73±0.06 0.698±0.006 1.09

[Acc1, · · · ,AccN] (the test accuracy on every worker). In the experiment, S is set as 1, that means
the master will make an update once it receives a message. Each experiment is repeated 10 times,
both mean and standard deviations are reported. We implement our model with PyTorch and conduct
all the experiments on a server with two TITAN V GPUs.

6.2 Results
Robustness against Data Heterogeneity. We first assess the robustness of the proposed ASPIRE-
EASE by comparing it with baseline methods when data are heterogeneously distributed across
different workers. Specifically, we compare the Accw, Lossw and Std of different methods on all
datasets. The performance comparison results are shown in Table 1. In this table, we can observe that
max{Indj}, which represents the best performance of individual training over all workers, exhibits
the worst robustness on SHL, Person Activity, and SC-MA. This is because individual training
(max{Indj}) only learns from the data in its local worker and cannot generalize to other workers due
to different data distributions. Note that max{Indj} is unavailable for Fashion MNIST since each
worker only contains one class of data and cross entropy loss cannot be used in this case. max{Indj}
also does not have Lossw, since Indj is trained only on individual worker j. The FedAvg and
MixEven exhibit better performance than max{Indj} since they consider the data from all workers.
Nevertheless, FedAvg and MixEven only assign the fixed weight for each worker. AFL is more robust
than FedAvg and MixEven since it not only utilizes the data from all workers but also considers
optimizing the weight of each worker. DRFA-Prox outperforms AFL since it also considers the prior
distribution and regards it as a regularizer in the objective function. Finally, we can observe that
the proposed ASPIRE-EASE shows excellent robustness, which can be attributed to two factors:
1) ASPIRE-EASE considers data from all workers and can optimize the weight of each worker; 2)
compared with DRFA-Prox which uses prior distribution as a regularizer, the prior distribution is
incorporated within the constraint in our formulation (Eq. 4), which can be leveraged more effectively.
And it is seen that ASPIRE-EASE can perform periodic communication since ASPIRE-EASEper,
which represents ASPIRE-EASE with periodic communication, also has excellent performance.

Within ASPIRE-EASE, the level of robustness can be controlled by adjusting Γ. Specially, when
Γ = 0, we obtain a nominal optimization problem in which no adversarial distribution is considered.
The size of the uncertainty set will increase with Γ (when Γ ≤ N ), which enhances the adversarial
robustness of the model. As shown in Figure 1, the robustness of ASPIRE-EASE can be gradually
enhanced when Γ increases. More results are available in Figure C2 of Appendix C.

Robustness against Malicious Attacks. To assess the model robustness against malicious attacks,
malicious workers with backdoor attacks [1, 48], which attempt to mislead the model training process,
are added to the distributed system. Following [14], we report the success attack rate of backdoor
attacks for comparison. It can be calculated by checking how many instances in the backdoor
dataset can be misled and categorized into the target labels. Lower success attack rates indicate
more robustness against backdoor attacks. The comparison results are summarized in Table 2 and
more detailed settings of backdoor attacks are available in Appendix C. In Table 2, we observe that
AFL can be attacked easily since it could assign higher weights to malicious workers. Compared
to AFL, FedAvg and MixEven achieve relatively lower success attack rates since they assign equal
weights to the malicious workers and other workers. DRFA-Prox can achieve even lower success
attack rates since it can leverage the prior distribution to assign lower weights for malicious workers.
The proposed ASPIRE-EASE achieves the lowest success attack rates since it can leverage the prior
distribution more effectively. Specifically, it will assign lower weights to malicious workers with
tight theoretical guarantees.
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Figure 1: Γ control the degree of robustness
(worst case performance in the problem) on (a)
Person Activity, (b) SC-MA datasets.
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Figure 2: Comparison of the convergence time
on worst case worker on (a) Person Activity, (b)
SC-MA datasets.
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Figure 3: Comparison of ASPIRE-CP and
ASPIRE-EASE regarding the number of cutting
planes on (a) Person Activity, (b) SC-MA datasets.

Table 2: Performance comparisons about the suc-
cess attack rate (%) ↓. The boldfaced digits repre-
sent the best results.
Model SHL Person Activity SC-MA Fashion MNIST

MixEven 36.21±2.23 34.32±2.18 52.14±2.89 83.18±2.07

FedAvg [33] 38.15±3.02 33.25±2.49 55.39±3.13 82.04±1.84

AFL [35] 68.63±4.24 43.66±3.87 75.81±4.03 90.04±2.52

DRFA-Prox [16] 21.23±3.63 27.27±3.31 30.79±3.65 63.24±2.47

ASPIRE-EASE 9.17±1.65 22.36±2.33 14.51±3.21 45.10±1.64

Efficiency. In Figure 2, we compare the convergence speed of the proposed ASPIRE-EASE
with AFL and DRFA-Prox by considering different communication and computation delays for
each worker. The proposed ASPIRE-EASE has two variants, ASPIRE-CP (ASPIRE with cutting
plane method), ASPIRE-EASE(-)(ASPIRE-EASE without asynchronous setting). More results are
available in Figure C3 of Appendix C. Based on the comparison, we can observe that the proposed
ASPIRE-EASE generally converges faster than baseline methods and its two variants. This is because
1) compared with AFL, DRFA-Prox, and ASPIRE-EASE(-), ASPIRE-EASE is an asynchronous
algorithm in which the master updates its parameters only after receiving the updates from active
workers instead of all workers; 2) unlike DRFA-Prox, the master in ASPIRE-EASE only needs to
communicate with active workers once per iteration; 3) compared with ASPIRE-CP, ASPIRE-EASE
utilizes active set method instead of cutting plane method, which is more efficient. It is seen from
Figure 2 that, the convergence speed of ASPIRE-EASE mainly benefits from the asynchronous
setting.

Ablation Study. For ASPIRE, compared with cutting plane method, EASE is more efficient since it
considers removing the inactive cutting planes. To demonstrate the efficiency of EASE, we firstly
compare ASPIRE-EASE with ASPIRE-CP concerning the number of cutting planes used during the
training. In Figure 3, we can observe that ASPIRE-EASE uses fewer cutting planes than ASPIRE-CP,
thus is more efficient. The convergence speed of ASPIRE-EASE and ASPIRE-CP in Figure 2 also
suggests that ASPIRE-EASE converges much faster than ASPIRE-CP. More results are available in
Figure C3 and C4, Appendix C.

7 Conclusion

In this paper, we present ASPIRE-EASE method to effectively solve the distributed distributionally
robust optimization problem with non-convex objectives. In addition, CD-norm uncertainty set has
been proposed to effectively incorporate the prior distribution into the problem formulation, which
allows for flexible adjustment of the degree of robustness of DRO. Theoretical analysis has also been
conducted to analyze the convergence properties and the iteration complexity of ASPIRE-EASE.
ASPIRE-EASE exhibits strong empirical performance on multiple real-world datasets and is effective
in tackling DRO problems in a fully distributed and asynchronous manner. In the future work, more
uncertainty sets could be designed for our framework and more update rule for variables in ASPIRE
could be considered.

9



Acknowledgments and Disclosure of Funding

The work of Yang Jiao and Kai Yang was supported in part by the Fundamental Research Funds
for the Central Universities of China, in part by the Shenzhen Institute of Artificial Intelligence and
Robotics for Society (AIRS), in part by the National Natural Science Foundation of China under
Grant 61771013, and in part by the Fundamental Research Funds of Shanghai Jiading District.

References
[1] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov. How to backdoor federated

learning. In International Conference on Artificial Intelligence and Statistics, pages 2938–2948.
PMLR, 2020.

[2] A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear programs. Operations
research letters, 25(1):1–13, 1999.

[3] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization. Princeton university press,
2009.

[4] D. P. Bertsekas. Nonlinear programming. Journal of the Operational Research Society, 48(3):
334–334, 1997.

[5] D. Bertsimas and M. Sim. The price of robustness. Operations research, 52(1):35–53, 2004.

[6] D. Bertsimas, I. Dunning, and M. Lubin. Reformulation versus cutting-planes for robust
optimization. Computational Management Science, 13(2):195–217, 2016.

[7] J. Blanchet and K. Murthy. Quantifying distributional model risk via optimal transport. Mathe-
matics of Operations Research, 44(2):565–600, 2019.

[8] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning.
Siam Review, 60(2):223–311, 2018.

[9] P. Casale, O. Pujol, and P. Radeva. Personalization and user verification in wearable systems
using biometric walking patterns. Personal and Ubiquitous Computing, 16(5):563–580, 2012.

[10] T.-H. Chang, M. Hong, W.-C. Liao, and X. Wang. Asynchronous distributed ADMM for
large-scale optimization—Part I: Algorithm and convergence analysis. IEEE Transactions on
Signal Processing, 64(12):3118–3130, 2016.

[11] Y. Chen, Y. Ning, M. Slawski, and H. Rangwala. Asynchronous online federated learning for
edge devices with Non-IID data. In 2020 IEEE International Conference on Big Data (Big
Data), pages 15–24. IEEE, 2020.

[12] A. Cohen, A. Daniely, Y. Drori, T. Koren, and M. Schain. Asynchronous stochastic optimization
robust to arbitrary delays. Advances in Neural Information Processing Systems, 34:9024–9035,
2021.

[13] R. Cole. Parallel merge sort. SIAM Journal on Computing, 17(4):770–785, 1988.

[14] J. Dai, C. Chen, and Y. Li. A backdoor attack against LSTM-based text classification systems.
IEEE Access, 7:138872–138878, 2019.

[15] E. Delage and Y. Ye. Distributionally robust optimization under moment uncertainty with
application to data-driven problems. Operations research, 58(3):595–612, 2010.

[16] Y. Deng, M. M. Kamani, and M. Mahdavi. Distributionally robust federated averaging. arXiv
preprint arXiv:2102.12660, 2021.

[17] J. C. Duchi and H. Namkoong. Learning models with uniform performance via distributionally
robust optimization. The Annals of Statistics, 49(3):1378–1406, 2021.

[18] R. Gao and A. J. Kleywegt. Distributionally robust stochastic optimization with wasserstein
distance. arXiv preprint arXiv:1604.02199, 2016.

10



[19] G. Geraci, M. Wildemeersch, and T. Q. Quek. Energy efficiency of distributed signal processing
in wireless networks: A cross-layer analysis. IEEE Transactions on Signal Processing, 64(4):
1034–1047, 2015.

[20] H. Gjoreski, M. Ciliberto, L. Wang, F. J. O. Morales, S. Mekki, S. Valentin, and D. Roggen.
The university of sussex-huawei locomotion and transportation dataset for multimodal analytics
with mobile devices. IEEE Access, 6:42592–42604, 2018.
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